Artifacts in Nanoecotoxicology

Dr. Elijah J. Petersen **Biosystems and Biomaterials Division National Institute of Standards and Technology (NIST) Presented 8/14/2013 at the University of Jyväskylä**

Artifacts

Definition - an incorrect result from a confounded assay or misinterpretation of the results

This definition includes misattribution of the mechanism of toxicity such as the effect being attributed to ENMs when actually the toxicity is from an unidentified chemical in the ENM dispersion or from ENM dissolution into ions.

One important distinction to make is between artifacts and experimental uncertainty. Every step in an experimental procedure has uncertainty which cannot be avoided. In some cases, identification of and corrections for artifacts has been shown to completely change the perceived toxicity of an ENM.

pubs.acs.org/est

Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements

Elijah J. Petersen,^{†,*} Theodore B. Henry,^{‡,§,||} Jian Zhao,^{\perp} Robert I. MacCuspie,^{#, ∇} Teresa L. Kirschling,^{\bigcirc} Marina A. Dobrovolskaia,^{\bigstar} Vincent Hackley,[#] Baoshan Xing,^{\perp} and Jason C. White[¶]

Artifacts can potentially occur at each step of nanoecotoxicology testing

- 1. Procurement of NPs (impurities, incorrect sizes)
- 2. Storage (dissolution, release of coatings)
- 3. Dispersion (ROS from ultrasonication)
- 4. Measurement of toxic endpoints (interaction with test reagents)
- 5. Characterization in tissues (misidentification using TEM)

Procurement of NPs

	Vendor Information		Independently Measured	
	Outer diameter (nm)	Length (µm)	Outer diameter (nm)	Length (µm)
MWCNT-a	30 to 50	0.5 to 2.0	27.9 (8.6)	0.386 (0.264)
MWCNT-b	30 to 50	10 to 20	35.8 (10.6)	0.565 (0.364)
MWCNT-c	< 8	0.5 to 2.0	9.5 (2.4)	0.236 (0.126)
MWCNT-d	< 8	10 to 30	11.2 (3.4)	0.255 (0.143)

O'Carroll, D. M.; Liu, X.; Mattison, N. T.; Petersen, E. J., *J. Coll. Interf. Sci.* **2013**, *390*, 96-104.

Procurement of NPs

С

Vendor	SWNT product description	Catalyst (wt%)
-	As-produced (AP)	Ni 19.4% Y 5.49%
A	Purified	Ni 14.3% Y 2.09%
в	As-produced	Ni 3.15% Co 9.21%
с	As-produced	Ni 22.8% Y 4.79%
D	As-produced	Ni 24.1% Y 4.17%
	High Purity	Co 3.30% Mo 1.27%

Liu et al., Advanced Materials, 19, 2007, 2790-2796.

Procurement of NPs

Liu et al., Advanced Materials, 19, 2007, 2790-2796.

Procurement of NPs: Lipopolysaccharides (LPS, endotoxin)

Found in membrane of Gram-negative bacteria

Vallhov et al., Nano Letters, 6(8), 2006, 1682-1686.

Polyethyleneimine (PEI) Modified MWNTs

Materials	MWCNTs	CNT/PEI	CNT/PEI.Ac	CNT/PEI.SAH
Electrophoretic Mobility (10 ⁻⁸ m ² V ⁻¹ s ⁻¹)	-1.71 ± 0.09	1.32 ± 0.09	0.03 ± 0.03	-0.78 ± 0.04

Shen, M., Wang, S.H., Shi X., Huang Q., Petersen, E.J., Pinto R.A., Baker, J.R., Jr., and Weber, W. J., Jr. 2009. *Journal of Physical Chemistry C.* **2009**, 113, (8), 3150-3156.

Storage artifact: Toxicity of PEI MWNTs to Daphnia Magna

Petersen, E.J., Pinto R.A., Mai, D. J., Landrum, P. F., and Weber, W. J., Jr. 2011. *Environ. Sci. Technol.* **2011**, 45, (3), 1133-1138.

Storage effects: AgNPs and human mesenchymal stem cells

Kittler et al., Chem. Mater. 2010, 22, 4548-4554

Artifacts: THF dispersion of fullerenes

Oberdorster et al., Environ Health Persp. 2004, 112(10), pages 1058-1062.

Artifacts: THF dispersion of fullerenes

Henry et al., Environ Health Persp. 2007, 115(7), pages 1059-1065.

Dispersion effects: THF dispersion of fullerenes

Henry et al., *Environ Health Persp.* 2007, 115(7), pages 1059-1065.

Dispersion effects: Sonication

Fig. 1. Silicon drift detector energy dispersive X-ray spectrometry spectra of plant tissue exposed to sonicated TiO_2 -nanoparticle suspensions (15 kV beam, 50 Pa, spot size 3, magnification 18,000 ×). The NSS software detected the presence of Al and other metallic elements in a 2-µm-sized Ti-agglomerate (elements other than Al attributable to KCl solution in which Ti is suspended and biologically relevant compounds from tissue).

Fig. 2. X-ray diffraction phase pattern of dry TiO₂-nanoparticle powder in Be sample holder; Cu K α , 20 mA, 2 deg/min scan speed, 5 to 80 deg range, 2 Θ measurement axis. The PDXL software estimated 89.9% anatase, 10.1% rutile TiO₂.

Betts et al., Environ Toxicol Chem, 2013, 889-893.

Dispersion effects: Sonication

Fig. 3. Images of Ti alloy sonicator probe (1.27 cm, grade 5 Ti alloy) under varying conditions: (left) new, unused probe; (middle) probe after single use, matted finish; (right) aged probe with obvious pitting on surface.

Fig. 4. Cumulative distribution function, C(d), of suspensions with respect to particle size distribution: $50 \text{ mg TiO}_2/\text{L}$ with indirect sonication (n = 3), $50 \text{ mg TiO}_2/\text{L}$ sonicated with a Ti-alloy probe (n = 3), and three consecutive sonications of KCl with a Ti-alloy probe (no ENP, n = 9). ENP = engineered nanoparticle.

Dispersion effects: Sonication of Pluronic Surfactants Leads to Cytotoxicity

Sonication changed the cytotoxicity of the Pluronic surfactant Wang et al., Nanotoxicology, 2013, 7(7), 1272-1281.

Indirect Toxic Effects

Petersen et al., 2014, Environ. Sci. Technol. 48 (8), 4226-4246.

Direct Interactions with Assay

Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays

J. M. Wörle-Knirsch, K. Pulskamp, and H. F. Krug*

Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Department of Molecular and Environmental Toxicology, P.O. Box 3640, D-76021 Karlsruhe, Germany

Received January 25, 2006; Revised Manuscript Received March 29, 2006

LETTERS

NANO

2006 Vol. 6, No. 6 1261–1268

Worle-Knirsch et al, Nano Letters, 2006

Direct Interactions of SWCNTs with MTT Assay

Worle-Knirsch et al, Nano Letters, 2006

Direct Interactions with Assay WST-1 Assay

Worle-Knirsch et al, Nano Letters, 2006

Direct Interactions with Assay Lactate Dehydrogenase Assay

Worle-Knirsch et al, Nano Letters, 2006

Direct Interactions with Assay

Comet Assay Overview

DNA damage (Chemical, UV or y-irradiation)

(relaxed) DNA having strand breaks

Living cells from culture media, blood, or tissue

After electrophoresis embedded on agarose- and fluorescent staining, the damaged single-strand / double- coated slide and lysed DNA is separated from the intact DNA (the "head") and generates a comet "tail".

Comet Assay Measurement of TiO2 ENM DNA Damage

Different results observed for TiO2 samples analyzed in dark or with laboratory light

Gerloff et al., Nanotoxicology, 2009

Direct Interactions with Assay

Lin et al., Int. J. Radiat. Biol., 85(3), 2009

Dynamic Changes During Assay

Petersen et al., 2014, Environ. Sci. Technol. 48 (8), 4226-4246.

Characterization artifact: Single-walled carbon nanotubes in *Daphnia magna*

500 nm

HV=120kV Direct Mag: 20000x Clemson EM Center

Potential Control Experiments

Potential control	Purpose(s)
experiments	
0 h control	Test if ENMs causes a toxicological effect (e.g.,
	DNA damage) during processing steps after
	conclusion of exposure period
	Test if ENMs would interact with test reagents or
	biomolecules and cause a false negative or false
	positive result
Coating control	Test if coating has toxicological or stimulatory
	effects on organisms or cells
Direct interference control	Assess if ENMs produce a signal (e.g.,
(production of a signal	absorbance, fluorescence) that could impact the
similar to measurand)	analytical method
Dispersant control	Test if dispersant has toxicological or stimulatory
	effects on organisms or cells

Potential Control Experiments

Potential control	Purpose(s)
experiments	
Dissolved ion control	Allows for comparison of endpoints between
	ENM and constituent dissolved ions
	Assess if NP formation could occur from ions
	in test media or in organism or cells
Endotoxin	Assess if there is an impact of ENMs on the
inhibition/enhancement	effects of endotoxins on a specific endpoint
control	
Filtrate only control	Assess potential toxicity of contaminants on
	and dissolution from ENMs from the synthesis,
	storage, and dispersion processes
Larger/Bulk particle	Allows for comparison of endpoints with
control	ENMs and if nano-specific effects are observed

Potential Control Experiments

Potential control	Purpose(s)
experiments	
Mixing control	Assess extent of mixing using inert markers
Nutrient depletion	Assess extent to which adsorption of media
control	constituents by ENMs could have an indirect
	toxicity effect on endpoints
Shading control	Assess light intensity reduction caused by
	ENMs and if that could impact the endpoints
	being studied
Sonication control with	Investigate possible changes to media
media and organic	constituents or toxicological properties of
chemicals/coatings	organic chemicals from sonication
Mixing control	Assess extent of mixing using inert markers