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Pursuing this idea | came to construct arbitrary
expressions for the entropy which were more
complicated than those of Wien ... but acceptable.
Among those expressions my attention was caught

by

2
0°s,
2
Oez,

8%

61/(6 + 61/)

which comes closest to Wien’s in simplicity and ...
deserves to be further investigated.

Max Planck

... a piece of mathematical jugglery without any
correspondence to anything real in nature

Max Planck



19th Century Problems

Thermodynamics of

Light e The status of the second law and the nature of entropy.
. Are there limits of validity? Maxwell's demon and

.

0 Photon Gas Boltzmann’s universe.

0 Carnot Cycle

1 Efficiency e The role of dissipation and the direction of time.

U Entropy

as dl ..

S o Luminiferous aether (resolved?).

[l Temperature ] ]

0 Trickery e Thermodynamics and spectrum of light (resolved?).
O Oscillator

[ Stat. Mech.

O Exercises

0 Exercises The resolutions of the last two problems led to completely

O Literature

new fields in physics with puzzles and paradoxes of their own:
guantum mechanics and relativity. We’ll get to some of those
new problems in due course.
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Properties of the Photon Gas

Thermodynamics of
Light

[l
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o U=bVT* en p= g5 (Wien, Boltzmann)

4
87r5k:B

15378 — 7 56577 x 10716 JK—4m—3

e b=




Isotherms and Adiabats

Thermodynamics of

Light o p= - = zbT": isotherms are straight lines parallel to
U

00 Old Problems the V axis.

0 Carnot Cycle e Adiabats: dq =0

0 Efficiency

U Entropy aU aU
0 Second law dU — _ dT - dV — dV
0 Planck (8T>V " (av)T P

U Temperature

0 Trickery — 4bVT3dT + bT4dV

O Oscillator

0 Stat. Mech. so that

0 Exercises 1

0 Exercises VdT —_- — gTdV

O Literature

Integration gives

VT3 = constant or pV4/ 3 — constant
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Carnot Cycle for the Photon Gas

Thermodynamics of
Light

[l
O Old Problems

0 Photon Gas isotherm

OCarnot Cycle [ [ R S e

0 Efficiency

U Entropy

J Second law

O Planck

U Temperature
O Trickery
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A—B: Reversible isothermal expansion:

B

1

WAB = —/ pdV = —§be(VB — Vi)
A
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Carnot Cycle for the Photon Gas Il

Thermodynamics of

Light e U IS a state function:
[l

O Old Problems

L 4
0 Photon Gas AU = bTh (VB o VA)

0 Efficiency
0 Entropy o First law of thermodynamics:
[0 Second law
0 Planck

2
DTgmperature gA—>B = AU — WASB = —bT;%(VB — VA)
O Trickery 3

O Oscillator

S;jmﬁjg“ Exersize: calculate AU, ¢, and w for the other steps in the

[0 Exercises CyC|e.

O Literature

o Efficiency:

dA—B _q_ dA—B
dA—B T 4C—D ‘QC—>D’
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The Efficiency

ermodymamics of .. .
Lpodynamics o The efficiency Is given by

U

0 Old Problems Work delivered  —wa_p — W + Wo_D + WpD_sA
0 Photon Gas 77 — —

) Canot Gycie Heat absorbed JA—B
0 Efficiency
0 Entropy I — (1)
0 Second law

lanck L. .
Eiemperature Exactly the Carnot efficiency (as it should be).

O Trickery Therefore

O Oscillator T
O Stat. Mech. N = 1 -+ dr—B = — —l (2)

0 Exercises qdC—D Th
00 Exercises SO that

=

O Literature

dA—B qC—D
=0 3
T, + T (3)

Remember that the whole process is reversible.
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Thermodynamic Entropy

L ocynamies o For all reversible cycles (not just Carnot):

U

O Old Problems dq
00 Photon Gas —_— = dS — 0
0 Carnot Cycle T

0 Efficiency

J Entropy so that S'is a state function.
0 Second law
O Planck
Efnlperatwe How to calculate entropy changes:
rickery

O Oscillator

O stat. Mech. 1. Find a reversible path from the initial (z) to the final (f)
O Exercises State

(0 Exercises
O Literature

2. Calculate

f
AS=8;—S; = / dq;V (4)

(

10/25



The Second Law of Thermodynamics

Thermodynamics of

Light e Clausius: For all irreversible processes
1l

O Old Problems

[ Photon Gas AS > %

0 Carnot Cycle
0 Efficiency

U Entropy . .
e Corollary: For all processes in the universe
O Planck

U Temperature

O Trickery
O Oscillator

[ Stat. Mech. ﬁ S > O
(0 Exercises

0 Exercises

O Literature
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Planck’s road to the quantum

Thermodynamics of Na

Light =
G

. ~

0 Old Problems

00 Photon Gas

0 Carnot Cycle

0 Efficiency

T =1500K

~ Rayleigh—Jeans

U Entropy
[0 Second law =1

O Planck

U Temperature o

O Trickery
0 0.1 0.2 -1
0 Oscillator v (fs™)

0 Stat. Mech, e Wien (using data fitting for high v):

0 Exercises
0 Exercises

u, = Bule~W/T

O Literature

e Raleigh—Jeans (using the average oscillator energy):

22 2?2

() = Z—kpT
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Planck’s road to the quantum Il

Thermodynamics of

Light e Wien:

O

1 Old Problems 0 Correct in prediction of v, o< T (Wien'’s
0 Photon Gas )

0 Carnot Cycle displacement law).

0 Efficiency . - .

0 Entropy [ Correct in predicting U o« T*.
0 Second law (Stephan—Boltzmann).

.

0 Temperature [0 Incorrect at low frequencies
O Trickery

O Oscillator ]

0 Stat. Mech. e Rayleigh—Jeans:

00 Exercises

0 Exercises [1 Correct at low frequencies.

O Literature

[0 Ultraviolet catastrophy.

e Planck: Interpolate between the two behaviors (and find
the constant B).
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Planck’s road to the quantum Ill

Thermodynamics of

Light 1. Use thermodynamics
U

O Old Problems 1

1 D s,
0 Photon Gas — il — 5
ds, Tdu,, + TdV — ( )V (5)

0 Carnot Cycle T 8u,/
0 Efficiency

U Entropy
0 Second law
2. Solve Wien and Rayleigh—Jeans for 1/7T"
U Temperature
O Trickery

. 1 kg, 4Bv? 1 2mikp 1
O Oscillator . _ . . S
0 Stat. Mech. W T o hy In Cly, ? RJ: T T (33 wu,, (6)

0 Exercises

0 Exercises
O Literature

3. Differentiate once more:

W - 823,,:_16_31. RJ . 828M:_k327w3h1
- Ou? hv u’ o ou? hv 3 u?

(7)
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Planck’s road to the quantum IV

Thermodynamics of
Light

0

O Old Problems
O Photon Gas
0 Carnot Cycle

0 Efficiency

U Entropy

J Second law

U Temperature
O Trickery

O Oscillator

0 Stat. Mech.

O Exercises

O Exercises

O Literature

4. Interpolate:

828,/ kB 1
ouz  hu 2 (8)
v Uy + 272k Y
5. Integrate
1k 1 kg 5mru
— = ——B du,/ 3 — — B 27ﬂ/2c}§’ Y (9)
o R AL =

6. Invert:




The Temperature of Light

Thermodynamics of

Solar Radiation Spectrum

1l
0 Old Problems
00 Photon Gas

0 Carnot Cycle

Uv |, Visible Infrared —

0 Efficiency Sunlight at Top of the Atmosphere

0 Entropy

N
L

J Second law
O Planck
[ Temperature

5250°C Blackbody Spectrum

/

Spectral Irradiance (W/m2/nm)

O Trickery

0 Oscillator
0 Stat. Mech.
O Exercises

Radiation at Sea Level

00 Exercises
Absorption Bands
H,0
3= L0y H,0

O Literature

0-
250 500 750 1000 1250 1500 1750 2000 2250 2500

Wavelength (nm)
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The Temperature of Light Il

Thermodynamics of
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1l
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Inrenginy (MIyisr]

Cosmic Microwave Backgreund Specinen from COBE

1 I ] I 1 ) ¥ ]
¢ COBE Data —+—

ﬁ\ Binck Body Specirum

[ 3 10 12 1a 16 18 20 22
Frestueandy [Licrm]

The temperature of the background radiation is
2.72548 £ 0.00057 K. There is no visible deviation from
thermal equilibrium.




Mathematical Jugglery

Thermodynamics of

Light 1. Average energy of the oscillator:
U

O Old Problems h]/

0 Photon Gas <E> —

[0 Carnot Cycle 6hV/kBT — 1
0 Efficiency

(11)

U Entropy
J Second law

0 Planck 2. Elementary Statistical Mechanics

U Temperature

O Trickery

0 1
scillator — 2
ggtat.ul\/ltech. <E> kBT o1 In 1 — e—hv/kpT

0 Exercises

— kBTzi InQ (12)

0 Exercises
O Literature

3. Juggle:

__ —nhv/kgT
Q=1 —hz//k:BT Ze e (13)
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The Upshot

emodynamics of If Planck is correct, then the oscillator has (using Boltzmann’s

0 expression for the average energy of a system) discrete

- Old Problems energies nhv, withn =0,1,2,---.
0 Photon Gas

0 Carnot Cycle

0 Efficiency My vain efforts to incorporate the quantum of
Cory action somehow into the classical theory took

econd law
0 Planck several years and much work. Some of my
EIE:L‘:;"J‘ME colleagues have seen this as tragic. But |
disagree...
0 Stat. Mech.
[ Exercises Max Planck

0 Exercises
O Literature

The only way to get revolutionary advances in
science accepted is to wait for all old scientists to
die.

Max Planck, reflecting on himself.
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Some Elementary Statistical Mechanics

L ocynamies o Equilibrium Canonical Partition Function

1l

0 Old Problems
00 Photon Gas
0 Carnot Cycle

e Partition Function and Free Energy (Classical)

0 Efficiency

U Entropy

J Second law
O Planck

U Temperature

Q = / dle P and A= —kgThhQ (14)

O Trickery

1 Ossillator e Partition Function and Free Energy (Quantum
Mechanical)

O Exercises

O Exercises 2

O Literature Q = T1r [6_6 ] and A = —k‘BT IHQ (15)

e DO exercises 8-11.
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Decay of a Two—Level-System

Thermodynamics of n 2

Light 7y e n1: number of 2LS’s in the ground
U

5 old Problems state; no: number of 2LS’s in the ex-

0 Photon Gas cited state; N: total number of 2LS.
0 Carnot Cycle

0 Efficiency hV

U Entropy

e Equilibrium distribution:

0 Second law

O Planck N

0 Temperature ny = A
—Bhv
O Trickery ' 1 _|_ € ﬁ

1

(16)

O Oscillator

7 Exercises o Dynamical Equations:

(0 Exercises
O Literature

% = —BI(v)n1 + Any and —= = BI(v)n1 — Any (17)

Note that N = n; + no does not depend on time.
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Stationary Solution

Thermodynamics of

Light e Solution:
0

0 Old Problems n n A
0 Photon Gas Bl(vyni — Ano =0 or = — = 18
0 Carnot Cycle ( ) ! ° niy + n9 N A -+ BI(V) ( )

0 Efficiency

- Enrepy o Relation between A and B:

0 Second law
O Planck

8thi3B
U Temperature _
0 Trickery A= BI(V) + 3 (19)
O Oscillator
0 Exercises e Firstterm is called Stimulated Emission .
(0 Exercises
O Literature e Second term is Spontaneous Emission

e B depends on molecular properties, in particular the
transition dipole moment.
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Exercises and Problems

L ocynamies o 1. Perform the calculations of AU, ¢, and w for the three other steps in
0 the Carnot cycle of the photon gas.

0 Old Problems . P : 1 I

 Photon Gas 2. Prove Eq. (1): the efficiency is equalton =1 T

O Carnot Cycle 3. Explore the differences between a photon gas and a classical ideal
U Efficiency gas, also in relation to the respective Carnot cycles.

U Entropy

0 Second law 4. What is the contribution of the black body radiation energy to the total
0 Planck energy of a box of atoms at standard temperature and pressure?
glﬁi‘;‘:;awre 5. Calculate the amount of heat needed for isothermal expansion of 1
0 Oscillator m?> of a photon gas to double its volume at 300 K. How is it possible
0 Stat. Mech. that this is so much smaller than for a particle gas, while the
efficiency of a Carnot engine based on either is the same?

o Exercises 6. If for all processes in the universe AS > 0 and the background

radiation coming from 350000 years after the big bang shows that
the universe was in thermal equilibrium, how is it possible that
anything interesting can have happened?

O Literature

7. Show that AS > 0 does not mean that for any subsystem of the
universe the entropy cannot decrease.
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Exercises and Problems 2

8. The Hamlltonlan for the classical Harmonic oscillator is

Thermodynamics of H = £ + Imw?z®. The phase space volume element is dI' = 424,
;'ght Calculate Q and A.

D Old Problems 9. The Hamiltonian for the two—level system is H = €|1) (1|. Calculate
U Photon Gas Q and A.

0 Carnot Cycle ] _ ]

0 Efficiency 10. From thermodynamical relations, calculate the internal energy and
0 Entropy the entropy for both the above cases.

gi;cnocld i 11. The Hamiltonian for the quantum oscillator can be written as

O Temperature H="rlw) >, (n+1)|n)(n]. Calculate Q. Take the limit T — oo

0 Trickery and show that @) reduces to the result of exercise 8.

- Oscillator 12. Derive Eq. (19).

0 Stat. Mech.

0 Exercises 13. Show that, if there is an additional mechanism of decay, such as
energy transfer, or non—radiative decay, the population of the 2LS is
H Literature that of a system at a lower temperature. Calculate that temperature

as a function of the decay constant.

14. The fluorescence lifetime of bacteriochlorophyll (BCHI) is about
40 ns. The lifetime of (BCHI) in a photosynthetic antenna is of the
order of 10 ps. What is the effective temperature of the BCHI pool in
the antenna?
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00 Second law

0 Planck 4. D. Chandler, Introduction to Modern Statistal Mechanics, Oxford
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O Trickery

O Oscillator

00 Stat. Mech.

[0 Exercises

[0 Exercises
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