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Abstract

An old set of notes from the time I taught courses in non-linear optics, and used the
density operator approach (see S. Mukamel’s book: “Principles of Nonlinear Optical
Spectroscopy”). Somehow ResearchGate found it, or found it mentioned, on the web
somewhere. The first part is a rather detailed and traditional derivation of the equa-
tion, followed by an answer to the question asked in the introduction for two different
systems. If I remember well a question that came up during the course in relation
to hole burning experiments. I studied the derivation first in the late 1980’s when I
worked on quadrupolar NMR relaxation of probe molecules in liquid crystals due to
coupling to director fluctuations, which explains the remark on frequency dependence
of the relaxation times at the end. I’ve always found the derivation weird (first solve
the differential equation, then take the time derivative of the approximate solution to
get a differential equation again, but it is a form of “coarse graining” that leads to
dissipation), Somewhere I also have a derivation using a projection operator formal-
ism. If I can find it I’ll post it. I realize now that there probably is a simple argument
for relation (1.1) somewhere. Although I was slightly surprised that it also worked
for electronic transitions, since those lack symmetries spin systems have, in particular
when taking state dipole moments into account. The term I included, related to the
difference dipole moment of ground and excited state is mostly incorrectly ignored in
more recent applications. I also found some sheets (dated 1999) with just the essential
seven steps of the derivation, (using Mukamel’s notation), and a few remarks, which
I appended, starting on page 10. An (incomplete) literature list of papers having to
do with relaxation, and/or relaxation in quantum systems, is also appended. There is
also talk of simulations for excitonically coupled systems, which I haven’t been able to
locate yet. When I find them, or the student report alluded to at the end, I’ll update
this manuscript to include those. In the mean time I have much more to say about this
and related topics, but since there was a request for this paper I uploaded it anyway.
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If you have questions or remarks about it, or about related topics, my email address
is at the bottom of this page. I did not bother to edit it, so please ignore any typo’s
or grammatical errors.

1 Introduction

To understand where the familiar expression

1

T2
=

1

T ′
2

+
1

2T1
(1.1)

comes from, and to see if it is correct, we go here through the derivation of the Redfield
equation, first in general, then for a magnetic system (NMR relaxation) and finally
for an electronic transition.

2 The derivation

Starting point, as ever, is the Liouville equation for the density operator ρ(t), which
we write in the following form:

∂ρ(t)

∂t
= −2πi [H, ρ(t)] (2.1)

where we used units such that h = 1, c = 1. The Hamiltonian consists of two terms, the
unperturbed part H0, with eigenvalues ǫn and corresponding eigenfunctions |n〉, and
a random perturbation Hr, which couples system operators Ak to external fluctuating
fields Ek(t):

Hr =
∑

k

AkEk(t) (2.2)

The fluctuating field properties are independent of the system, and the idea is to
express everything in correlation functions of these fluctuating fields. We will work
out some examples in later sections.

The first step is to go to the interaction picture:

ρI(t) = e2πiH0tρ(t)e−2πiH0t (2.3)

so that we can write
∂ρI(t)

∂t
= −2πi [Hr,I(t), ρI(t)] (2.4)

This is a rather essential step, since we will assume that ρI varies slowly in time. If
there was no perturbation, we would not have any variation at all, so the perturbation
is assumed to make slow changes in ρI(t). The time dependence in Hr,I(t) now comes
from two sources: the fluctuating field and the operators Ak,I which have now acquired
a time dependence as well.

We now solve eq. (2.4) by iteration to second order: the formal (integral) solution
is

ρI(t) = ρI(0)− 2πi

∫ t

0
dτ [Hr,I(τ), ρI(τ)] (2.5)

Email: zwan@few.vu.nl
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which can be used as the starting point of a series expansion:

ρI(t) = ρI(0)−2πi

∫ t

0
dτ [Hr,I(τ), ρI(0)]−4π2

∫ t

0
dτ

∫ τ

0
dτ ′

[

Hr,I(τ),
[

Hr,I(τ
′), ρI(0)

]]

+· · ·

(2.6)
Next we take the time derivative of this equation to get:

dρI(t)

dt
= −2πi [Hr,I(t), ρI(0)]− 4π2

∫ t

0
dτ [Hr,I(t), [Hr,I(τ), ρI(0)]] + · · · (2.7)

Then we take an ensemble average over the fluctuations in the external fields, and
assume that 〈Ek(t)〉 = 0, and that the fluctuations are uncorrelated with ρI(0). This
makes the first term vanish, and for the rest we get:

dρI(t)

dt
= −4π2

∫ t

0
dτ 〈[Hr,I(t), [Hr,I(τ), ρI(0)]]〉 (2.8)

Since the fluctuating fields are independent of the operators, we can separate the
two parts:

dρI(t)

dt
= −4π2

∑

n,m

∫ t

0
dτ 〈En(t)Em(τ)〉 [An(t), [Am(τ), ρI(0)]] (2.9)

where the time–dependence in the operators An indicates that they have to be evalu-
ated in the interaction picture. Now we assume that the ensemble we average over is
stationary, so that

dρI(t)

dt
= −4π2

∑

n,m

∫ t

0
dτ 〈EmEn(t− τ)〉 [An(t), [Am(τ), ρI(0)]] (2.10)

subsequently changing the integration variable to t− τ then gives:

dρI(t)

dt
= −4π2

∑

n,m

∫ t

0
dτ 〈EmEn(τ)〉 [An(t), [Am(t− τ), ρI(0)]] (2.11)

The next step is to assume that the correlation functions 〈EmEn(τ)〉 are decaying
rapidly, so that it has vanished before ρI(0) starts to change appriciably. We may
then replace the integration limit by +∞ to get

dρI(t)

dt
= −4π2

∑

n,m

∫

∞

0
dτ 〈EmEn(τ)〉 [An(t), [Am(t− τ), ρI(0)]] (2.12)

We will in the next sections present a model for the correlation functions. For
the moment we only need the assumption that they decay in some characteristic time
τc, so that for times longer than τc we may replace ρI(0) by ρI(t), and have again a
differential equation for ρI(t), whcih is valid for times longer than τc.

It remains to work out the commutator terms in some set of basis functions, for
which we use the eigenfunctions of the Hamiltonian H0.

Thus we get

d

dt
(ρI)αα′ = −4π2

∑

n,m

∫

∞

0
dτ 〈EmEn(τ)〉 〈α| [An(t), [Am(t− τ), ρI ]]

∣

∣α′
〉

(2.13)
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where we for the moment left out the t argument of the density operator.
The commutator expressiomn has four terms whcih we consider separately:

〈α|An(t)Am(t− τ)ρI
∣

∣α′
〉

=
∑

β,β′

〈α|An(t) |β〉 〈β|Am(t− τ)
∣

∣β′
〉 〈

β′
∣

∣ ρI)
∣

∣α′
〉

(2.14)

We will denote the eigenvalues of H0 by the same greek symbols that occur in the
ket. Using (2.3) it is easy to see that (2.14) is equal to

∑

β,β′

e2πi(α−β)te2πi(β−β′)(t−τ)(An)αβ(Am)ββ′(ρI)β′α′ (2.15)

Several variable changes and the introduction of a dummy summation lead to the
following result:

〈α|An(t)Am(t− τ)ρI
∣

∣α′
〉

=
∑

β,β′

[

δα′β′

∑

γ

e2πi(β−γ)τ e2πi(α−β)t(Am)γβ(An)αγ

]

(ρI)ββ′

(2.16)
The other terms are treated similarly. The second term gives:

−〈α|An(t)ρIAm(t− τ)
∣

∣α′
〉

= −
∑

β,β′

e2πi(α
′−β′)τ e2πi(α−β+β′−α′)t(Am)β′α′(An)αβ(ρI)ββ′

(2.17)
The third term is equal to:

−〈α|Am(t− τ)ρIAn(t)
∣

∣α′
〉

= −
∑

β,β′

e2πi(β−α)τ e2πi(α−β+β′−α′)t(Am)αβ(An)β′α′(ρI)ββ′

(2.18)
and the finmal term gives:

〈α| ρIAm(t− τ)An(t)
∣

∣α′
〉

=
∑

β,β′

[

δαβ
∑

γ

e2πi(γ−β′)τe2πi(β
′−α)t(Am)β′γ(An)γα′

]

(ρI)ββ′

(2.19)
Going back to the original representation (Heissenberg picture) we note that all

exponentials with t cancel, and we are left with

∂ραα′(t)

∂t
= −2πi(α− α′)ραα′(t)− 4π2

∑

n,m

∑

β,β′

[

δα′β′

∑

γ

∫

∞

0
dτ 〈EmEn(τ)〉 e

2πi(β−γ)τ ((Am)γβ(An)αγ

−

∫

∞

0
dτ 〈EmEn(τ)〉 e

2πi(α′−β′)τ (Am)β′α′(An)αβ −

∫

∞

0
dτ 〈EmEn(τ)〉 e

2πi(β−α)τ (Am)αβ(An)β′α′

+ δαβ
∑

γ

∫

∞

0
dτ 〈EmEn(τ)〉 e

2πi(γ−β′)τ (Am)β′γ(An)γα′

]

ρββ′(t) (2.20)

This is the Redfield equation in its most general form. We now make the following
simplifying assumption, that holds for isotropic systems with simpe exponentially
decaying correlation functions:

〈EmEn(τ)〉 = δnm
〈

E2
〉

e−t/τc ≡ δnm
〈

E2
〉

e−2πζt (2.21)

that is: all field components decay in the same way, and have the same equilibrium
average.
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In that case the integrals become particularly simple:

∫

∞

0
dτ 〈EmEn(τ)〉 e

2πiωτ = δnm

〈

E2
〉

2π(ζ − iω)
≡ δnm

1

2π
J(ω) (2.22)

Introducing this into eq. (2.30) then yields:

∂ραα′(t)

∂t
= −2πi(α− α′)ραα′(t)− 2π

∑

β,β′

[

δα′β′

∑

γ

J(β − γ)Aγβ · Aαγ

− [J(α′ − β′) + J(β − α)]Aβ′α′ ·Aαβ + δαβ
∑

γ

J(γ − β′)Aβ′γ ·Aγα′

]

ρββ′(t)(2.23)

where the dot denotes an inner product, for instance:

Aβ′α′ · Aαβ =
∑

n

(An)β′α′(An)αβ (2.24)

3 Spin relaxation in a fluctuating magnetic field

As our first example we treat spin relaxation in fluctuating magnetic fields. For a spin
1/2 in a magnetic field in the z–direction we can write the unperturbed Hamiltonian
as:

H0 = −ǫIz (3.1)

The fluctuating perturbations we will write as

Hr = − ~H · ~I (3.2)

where ~H is proportional to the fluctuating magnetic field (gyromagnetic ratio and
so on is absorbed in this field. Thus E2 in expression (2.22) should be replaced by H2

and the A–operators are now spin operators.
Let us denote the ground state as |0〉 and the excited state as |1〉 with respective

energies of −1
2ǫ and

1
2ǫ.

We only have to calculate two elements of ρ since ρ00 + ρ11 = 1, the trace is one
and should be conserved (this can easily be checked, in general we need

∑

α ραα = 1,
and it is straightforward to show that ∂

∂t

∑

a ραα = 0).
For the other two elements we have the relation ρ01 = ρ∗10. For the ρ00 element we

have:

∂ρ00
∂t

= −2π
∑

β,β′

[

δ0β′

∑

γ

J(β−γ)Aγβ ·A0γ−[J(−β′)+J(β)]Aβ′0·A0β+δ0β
∑

γ

J(γ−β′)Aβ′γ ·Aγ0

]

ρββ′

(3.3)
The three spin matrices are

Ix =
1

2

(

0 1
1 0

)

Iy =
1

2

(

0 −i
i 0

)

Iz =
1

2

(

1 0
0 −1

)

(3.4)

It is straightforward to show that

(~I)γβ · (~I)0γ =
1

2
δβ0δγ1 +

1

4
δβ0δγ0 (3.5)
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and that

(~I)β′0 · (~I)0β =
1

2
δβ1δβ′1 +

1

4
δβ0δβ′0 (3.6)

and finally that

(~I)β′γ · (~I)γ0 =
1

2
δβ′0δγ1 +

1

4
δβ′0δγ0 (3.7)

Introducing this into the above expression (3.3) gives:

∂ρ00
∂t

= −π[J(ǫ) + J(−ǫ)]
∑

β,β′

[

δβ0δ0β′ − δβ1δβ′1

]

ρββ′ (3.8)

so that
∂ρ00(t)

∂t
= −π[J(ǫ) + J(−ǫ)][ρ00(t)− ρ11(t)] (3.9)

Introduction of the expression for J , eq. (2.22) then gives after a lengthy calcula-
tion:

∂ρ00(t)

∂t
= −

2πζ
〈

H2
〉

ǫ2 + ζ2
[ρ00(t)− ρ11(t)] (3.10)

We also note that

∂ρ00(t)

∂t
=

∂ρ00(t) + ρ11(t)− ρ11(t)

∂t
= −

∂ρ11(t)

∂t
(3.11)

so that
∂[ρ00(t)− ρ11(t)]

∂t
= −

4πζ
〈

H2
〉

ǫ2 + ζ2
[ρ00(t)− ρ11(t)] (3.12)

Since the z–magnetization is defined as Mz = Tr[Izρ], we have the following equa-
tion for the z–magnetization:

∂Mz(t)

∂t
= −

4πζ
〈

H2
〉

ǫ2 + ζ2
Mz(t) ≡ −

2π

T1
Mz(t) (3.13)

Next we study the equation for the coherences. From eq. (2.23) we get:

∂ρ01(t)

∂t
= 2πiǫρ01(t)− 2π

∑

β,β′

[

δβ′1

∑

γ

J(β − γ)Aγβ · A0γ

− [J(
1

2
ǫ− β′) + J(β +

1

2
ǫ)]Aβ′1 · A0β + δβ0

∑

γ

J(γ − β′)Aβ′γ · Aγ1

]

ρββ′(t)(3.14)

The first operator term was already calculated in eq. (3.5). For the second we get:

(~I)β′1 · (~I)0β = −
1

4
δβ′1δβ0 (3.15)

and the third term gives:

(~I)β′γ · (~I)γ1 =
1

2
δβ′1δγ0 +

1

4
δβ′1δγ1 (3.16)

Introducing this into eq. (3.14) gives:

∂ρ01(t)

∂t
= 2πiǫρ01(t)− 2π

∑

β,β′

δβ′1δβ0
[

J(−ǫ) + J(0)
]

ρββ′(t) (3.17)
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so that:
∂ρ01(t)

∂t
= 2πiǫρ01(t)− 2π[J(−ǫ) + J(0)]ρ01(t) (3.18)

Taking the complex conjugate of this equation gives us the equation for ρ10:

∂ρ10(t)

∂t
= −2πiǫρ10(t)− 2π[J(ǫ) + J(0)]ρ10(t) (3.19)

where we also used that J∗(ǫ) = J(−ǫ). Now we can calculate the magnetization
in the x– and y–direction:

Mx(t) = Tr[Ixρ(t)] =
1

2
(ρ01 + ρ10) (3.20)

Using eqs. (3.18) and (3.19) we get for this quantity:

∂Mx(t)

∂t
= 2π (ǫ+ Im[J(ǫ)])My(t)− 2π (J(0) + Re[J(ǫ)])Mx(t) (3.21)

where My(t) = i
2(ρ01 − ρ10). We note that the imaginary part of the spectral

density causes a frequency shift, which is usually neglected in NMR. The relaxation
time T2 is now given by:

1

T2
= J(0) + Re[J(ǫ)] =

〈

H2
〉

ζ
+

〈

H2
〉

ζ2 + ǫ2
=

1

2T1
+

〈

H2
〉

ζ
≡

1

2T1
+

1

T ′
2

(3.22)

For My(t) we can derive a similar equation:

∂My(t)

∂t
= −2π (ǫ+ Im[J(ǫ)])Mx(t)−

2π

T2
My(t) (3.23)

Finally we note that the Redfield equation is also applicable to the difference
between the density operator and the equilibrium density operator. That is, eq. (2.23)
supposedly holds also for ρββ′ − ρeqββ′ .

Reverting to Liouville space notation, we can write eq. (2.23) in the following form:

∂ |ρ(t)〉〉

∂t
= −2πiL0 |ρ(t)〉〉 − 2πiLd |ρ(t)〉〉 (3.24)

where |ρ(t)〉〉 now denotes the difference between |ρ(t)〉〉 and |ρeq〉〉 and the operators
L0 and Ld are given by:

L0 =











0 0 0 0
0 −ǫ 0 0
0 0 ǫ 0
0 0 0 0











and Ld =











− i
2T1

0 0 i
2T1

0 − i
T2

0 0

0 0 − i
T2

0
i

2T1
0 0 − i

2T1











(3.25)

If we want to compare this to the equations used in nlo.tex, we can identify 1/2T1

with Γ, and 1/T2 with γ. Then there are still small differences due to the fact that
here we look at the difference density operator. More importantly are the 00 and 30
elements of Ld which are nonzero here.

We will see how this holds up for electronic transitions.
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4 Electronic transitions

Since eq. (2.23) is general, it can also be used for electronic transitions. Now we
usually take the unperturbed Hamiltonian as H0 = ǫ |1〉 〈1|, and the interaction with
external fluctuating fields can be written as

Hr = −~̂µ · ~Er(t) (4.1)

The difference with the NMR case is that the dipole transitions can be different
for the various field components. That is, the coupling is between transition dipole
moment and external field, and/or between ground and excited state dipole moments
and the fields. We consider both cases separately.

If we only have a transition dipole moment, we can write (4.1) as:

Hr = −~µ · ~Er(t) [|0〉 〈1|+ |1〉 〈0|] = −~µ · ~Er(t)

(

0 1
1 0

)

(4.2)

where the matrix representation shows that this is closely related to just the Ix oper-
ator for NMR.

Again we consider population and coherence terms separately. For the population
we again get (3.3), although we now immediately assume that the equation holds
for the difference between time–dependent density operator and equilibrium density
operator. The expressions for the operator products are simpler:

Aγβ ·A0γ = δγ1δβ0

Aβ′0 · A0β = δβ′1δβ1

Aβ′γ ·Aγ0 = δγ1δβ′0 (4.3)

Introducing this into eq. (3.3) gives:

∂ρ00(t)

∂t
= −2π[J(ǫ) + J(−ǫ)][ρ00(t)− ρ11(t)] (4.4)

where now, under assumptions of isotropic systems and exponential decay, we get
for J :

J(ω) =
〈

E2
〉 1

ζ − iω
(4.5)

where, as before, we absorbed the magnitude of the transition moment in the field, so
that we can again define

∂ρ00(t)

∂t
= −

π

T1
[ρ00(t)− ρ11(t)] (4.6)

where now
1

T1
=

4ζ
〈

E2
〉

ζ2 + ǫ2
(4.7)

The difference of the factor of 2 here is a consequence of the difference between the
coupling operators in the NMR and the electronic case, we defined T1 in this way so
that the population difference operator (corresponding to Mz) decays as:

∂[ρ00(t)− ρ11(t)]

∂t
= −

2π

T1
[ρ00(t)− ρ11(t)] (4.8)
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which is now the same as eq. (3.13).
For the coherence equation, eq. (3.14) we need in addition

Aβ′1 · A0β = δβ′0δβ1

Aβ′γ ·Aγ1 = δγ0δβ′1 (4.9)

∂ρ01(t)

∂t
= 2πiǫρ01(t)− 4π[J(−ǫ)ρ01(t)− J(ǫ)ρ10(t)] (4.10)

Neglecting again the imaginary parts of the spectral density, which only contribute
to a shift in energy, we get

∂ρ01(t)

∂t
= 2πiǫρ01(t)−4πJ ′(ǫ)[ρ01(t)−ρ10(t)] = 2πiǫρ01(t)−

π

T1
[ρ01(t)−ρ10(t)] (4.11)

The other matrix element evolves as:

∂ρ10(t)

∂t
= −2πiǫρ10(t)−

π

T1
[ρ10(t)− ρ01(t)] (4.12)

Before looking at other relaxation mechanisms, and the damping Liouvillian, we’ll
solve the resulting set of equations, and compare to the NMR case. To compare we
use the same operators as above (although they now have different physical interpre-
tations). We already derived the Mz equation above: eq. (4.8). For the coherence
sum we get:

∂[ρ01(t) + ρ10(t)]

∂t
= 2πiǫ[ρ01(t)− ρ10(t)] (4.13)

and for the coherence difference:

∂[ρ01(t)− ρ10(t)]

∂t
= 2πiǫ[ρ01(t) + ρ10(t)]−

2π

T1
[ρ10(t)− ρ01(t)] (4.14)

Differentiation of this last equation, and subsequent substitution of (4.13) gives:

∂2[ρ01(t)− ρ10(t)]

∂t2
+

2π

T1

∂[ρ01(t)− ρ10(t)]

∂t
+ (2πǫ)2[ρ01(t)− ρ10(t)] = 0 (4.15)

If ǫ >> 1/2T1, which is usually the case for electronic transitions the eigenvalues
of this equation can be approximated by

2π

(

±iǫ−
1

2T1

)

(4.16)

so that the decay rate is again 1/2T1, as in the NMR case.
We note that the difference of a factor 2 in the relaxation rate is caused by the

term (2πǫ)2. If that term were zero, as it is for the population related terms, we would
find one eigenvalue zero (which for the populations is related to conservation of the
trace), and one term decaying as 1/T1.

Next we consider energy fluctuations due to coupling with ground– and/or excited
state dipole moments.

We can write the random Hamiltonian as:

Hr = −~µg · ~Er(t) |0〉 〈0| − ~µe · ~Er(t) |1〉 〈1| (4.17)
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where ~µg is the ground, and ~µe the excited state dipole moment. We can write
this also as:

Hr = −(~µe − ~µg) · ~Er(t) |1〉 〈1| (4.18)

where we used that |0〉 〈0| + |1〉 〈1| is the unit operator, which commutes with
everything and hence cannot cause any relaxation.

Thus our A operator is now equal to |1〉 〈1|, and we can calculate the various terms
again. First the populations:

∂ρ00
∂t

= −2π
∑

β,β′

[

δ0β′

∑

γ

J(β−γ)Aγβ ·A0γ−[J(−β′)+J(β)]Aβ′0·A0β+δ0β
∑

γ

J(γ−β′)Aβ′γ ·Aγ0

]

ρββ′

(4.19)
Since the only component of A is A11 this gives:

∂ρ00
∂t

= 0 (4.20)

and we get no extra contribution to the population decay, as was to be expected
For the coherence we get:

∂ρ01(t)

∂t
= 2πiǫρ01(t)− 2πJ(0)ρ01(t) ≡ 2πiǫρ01(t)−

2π

T ′
2

ρ01(t) (4.21)

We therefore find essentially the same results as in the NMR case, albeit with
different interpretations, and for different reasons. The dipole moment to be used in
T ′
2 is different also from the one to be used in T1: in the latter the transition dipole

moment ~µ enters, in the former the difference between ground– and excited state
dipole moment ∆µ = ~µe − ~µg..

The damping Liouvillian thus becomes:

Ld =













− i
2T1

0 0 i
2T1

0 − i
2T1

− i
T ′

2

i
2T1

0

0 i
2T1

− i
2T1

− i
T ′

2

i
2T1

0 0 − i
2T1













(4.22)

Although the energy shift is slightly different, but negligible anyway, we get for the
relaxation time again

1

T2
=

1

2T1
+

1

T ′
2

(4.23)

Curious, but true.
As a final note, we have shown that the damping Liouvillian we have found here

is quite different from the one we used in the simulations, so some adaptations are
necessary there. In terms of the parameters γ (coherence damping) and Γ (population
damping) introduced there, we can write the Liouville operator as:

L =











−iΓ 0 0 iΓ
0 −ǫ− iγ iΓ 0
0 iΓ ǫ− iγ 0
iΓ 0 0 −iΓ











(4.24)

so that:
∂

∂t
|ρ(t)〉〉 = −2πiL |ρ(t)〉〉 (4.25)
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We’ll have to start the simulations now with this new and improved damping
matrix. Some care is needed, since the damping is supposed to work on the difference
density operator, whereas the field acts on the density operator itself. Thus without
external fields we can write eq. (4.25) where in fact |ρ〉〉 = |ρ〉〉 − |ρeq〉〉, which is
valid since [H0, ρ

eq] = 0. However, this is not true for the external interaction term:
[Hext, ρ

eq] 6= 0, since otherwise the interaction would never be able to get the system
out of its equilibrium state. The simplest way to fix this is to add 2πiLdρ

eq to the
equation.

NB: in NMR there are cases when the frequency dependence of the spectral density
can be measured, for instance in liquid crystals, due to slow components of the director
fluctuations. Is that also possible for electronic transitions?
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REDFIELD THEORY

∂ |r(t)〉〉

∂t
= −2πiL0 |ρ(t)〉〉 − 2πiLr(t) |ρ(t)〉〉

Random Hamiltonian

Hr(t) =
∑

k

ÂkBk(t)

Âk: System operators

Bk(t): Fluctuating bath functions.
Properties:

〈Bk(t)〉 = 0

〈Bk(t)Bl(t+ τ)〉 = 〈Bk(0)Bl(τ)〉 ≡ Jkl(τ)

STEP ONE: formal solution in interaction picture:

|ρI(t)〉〉 = |ρI(0)〉〉 − 2πi
∫ t

0
dτ Lr,I(τ) |ρI(τ)〉〉

STEP TWO: expand to second order:

|ρI(t)〉〉 = |ρI(0)〉〉 − 2πi
∫ t

0
dτ Lr,I(τ) |ρI(0)〉〉

−4π2
∫ t

0
dτ

∫ τ

0
dτ ′Lr,I(τ)Lr,I(τ

′) |ρI(0)〉〉

STEP THREE: Take time derivative:

d

dt
|ρI(t)〉〉 = −2πiLr,I(t) |ρI(0)〉〉 − 4π2

∫ t

0
dτ Lr,I(t)Lr,I(τ) |ρI(0)〉〉

STEP FOUR: Average over bath variables:

d

dt
|ρI(t)〉〉 = −4π2

∫ t

0
dτ 〈Lr,I(t)Lr,I(τ)〉 |ρI(0)〉〉

12



STEP FIVE: stationarity and rapid decay of bath correlation func-

tions:

d

dt
|ρI(t)〉〉 = −4π2

∫ ∞

0
dτ 〈Lr,I(0)Lr,I(τ − t)〉 |ρI(0)〉〉

STEP SIX: Assume slow change in |ρI(0)〉〉 one time scale of decay:

d

dt
|ρI(t)〉〉 = −4π2

∫ ∞

0
dτ 〈Lr,I(0)Lr,I(τ − t)〉 |ρI(t)〉〉

STEP SEVEN: work out correlation functions:

dραα′(t)

dt
= −2πi(α− α′)ραα′(t)− 2π

∑

β,β′

[

δα′β′

∑

γ
J(β − γ)Aγβ · Aαγ

−[J(α′−β ′)+J(β−α)]Aβ′α′ ·Aαβ+δαβ
∑

γ
J(γ−β ′)Aβ′γ ·Aγα′

]

ρββ′(t)

This horrible equation is the Redfield equation. The term be-
tween brackets has both so–called secular terms (shifts in energy)

as well as damping terms (decay of coherences and populations).
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AN EXAMPLE

Electric field fluctuations coupled to transition dipole moment

Hr(t) = −~µ · ~Er(t)

Bath correlation fucntions:

J(ω) =
∫ ∞

0
dt eiωtJ(t) =

∫ ∞

0
dt eiωt

〈

~Er(0) · ~Er(t)
〉

Resulting equations:

Populations

dρ00(t)

dt
= −2π [J(ǫ) + J(−ǫ)] [ρ00(t)− ρ11(t)] ≡ −

π

T1
[ρ00(t)− ρ11(t)]

Coherences

dρ01(t)

dt
= −2πiǫρ01(t)−

π

T1
[ρ10(t)− ρ01(t)]

Damping matrix:

Ld =

















−i/2T1 0 0 i/2T1

0 −i/2T1 i/2T1 0
0 i/2T1 −i/2T1 0

2T1 0 0 −i/2T1
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Eigenvalue equations:

Populations

λ2 +
i

T1
λ = 0

Two eigenvalues:

λ = 0 Non–decaying trace of ρ: sum of populations is constant

λ = −
i

T1
: Population difference decay constant

Coherences

λ2 +
i

T1
λ− ǫ2 = 0

Two eigenvalues:

λ1,2 = −
i

2T1
±

√

√

√

√ǫ2 −
1

4T 2
1

In most cases (?) ǫ >> 1
2T1

so that

λ1,2 = ±ǫ−
i

2T1

Thus:

−
i

2T1
: Coherence decay constant

NB: fluctuations that couple to ground or excited state dipole

moments give an additional contribution to the coherence decay
1/2T ′

2, related to the zero frequency component of J .
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LIOUVILLE EQUATION

∂ |r(t)〉〉

∂t
= −2πiL |ρ(t)〉〉

with

L = L0 + Ld + Lext

TWO LEVEL SYSTEM

|ρ(t)〉〉 =

















ρ00
ρ01
ρ10
ρ11

















System Liouvillian

L0 =

















0 0 0 0
0 −ǫ 0 0

0 0 ǫ 0
0 0 0 0

















External field Louvillian

Lext = −~µ · ~Eext(t)

















0 1 −1 0

1 0 0 −1
−1 0 0 1

0 −1 1 0

















Damping Louvillian

Ld =

















−iΓ 0 0 iΓ

0 −iγ iΓ 0
0 iΓ −iγ 0

iΓ 0 0 −iΓ

















with







γ = coherence damping
Γ = population decay
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Coupled two–level systems

|ρ(t)〉〉 = |ρ1(t)〉〉 ⊗ |ρ2(t)〉〉

So now |ρ(t)〉〉 is a vector with 16 components.

All previous matrices have to be extended to 2–particle Liouville
space (mainly a counting problem).

Dipole coupling is now added (This is a little tricky, since we have
to begin in two–particle space, again mainly a counting problem,

but usually done differently from the previous)
Thus we get a 16 × 16 Liouvillian matrix which is used for the

simulations.

Problems:
1. decay to incorrect ground state (maybe inherent in Redfield

approach, since there are basic inconsistencies in Redfield that can-
not be removed: cf. D. Kohen, C.C. Marston, D.J. Tannor: Phase

space approach to theories of quantum dissipation, J. Chem. Phys.
107, (1997), 5236.

2. How to extract the correct quantities: Solving the Liouville
equation numerically is not an expansion method, so how to extract
quantities related to for instance χ(1), or χ(3) is non–trivial.

What we hoped to see:
1. Energy transfer between monomers, echoes, fluorescence de-

polarization.
2. Decay (or not) to lowest excited state. (If not what must be

added to get that?)
3. Estimates of simulation times, how to add vibrational states,

and what is their influence?

What we did see:
Come to Abdon Pijpelink’s presentation on march 9, 1999.
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WHY IS

1

T2
=

1

T ′
2

+
1

2T1

?
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