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We are the proud owners of a set of mathematical
relationships, that, as far as we know, account for
everything in the natural world bigger than an atomic
nucleus.

R.B. Laughlin, p. 4.

R.B. Laughlin, A different Universe, (2009).
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Thus, 1−T/Tr represents a kind of efficiency horizon
beyond which negative entropy is produced and the
second law is not obeyed. As this is impossible for
a heat machine, it serves to underline the difference
between photosynthetic photochemistry and a heat
machine.

Jennnings et al., BBA, 1709, (2005), 251.

It is impossible to take heat from a reservoir and in a
cyclic process completely convert it to work.

Lord Kelvin, 1851.
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In fact it would seem reasonable to define life as be-
ing characterized by a capacity for evading this law.
If probably cannot evade the laws of atomic physics,
which are believed to apply as much to the atoms of
a brain as to the atoms of a brick, but it seems able
to evade this statistical laws of probability.

James Jeans, 1933.
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A is a hot and B a cold reservoir.

1. Isothermal expansion from ik to ef ,
while the cylinder is on A. Heat is
converted to work.

2. Adiabatic expansion from ef to gh,
while the cylinder is isolated. No
heat is exchanged, work is per-
formed.

3. Isothermal compression from gh to
cd, while the cylinder is on B. Work
is converted to heat.

4. Adiabatic compression from cd to
the initial position.
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Tradiational Carnot diagram for the ideal gas with isotherms
(marked Tl and Th) and adiabatic curves.
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● Once a cycle is completed the gas in the cylinder is in
the same state as before.

● Once a cycle is completed a certain amount of heat
taken from the high temperature reservoir has been
converted to work.

● Once a cycle is completed a certain amount of heat is
given off to the cold reservoir.

● All reversible engines have the same efficiency: 1− TB

TA
.

● All other (heat?) engines are less efficient.

● There is a state quantity we will call Entropy.



Engines and Heat Pumps

Thermodynamics

❖ Jennings

❖ Life

❖ Heat Machines

❖ pV diagram

❖ Conclusions

❖ Engines

❖ Efficiency

❖ Conclusions

❖ Bacteria

❖ Photosynthesis

❖ Work

❖ PSII

❖ Jennings

❖ Second Law

Exercises and
Problems

9 / 26

E is a reversible ‘Heat Machine’ and P a reversible heat pump.

qh = w + ql q′h = q′l + w′
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● Suppose E is more efficient than P: w > w′.

● We make ql = q′
l

(can always be done).

● Then qh > q′
h
.

Final Effect: heat qh − q′
h

is taken from high T reservoir, and
completely converted to work w − w′.

Just as you cannot take
work from falling water and
bring that back to the same
level, you cannot take work
from heat and bring that
back to the same level.
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1. All reversible Carnot machines are equally efficient
(regardless of the medium they use).

2. All other machines are less efficient than reversible
machines.

Jennings’ conjecture: Photosystems are perpetual motion
machines of the second kind.
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Mike Jones, http://www.photobiology.info/Jones.html
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All that bacterial photosynthesis accomplishes is the
transport of protons over a membrane against the gradient. It
performs work using heat from the photon. One 870 nm
photon can transport two protons.
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● Work performed per two photons:

w = ∆µ = −2× 2.3× kBT∆pH = 1.89× 10
−20

J (1)

● Heat taken from Th:

qh =
hc

λ
= 2.28× 10

−19
J (2)

● Heat dumped at low temperature (First law of
Thermodynamics):

ql = qh − w = 2.09× 10
−19

J (3)
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● Entropy change of the high temperature reservoir:

∆Sh = −
2.28× 10−19

1100
= −3.8× 10

−23
J/K (4)

● Entropy change of the low temperature reservoir:

∆Sl =
2.09× 10−19

300
= 7.9× 10

−22
J/K (5)

Total change of entropy: ∆totS > 0; efficiency: 4%;
Carnot efficiency: 73%.
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Two photons split one water molecule, bring the electrons to
plastocyanines, and pull four protons over the membrane. Eventually the
protons are used to drive ATPase, and the electrons end up on NADPH.
ATP and NADPH are then used in the dark reactions to make sugar.
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Work for splitting water and bringing the electrons to
plastocyanine (Pc):

1

2
O2 + 2H

+
+ 2e −→ H2O E

−◦
= 1.23V (6)

Pc
2+

+ e −→ Pc
+

E
−◦
= 0.372V (7)

Since there are two electrons involved in the process, the
amount of work that needs to be performed to get the
electrons from water to Pc is equal to

w = ∆G−◦
= 2× e× 0.86 = 2.75× 10

−19
J (8)

Two 680 nm photons are needed to do this.
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● Heat taken from Th:

2
hc

λ
= 5.84× 10

−19
J (9)

● Entropy loss in the high temperature reservoir:

∆hS =
5.84× 10−19

1100
= 5.31× 10

−22
J/K (10)
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● Entropy gain in the low temperature compartment:

∆lS =
5.84× 10−19 − 2.75× 10−19 − 4× 9.47× 10−21

300

= 9.03× 10
−22

J/K (11)

Total change of entropy: ∆totS > 0; efficiency: 53%; Carnot
efficiency: 73%.
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NO

Living systems are pretty smart, but have not yet found a way
to circumvent the second law of thermodynamics.

Auxiliary argument: if it were possible, everybody would be
doing it.
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● Clausius: Heat can never pass from a colder to a warmer
body without some other change, connected therewith,
occurring at the same time.

● Kelvin: It is impossible, by means of inanimate material
agency, to derive mechanical effect from any portion of matter
by cooling it below the temperature of the coldest of the
surrounding objects.

● Planck: The internal energy of a closed system is increased
by an isochoric adiabatic process.

● Carathéodory: In every neighborhood of any state S of an
adiabatically isolated system there are states inaccessible
from S.

Does the second law have limitations?
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Feynman’s solving problems algorithm according to Murray
Gell–Mann:

1. write down the problem;

2. think very hard;

3. write down the answer.
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1. Carefully study the picture on slide 6. Did Carnot make an error?

2. Make sure that you understand, and if necessary derive, all
expressions (1)–(10).

3. Look up the traditional textbook derivation of Carnot’s efficiency. In
other words: calculate heat and work for all parts of the ideal gas
cycle in the figure on slide 11.

4. Do you think cytochromebc1 always existed in bacterial
photosynthesis? Why don’t we find bacteria without it anymore?

5. Why does Duysens think light has a temperature of 1100 K, and not
the temperature of sunlight (∼ 6000 K).

6. Why is ∆G equal to the work performed in moving electrons? And
how is ∆G related to the standard redox potentials?

7. Where do Jennings et al. make mistakes? (Tough problem, I am not
sure if I know the answer, maybe it’s in the literature already, see the
paper by Knox and Parson.)

8. Find at least five papers in the last ten years in which it is claimed
the second law can be, or is, violated.
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8. Read ref. 4. Comment on the number of photons they assume, and
knowing what we know now, give a new estimate of the
photosynthetic efficiency. Note that they use sugar as the final,
stable, compound.

9. Use a quantum system (for instance a spin 1/2 in a magnetic field, or
the quantum particle in a box) to derive the Carnot efficiency. Start
by deriving isotherms and adiabats for such a system.

10. Many textbooks claim that all cycli between two temperatures have
the same efficiency. In fact Atkins even goes so far as to claim: All
reversible engines have the same efficiency regardless of their
construction (6th Ed, p. 103). Show that this is not true (take some
other cycle, for instance that of a Diesel or Stirling motor), and that in
fact the Carnot cycle is the only cycle with the Carnot efficiency.

11. Argue that taking photons from a reservoir is the same as taking
heat from it.
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