















# Uniqueness of Nuclei

Nucleus: Unique Quantum System where 3 interactions out of 4 are active!

Strong, Weak, EM

(Gravitational force is too weak!)

| 4-fundamental interactions (forces) |                          |               |                       |  |  |  |  |  |  |  |  |
|-------------------------------------|--------------------------|---------------|-----------------------|--|--|--|--|--|--|--|--|
|                                     | Interactions             | Example       | Transmitter           |  |  |  |  |  |  |  |  |
|                                     | Strong int.*             | Nuclear Force | Meson* (Gluon)        |  |  |  |  |  |  |  |  |
|                                     | EM int.#                 | Coulomb Force | Photon <sup>#</sup>   |  |  |  |  |  |  |  |  |
|                                     | Weak int.*               | Beta-decay    | W-, Z-boson*          |  |  |  |  |  |  |  |  |
|                                     | Gravitational#           | Apple falls!  | Graviton <sup>#</sup> |  |  |  |  |  |  |  |  |
| *s                                  | *short-range #long-range |               |                       |  |  |  |  |  |  |  |  |
|                                     |                          |               |                       |  |  |  |  |  |  |  |  |







# How are Nuclei defined ?

\*Quantum Finite Many-body System of Fermions

=> quantum numbers are important

L, S, J, K, T

=> selection rules of Q-numbers are important

\*Conservation Laws

Energy

Momentum

Angular momentum

\*Studied by Measuring Decays, Reactions γ-decay, β-decay, Nuclear Reactions

## How Nuclei are defined?

\*Quantum Finite Many-body System of Fermions

=> quantum numbers are important

L, S, J, K, T

=> selection rules of Q-numbers are importnat

\*Active forces in nuclei:

3 out of 4 fundamental forces

strength: strong >> electro-magnetic >> weak

time : fast middle  $(\sim 10^{-20} \text{s})$   $(\sim 10^{-15} \text{s})$ 

 $(\sim 10^{-20} \text{s})$   $(\sim 10^{-15} \text{s})$   $(\sim 10^{-1} \text{s})$  \*they struggle to make their territory larger!

slow

→ phenomena from 3 forces can be combined

for the study of nuclei!

## Roles of 3 forces

in Nuclear excitation & decay

Strong: nuclear reactions

[ $(p, p'), (\alpha, \alpha'), ..., (p, n), (^3He,t) etc$ ]

EM: (e, e'), Coulomb ex.,  $\gamma$ -decay Weak:  $\nu$ -induced reactions,  $\beta$ -decay

 $[(v_x, v_x'), (v_e, e^-),...]$ 

\*if Strong can play a role, other two are hidden!

\*if EM , Weak

\*if Strong and EM cannot play roles, then Weak will appear on the stage.

























### Note on SM & "Residual Interactions" (I) In the Shell-Model nucleons are treated as independent. Single-particle phenomena are usually well described. ex. $J^{\pi}$ values of ground states of odd nuclei Nucleus $J\pi$ $^{3}$ <sub>2</sub>He<sub>1</sub> $1/2^{+}$ $^{7}$ <sub>3</sub>Li<sub>4</sub> 3/2- $^{17}{_{8}O_{9}}$ $5/2^{+}$ $^{41}_{20}\text{Ca}_{21}$ $7/2^{-}$ Shells deep inside are treated as inert. Doubly magic nuclei form "inert core". ex. <sup>4</sup>He (N=Z=2), <sup>16</sup>O (N=Z=8), <sup>40</sup>Ca (N=Z=20), <sup>56</sup>Ni (N=Z=28)







# Note on Nuclear Model & "Residual Interactions"

We first assume a nuclear model.

ex. Harmonic Oscillator Model, or Shell Model.

Remaining part of nucleon-nucleon interactions that are not included in the model are treated as "residual (or effective) interactions."

Residual interactions between valence nucleons play important roles to form nuclear structure.

Mainly 2-body int., but also 3-body int.

\*\* "Nuclear Excitations" in Nuclei



# Structure information form Transitions

Nuclear Transitions give us Structure information

\*Transition strength: proportional to  $|<\mathbf{f}|$  Op  $|\mathbf{i}>|^2$   $\mathbf{H}_i|\mathbf{i}>=E_i/\mathbf{i}>, \ \mathbf{H}_f|\mathbf{f}>=E_f|\mathbf{f}>$ 

\*Studied by: Nuclear Reactions, Decays Reaction: Excitation + Spectroscopy

Decay: Spectroscopy

\*Mode of Excitation  $\leftarrow \rightarrow Op$ 

# For the study of Nuclear Structure

We have two different tools!

1) Decay Studies

**γ-decay:** in beam **γ**-study, source study **β-decay:**  $\beta$ -ray study,  $\beta$ -delayed  $\gamma$ , p or n

2) Reaction Studies

Inelastic Scattering: simply giving Energy Charge Exchange Reaction:

charge-exchange & giving Energy

Pick-up Reaction, Transfer Reaction, ...























## What do we observe? **Observed Strength** = reaction mechanism operator x structure \* integration of 3-quantities! mechanism operator (interaction) γ decay: simple **EM** β decay: simple weak reaction: complicated strong \*to study Structures, other 2 should be simple!



```
*both have very simple mechanism.

(people even don't think of "mechanism !")

*Operators are relatively simple!

Weak: Gamow-Teller, Fermi

EM: E1, E2,... M1, M2,...

matrix element & t_{1/2}

(1/t_{1/2}) = Coup.Const. x PhaseSpaceFac.

x |<f | Op | i >|^2

*if Op is specified, w.f.(=structures) are studied!

(Op specification is not always easy!)

* highly Ex region cannot be reached!
```

# Reduced transition strength B(Op)A value proportional to (matrix element)<sup>2</sup> $|<\mathbf{f} \mid Op \mid \mathbf{i} > |^2$ is called "reduced transition strength" $ex.\ B(GT),\ B(F),\ B(M1),\ B(E2),\ldots$ \*representing only the structure part for a specific operator! \*reaction mechanism part is removed!





# Case 2 : Study by Nuclear Reactions

\*we have to think of mechanisms seriously.

- 1) one-step, two-step,...
- 2) direct, exchange

\*we have to think of operators (modes) seriously.

\*separation of excitation modes is the main subject.

various reactions (e.g. charge exch., inelastic,..)

using different particles,

at different incident energies.

angular distribution analysis ("L" analysis)

\*complicated, but highly *Ex* region can be reached! (reaction study is a dirty business, but effective!)













| Vib | orat                                           | ion M                       | odes ir                            | n Nucle                                    | i (Operato                                        | ors) |  |
|-----|------------------------------------------------|-----------------------------|------------------------------------|--------------------------------------------|---------------------------------------------------|------|--|
| ١   | Microscopic classification of giant resonances |                             |                                    |                                            |                                                   |      |  |
|     |                                                |                             |                                    | $\Delta S = 1$<br>$\Delta T = 0$           |                                                   |      |  |
|     | L = 0                                          |                             | $\Sigma 	au_i$ IAS                 |                                            | Σὄ <sub>ι</sub> τ <sub>ι</sub><br>GTR             |      |  |
|     | 2 <sup>rd</sup><br>order                       | $\sum r_i^2$ ISGMR          | $\sum r_i^2 	au_i$ IVGMR           | $\sum r_i^2 \vec{\sigma}_i$ ISSMR          | $\sum r_i^2 \vec{\sigma}_i \tau_i$ IVSMR          |      |  |
| I   | L = 1                                          |                             | $\sum r_i Y_m^1 	au_i$ IVGDR       | $\sum r_i Y_m^{I} \vec{\sigma}_i$<br>ISSDR | $\sum r_i Y_m^1 \vec{o}_i \tau_i$ IVSDR           |      |  |
|     | 2 <sup>nd</sup><br>order                       | $\sum r_i^3 Y_m^1$<br>ISGDR |                                    |                                            |                                                   |      |  |
| 1   | L = 2                                          | $\sum r_i^2 Y_m^2$<br>ISGQR | $\sum r_i^2 Y_m^2 \tau_i$ IVGQR    | $\sum r_i^2 Y_m^2 \vec{\sigma}_i$<br>ISSQR | $\sum r_i^2 Y_m^2 \vec{\sigma}_i \tau_i$<br>IVSQR |      |  |
| l   | L = 3                                          | $\sum r_i^3 Y_m^3$<br>ISGOR | $\sum r_i^3 Y_m^3 \tau_i$<br>IVGOR | $\sum r_i^3 Y_m^3 \vec{\sigma}_i$ ISSOR    | $\sum r_i^3 Y_m^3 \vec{\sigma}_i 	au_i$<br>IVSOR  |      |  |





\*\*\*Giant Resonances\*\*\*
(collective excitations)

- absorbs a large fraction of the total sum rule strength –

See the "Proceedings of Science ENAS 6" Sep. 18-27, 2011.









































\*\*\*Decay and Widths of States

## How are Nuclei defined? \*Quantum Finite Many-body System of Fermions => quantum numbers are important L, S, J, K, T => selection rules of Q-numbers are important \*Active forces in nuclei: 3 out of 4 fundamental forces strength: strong >> electro-magnetic >> weak middle time: fast slow $(\sim 10^{-20} \text{s})$ $(\sim 10^{-15} s)$ $(\sim 10^{-1} s)$ \*they struggle to make their territory larger! → phenomena from 3 forces can be combined for the study of nuclei!

# Relationship: Decay and Width Heisenberg's Uncertainty Principle $\Delta x \cdot \Delta p \approx \hbar$ $\Delta t \cdot \Delta E \approx \hbar$ Width $\Gamma = \Delta E$ \*if: Decay is Fast, then: Width of a State is Wider! \*if $\Delta t = 10^{-20} \sec \rightarrow \Delta E \sim 100 \text{ keV (particle decay } \Delta t = 10^{-15} \sec \rightarrow \Delta E \sim 1 \text{ eV (fast } \gamma \text{ decay)}$





# \*\*Sum Rule

As an example, sum rule for the Fermi (& Gamow-Teller) transition is discussed.

# Fermi & Gamow-Teller operators

Fermi operator: τ

 $\Delta L=0$ ,  $\Delta S=0 \rightarrow \Delta J=0$ , and  $\Delta T=1$  ( $\Delta T=0$ )

\*transition is between the same configuration

Sum rule value:  $\Sigma B(F) = |N-Z|$ 

GT operator: στ

 $\Delta L=0$ ,  $\Delta S=1 \rightarrow \Delta J=1$ , and  $\Delta T=1$  ( $\Delta T=-1$ , 0, +1)

\*transitions are among *LS*-partner (j<sub>></sub> & j<sub><</sub>) configurations

Sum rule value:  $|\Sigma B(GT-) - \Sigma B(GT+)| = 3 |N-Z|$ 

\*if  $j_i = 0^+ \rightarrow j_f = 1 + j_i = 3/2 \rightarrow j_f = 1/2^+, 3/2^+, 5/2^+$ 

\*if  $T_i=0 \rightarrow T_f=1$   $T_i=1/2 \rightarrow T_f=1/2, 3/2$   $T_i=1 \rightarrow T_f=0, 1, 2$ 

# \*\*Sum Rule (idea)

Nucleus: quantum finite many-body system

The number of nucleons involved in each mode (degree of freedom): limited

Vibration of each mode has a max. amplitude.

For each operator, sum of transition strength is const.

### Sum Rule

★ simple sum rule (non-energy weighted sum rule)

 $S = \Sigma B$ (operator) = const.

★ energy weighted sum rule

 $S = \sum E_x \times B(\text{operator}) = \text{const.}$ 











