## Theories of Everything: Thermodynamics Statistical Physics Quantum Mechanics

Gert van der Zwan

July 19, 2014

### Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- Efficiency
- Entropy
- Second law
- Planck
- ✤ Temperature
- Trickery
- ♦ Oscillator
- Stat. Mech.
- ✤ Exercises
- ✤ Exercises
- ♦ Literature

# **Thermodynamics of Light**

Thermodynamics of Light

#### \*

- Old Problems
- Photon Gas
- Carnot Cycle
- Efficiency
- Entropy
- Second law
- Planck
- ✤ Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- Literature

Pursuing this idea I came to construct arbitrary expressions for the entropy which were more complicated than those of Wien ... but acceptable. Among those expressions my attention was caught by

$$\frac{\partial^2 s_{\nu}}{\partial e_{\nu}^2} = \frac{\alpha}{e_{\nu}(\beta + e_{\nu})}$$

which comes closest to Wien's in simplicity and ... deserves to be further investigated.

Max Planck

... a piece of mathematical jugglery without any correspondence to anything real in nature

Max Planck

## **19th Century Problems**

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- ♦ Efficiency
- Entropy
- Second law
- Planck
- ✤ Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature

- The status of the second law and the nature of entropy. Are there limits of validity? Maxwell's demon and Boltzmann's universe.
- The role of dissipation and the direction of time.
- Luminiferous aether (resolved?).
- Thermodynamics and spectrum of light (resolved?).

The resolutions of the last two problems led to completely new fields in physics with puzzles and paradoxes of their own: quantum mechanics and relativity. We'll get to some of those new problems in due course.

### **Properties of the Photon Gas**



•  $U = bVT^4$  en  $p = \frac{U}{3V}$  (Wien, Boltzmann) •  $b = \frac{8\pi^5 k_B^4}{15c^3h^3} = 7.56577 \times 10^{-16} \, \mathrm{JK}^{-4} \mathrm{m}^{-3}$ 

✤ Literature

### **Isotherms and Adiabats**

Thermodynamics of Light

\*

- Old Problems
- Photon Gas
- Carnot Cycle
- ♦ Efficiency
- ✤ Entropy
- Second law
- Planck
- ✤ Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature

•  $p = \frac{U}{3V} = \frac{1}{3}bT^4$ : isotherms are straight lines parallel to the *V* axis.

• Adiabats: dq = 0

$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV = -pdV$$
$$= 4bVT^3dT + bT^4dV$$

so that

$$VdT = -\frac{1}{3}TdV$$

### Integration gives

 $VT^3 = \text{constant}$  or  $pV^{4/3} = \text{constant}$ 

### **Carnot Cycle for the Photon Gas**



$$w_{A\to B} = -\int_{A}^{B} p dV = -\frac{1}{3} bT_{h}^{4}(V_{B} - V_{A})$$

### **Carnot Cycle for the Photon Gas II**

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas

#### Carnot Cycle

- ♦ Efficiency
- Entropy
- Second law
- Planck
- ✤ Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature

### • U is a state function:

$$\Delta U = bT_h^4(V_B - V_A)$$

• First law of thermodynamics:

$$q_{\mathrm{A}\to\mathrm{B}} = \Delta U - w_{\mathrm{A}\to\mathrm{B}} = \frac{2}{3}bT_h^4(V_B - V_A)$$

Exersize: calculate  $\Delta U$ , q, and w for the other steps in the cycle.

• Efficiency:

$$\eta = 1 - \frac{q_{\mathrm{A} \to \mathrm{B}}}{q_{\mathrm{A} \to \mathrm{B}} + q_{\mathrm{C} \to \mathrm{D}}} = 1 - \frac{q_{\mathrm{A} \to \mathrm{B}}}{|q_{\mathrm{C} \to \mathrm{D}}|}$$

## **The Efficiency**

Thermodynamics of Light

\*

♦ Old Problems

Photon Gas

♦ Carnot Cycle

#### ✤ Efficiency

- Entropy
- Second law
- Planck
- Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ♦ Literature

The efficiency is given by  $\eta = \frac{\text{Work delivered}}{\text{Heat absorbed}} = \frac{-w_{A \to B} - w_{B \to C} + w_{C \to D} + w_{D \to A}}{q_{A \to B}}$   $= 1 - \frac{T_l}{T_h}$ (1)

### Exactly the Carnot efficiency (as it should be). Therefore

$$\eta = 1 + \frac{q_{\mathrm{A}\to\mathrm{B}}}{q_{\mathrm{C}\to\mathrm{D}}} = 1 - \frac{T_l}{T_h}$$
(2)

### So that

$$\frac{q_{\mathrm{A}\to\mathrm{B}}}{T_h} + \frac{q_{\mathrm{C}\to\mathrm{D}}}{T_l} = 0 \tag{3}$$

Remember that the whole process is reversible.

## **Thermodynamic Entropy**

Thermodynamics of Light

\*

- Old Problems
- Photon Gas
- Carnot Cycle
- ♦ Efficiency

#### Entropy

- Second law
- Planck
- Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature

For all reversible cycles (not just Carnot):

$$\oint \frac{dq}{T} = \oint dS = 0$$

- so that S is a state function.
- How to calculate entropy changes:
  - 1. Find a reversible path from the initial (i) to the final (f) state
  - 2. Calculate

$$\Delta S = S_f - S_i = \int_i^f \frac{dq_{\rm rev}}{T} \tag{4}$$

## **The Second Law of Thermodynamics**

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- ♦ Efficiency
- Entropy

#### Second law

- Planck
- Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature

• <u>Clausius:</u> For all irreversible processes



• Corollary: For all processes in the universe



### Planck's road to the quantum



$$u_{\nu} = \frac{2\pi\nu^2}{c^3} \left\langle E \right\rangle = \frac{2\pi\nu^2}{c^3} k_B T$$

## Planck's road to the quantum II

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- Efficiency
- Entropy
- Second law

#### Planck

- Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature

### Wien:

- Correct in prediction of  $\nu_{\rm max} \propto T$  (Wien's displacement law).
- Correct in predicting  $U \propto T^4$ . (Stephan–Boltzmann).
- Incorrect at low frequencies
- Rayleigh–Jeans:
  - Correct at low frequencies.
  - Ultraviolet catastrophy.
- Planck: Interpolate between the two behaviors (and find the constant *B*).

### **Planck's road to the quantum III**

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- ♦ Efficiency
- Entropy
- Second law

#### Planck

- Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature

$$ds_{\nu} = \frac{1}{T}du_{\nu} + \frac{p}{T}dV \implies \frac{1}{T} = \left(\frac{\partial s_{\nu}}{\partial u_{\nu}}\right)_{V}$$
(5)

2. Solve Wien and Rayleigh–Jeans for 1/T:

W: 
$$\frac{1}{T} = \frac{k_B}{h\nu} \ln \frac{4B\nu^2}{cu_{\nu}}; \quad \text{RJ}: \quad \frac{1}{T} = \frac{2\pi\nu^3 k_B}{c^3} \frac{1}{u_{\nu}}$$
 (6)

3. Differentiate once more:

1. Use thermodynamics

W: 
$$\frac{\partial^2 s_{\nu}}{\partial u_{\nu}^2} = -\frac{k_B}{h\nu} \frac{1}{u};$$
 RJ:  $\frac{\partial^2 s_{\mu}}{\partial u_{\nu}^2} = -\frac{k_B}{h\nu} \frac{2\pi\nu^3 h}{c^3} \frac{1}{u^2}$  (7)

### **Planck's road to the quantum IV**

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- ✤ Efficiency
- Entropy
- Second law

#### Planck

- Temperature
- Trickery
- Oscillator
- Stat. Mech.
- ✤ Exercises
- Exercises
- ♦ Literature

### 4. Interpolate:

$$\frac{\partial^2 s_{\nu}}{\partial u_{\nu}^2} = -\frac{k_B}{h\nu} \frac{1}{u_{\nu} + \frac{c^3}{2\pi\nu^2 h} u_{\nu}^2}$$
(8)

### 5. Integrate

$$\frac{1}{T} = -\frac{k_B}{h\nu} \int du_{\nu} \frac{1}{u_{\nu} + \frac{c^3}{8\pi\nu^2 h} u_{\nu}^2} = -\frac{k_B}{h\nu} \frac{\frac{c^3}{2\pi\nu^2 h} u_{\nu}}{1 + \frac{c^3}{8\pi\nu^2 h} u_{\nu}}$$
(9)

6. Invert:

$$u_{\nu} = \frac{2\pi h}{c^3} \frac{\nu^3}{e^{h\nu/k_B T} - 1}$$
(10)

## **The Temperature of Light**



- \*
- ♦ Old Problems
- Photon Gas
- ♦ Carnot Cycle
- ✤ Efficiency
- Entropy
- Second law
- Planck
- ✤ Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature



## The Temperature of Light II



- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- Efficiency
- Entropy
- Second law
- Planck

#### Temperature

- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature





The temperature of the background radiation is  $2.72548 \pm 0.00057$  K. There is no visible deviation from thermal equilibrium.

## **Mathematical Jugglery**

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- Efficiency
- Entropy
- Second law
- Planck
- Temperature

#### Trickery

Oscillator

- Stat. Mech.
- Exercises
- Exercises
- ♦ Literature

### 1. Average energy of the oscillator:

$$\langle E \rangle = \frac{h\nu}{e^{h\nu/k_B T} - 1} \tag{11}$$

### 2. Elementary Statistical Mechanics

$$\langle E \rangle = k_B T^2 \frac{\partial}{\partial T} \ln \frac{1}{1 - e^{-h\nu/k_B T}} = k_B T^2 \frac{\partial}{\partial T} \ln Q$$
 (12)

3. Juggle:

$$Q = \frac{1}{1 - e^{-h\nu/k_B T}} = \sum_{n=0}^{\infty} e^{-nh\nu/k_B T}$$
(13)

## The Upshot

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- ♦ Efficiency
- Entropy
- Second law
- Planck
- Temperature
- Trickery

#### Oscillator

- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature

If Planck is correct, then the oscillator has (using Boltzmann's expression for the average energy of a system) discrete energies  $nh\nu$ , with  $n = 0, 1, 2, \cdots$ .

My vain efforts to incorporate the quantum of action somehow into the classical theory took several years and much work. Some of my colleagues have seen this as tragic. But I disagree...

Max Planck

The only way to get revolutionary advances in science accepted is to wait for all old scientists to die.

Max Planck, reflecting on himself.

## **Some Elementary Statistical Mechanics**

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- Efficiency
- Entropy
- Second law
- Planck
- ✤ Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature

**Equilibrium Canonical Partition Function** 

Partition Function and Free Energy (Classical)

$$Q = \int d\Gamma e^{-\beta \mathcal{H}}$$
 and  $A = -k_B T \ln Q$  (14)

Partition Function and Free Energy (Quantum Mechanical)

$$Q = \operatorname{Tr}\left[e^{-\beta \mathcal{H}}\right]$$
 and  $A = -k_B T \ln Q$  (15)

• Do exercises 8–11.

### **Decay of a Two–Level–System**



## **Stationary Solution**

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- ✤ Efficiency
- Entropy
- Second law
- Planck
- Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- Literature

### • Solution:

$$BI(\nu)n_1 - An_2 = 0$$
 or  $\frac{n_1}{n_1 + n_2} = \frac{n_1}{N} = \frac{A}{A + BI(\nu)}$  (18)

• Relation between A and B:

$$A = BI(\nu) + \frac{8\pi h\nu^{3}B}{c^{3}}$$
(19)

- First term is called *Stimulated Emission*.
- Second term is Spontaneous Emission
- B depends on molecular properties, in particular the transition dipole moment.

### **Exercises and Problems**

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- ♦ Efficiency
- Entropy
- Second law
- Planck
- Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ✤ Literature

- 1. Perform the calculations of  $\Delta U$ , q, and w for the three other steps in the Carnot cycle of the photon gas.
- 2. Prove Eq. (1): the efficiency is equal to  $\eta = 1 \frac{T_l}{T_h}$ .
- 3. Explore the differences between a photon gas and a classical ideal gas, also in relation to the respective Carnot cycles.
- 4. What is the contribution of the black body radiation energy to the total energy of a box of atoms at standard temperature and pressure?
- 5. Calculate the amount of heat needed for isothermal expansion of 1 m<sup>3</sup> of a photon gas to double its volume at 300 K. How is it possible that this is so much smaller than for a particle gas, while the efficiency of a Carnot engine based on either is the same?
- 6. If for all processes in the universe  $\Delta S \ge 0$  and the background radiation coming from 350000 years after the big bang shows that the universe was in thermal equilibrium, how is it possible that anything interesting can have happened?
- 7. Show that  $\Delta S \ge 0$  does not mean that for any subsystem of the universe the entropy cannot decrease.

### **Exercises and Problems 2**

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- ✤ Efficiency
- Entropy
- Second law
- Planck
- ✤ Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises

#### Exercises

✤ Literature

- 8. The Hamiltonian for the classical Harmonic oscillator is  $\mathcal{H} = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$ . The phase space volume element is  $d\Gamma = \frac{dpdx}{2\pi h}$ . Calculate Q and A.
- 9. The Hamiltonian for the two–level system is  $\mathcal{H} = \epsilon |1\rangle \langle 1|$ . Calculate Q and A.
- 10. From thermodynamical relations, calculate the internal energy and the entropy for both the above cases.
- 11. The Hamiltonian for the quantum oscillator can be written as  $\mathcal{H} = \hbar \omega \sum_{n=0}^{\infty} \left( n + \frac{1}{2} \right) |n\rangle \langle n|$ . Calculate Q. Take the limit  $T \to \infty$  and show that Q reduces to the result of exercise 8.
- 12. Derive Eq. (19).
- 13. Show that, if there is an additional mechanism of decay, such as energy transfer, or non-radiative decay, the population of the 2LS is that of a system at a lower temperature. Calculate that temperature as a function of the decay constant.
- 14. The fluorescence lifetime of bacteriochlorophyll (BCHI) is about 40 ns. The lifetime of (BCHI) in a photosynthetic antenna is of the order of 10 ps. What is the effective temperature of the BCHI pool in the antenna?

### Literature

Thermodynamics of Light

- \*
- Old Problems
- Photon Gas
- Carnot Cycle
- ♦ Efficiency
- Entropy
- Second law
- Planck
- ✤ Temperature
- Trickery
- Oscillator
- Stat. Mech.
- Exercises
- Exercises
- ♦ Literature

- 1. I. Müller, A History of Thermodynamics. The Doctrine of Energy and Entropy, (2007). Springer, Berlin.
- 2. T.S. Kuhn, *Black–Body Theory and the Quantum Discontinuity,* 1894–1912, (1978). University of Chicago Press.
- 3. J. Gonzalez–Ayala and F. Angulo–Brown, The universality of the Carnot theorem, *Eur. J. Phys.*, **34**, (2013), 273–289.
- 4. D. Chandler, *Introduction to Modern Statistal Mechanics*, Oxford University Press, 1987,