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Why, for example, should a group of simple, stable
compounds of carbon, hydrogen, oxygen and nitrogen
struggle for billions of years to organize themselves into a
professor of chemistry? [....] If we leave a chemistry professor
out on a rock in the sun long enough the forces of nature will
convert him into simple compounds of carbon, oxygen,
hydrogen and nitrogen, calcium, phosphorus and small
amounts of other minerals ...

Robert Pirsig, Lila
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Thermodynamics is a powerful indicator for the direction of
spontaneous chemical change.

Formation of water from hydrogen and oxygen:

H2 +
1

2
O2 −→ H2O (1)

Entropy change of the water:

∆rS
⊖ = S⊖

m(H2O)−
1

2
S⊖
m(O2)− S⊖

m(H2)

= 69.91−
1

2
× 205.138− 130.684 = −163.343 J/K (2)
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Heat of the reaction:

∆rH
⊖ = −285.83 kJ (3)

Entropy change of the environment:

∆omgS = −
∆rH

⊖

T
= 959.16 J/K (4)

Entropy change of the universe:

∆totS = ∆rS
⊖ +∆omgS = 795.82 J/K (5)

As long as the total entropy increases, the entropy of the
system can both increase and decrease.
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Dissolving ammonium chloride:

NH4Cl (s) −→ NH+
4 (aq) + Cl− (aq) (6)

Entropy change of the system:

∆rS
⊖ = S⊖

m(NH+
4 (aq)) + S⊖

m(Cl− (aq))− S⊖
m(NH4Cl (s))

= 186.91 + 111.3− 94.6 = 203.61 J/K (7)

A considerable increase in entropy (to be expected). But,
dissolving this salt makes the solution cold.
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∆rH
⊖ = ∆fH

⊖(NH+
4 ) + ∆fH

⊖(Cl−)−∆fH
⊖(NH4Cl)

= −167.16− 132.51 + 314.43 = 14.76 kJ (8)

An amount of 14.76 kJ heat is coming from the environment,
which gives an entropy change:

∆omgS =
−147600

298.15
= −49.51 J/K (9)

The entropy of the universe still increases:

∆totS = ∆rS
⊖+∆omgS = −49.51+203.61 = 164.10 J/K (10)
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For all (known) processes in the universe the entropy
increases.

Let a drop of wine fall into a glass of water; whatever be
the law that governs the internal movement of the liq-
uid, we will soon see it tint itself uniformly pink and from
that moment on, however we may agitate the vessel, it
appears that the wine and water can separate no more.
All this, Maxwell and Boltzmann have explained, but the
one who saw it in the cleanest way, in a book that is too
little read because it is difficult to read, is Gibbs, in his
Principles of Statistical Mechanics.

Henri Poincaré
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● Classical Hamiltonian = Kinetic energy + Potential
Energy:

H =
p2

2m
+ V (~r) (11)

● Hamilton equations:

d~r

dt
=

∂H

∂~p
,

d~p

dt
= −

∂H

∂~r
, and ~p = m

d~r

dt
(12)

● Equivalence to Newton’s equation:

m~a =
d~p

dt
= −

∂H

∂~r
= −

∂V

∂~r
= ~F (13)
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● Hamiltonian:

H =
p2

2m
+

1

2
mω2x2 = E (14)

● Hamilton’s equations:

dx

dt
=

p

m
,

dp

dt
= −mω2x (15)



Classical Mechanics II

The Second Law
versus
Classical Mechanics

❖ Chemistry

❖ Time Reversal
❖ Classical
Mechanics
❖ Harmonic
Oscillator

Classical Statistical
Mechanics

Exercises and
Problems

11 / 32

● Time reversal invariance: If t → −t then ~p → −~p and the
Hamilton equations remain the same.

The classical equations of motion are invariant with re-
spect to time reversal. There is no direction of time: take
a solution, replace t by −t and you have an equally good
solution.

Microscopic Reversibility

⇓ ?

Macroscopic Irreversibility

Ludwig Boltzmann
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For N–particles with masses mi we have:

● A Hamiltonian:

H =
N
∑

i=1

p2i
2mi

+ V ({rN}) (16)

where V is a potential and {rN} the set of all particle
positions.

● Trajectories: Solutions of the Hamilton Equations:

d~ri
dt

=
∂H

∂~pi
and

d~pi
dt

= −
∂H

∂~ri
(17)
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● Phase Space: a 6N dimensional space in which each
point respresents a microscopic state of the system.

● An Ensemble is a collection of trajectories with some
common restraint, for instance the same total energy, or
given temperature.

● Macrostate: state characterized by macroscopic
parameters, for instance N, V, T .

● Microstate: state where all positions and all momenta of
the particles are given: {~rN , ~pN}.

● A trajectory is a line in Phase Space: {~rN (t), ~pN(t)},
t0 < t < t1.
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Probability of finding particle i with position between ~ri and
~ri + d~ri and momentum between ~pi and ~pi + d~pi:

ρ({~rN (t), ~pN (t)}, t)d~rNd~pN (18)

● Liouville Theorem:

dρ

dt
= 0 (19)

The phase space fluid be-
haves like an incompressible
liquid. Phase space volume is
conserved.

● Trajectories cannot cross; trajectories starting close can
diverge: almost all systems are chaotic.

R. Penrose, The Emperor’s New Mind, Oxford University Press, 1989.
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∂ρ

∂t
= −{ρ,H} = −

∑

i

(

∂ρ

∂qi

∂H

∂pi
−

∂H

∂qi

∂ρ

∂pi

)

(20)

{A,B} is called the Poisson Bracket

● Although the Liouville equation allows for a much
broader class of densities, it is also valid for Newtonian
dynamics.

Example: One particle in an external field.

H =
p21
2m

+ V (~r1) (21)

ρ(~r, ~p, t) = δ(~r − ~r1(t))δ(~p− ~p1(t)) (22)

R.C. Tolman: The Principles of Statistical Mechanics, Dover, 1979.
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● Average position:

〈~r〉 =

∫

d~rd~p~rρ = ~r1(t) (23)

● Equation of motion for ~r1(t):

d~r1
dt

=
d

dt

∫

d~rd~p rρ =

∫

d~rd~p~r
∂ρ

∂t
= −

∫

d~rd~p~r{ρ,H}

=

∫

d~rd~p {~r,H}ρ =

∫

d~rd~p
~p

m
ρ =

~p1
m

(24)

● Equation of motion for ~p1(t):

d~p1
dt

= ~F (~r1) = −
dV (~r1)

d~r1
(25)
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Gibbs Entropy:

SG = −
∑

i

pi ln pi = −

∫

dΓ ρ ln ρ (26)

● This form of Gibbs’ entropy does not change in time:

d

dt
SG = −

∫

dΓ
∂

∂t
ρ ln ρ =

∫

dΓ{ρ ln ρ,H} = 0 (27)

● The equations of motion are microscopically reversible.
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● Maxwell–Boltzmann:

ρeq =
e−βH

∫

dΓ e−βH
→

e−βEi

∑

i e
−βEi

(28)

● Normalization

Q =

∫

dΓ e−βH (29)

● Equilibrium entropy:

Seq
G = −

∫

dΓ
e−βH

Q
[−βH− lnQ] = β 〈E〉+ lnQ (30)

● Therefore:
A = −kBT lnQ (31)
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● The Liouville equation provides a unified description of
mechanical and statistical dynamics.

● However: no decay to equibrium and no increase of
entropy.

● For later reference: the properties of the Poisson bracket
are similar to those of the commutator in quantum
mechanics.

Next: Coarse graining.



One–Particle Distribution Function

The Second Law
versus
Classical Mechanics

Classical Statistical
Mechanics

❖ Phase Space

❖ Liouville Equation

❖ Equilibrium

❖ Summary

❖ Boltzmann
Equation

❖ Stosszahl

❖H–theorem
❖ Um– and
Wiederkehr

Exercises and
Problems

21 / 32

Rather than looking at all the particles, we concentrate on just
one:

f(~r,~v, t) =

∫

dΓn−1 ρ(~r, ~r2 · · ·~rN , ~p, ~p2 · · · ~pN ) (32)

The probability of finding a particle at position ~r with velocity ~v
at time t.

The Boltzmann equation is an equation for the time
dependence of this function:

∂f

∂t
=

(

∂f

∂t

)

flow

+

(

∂f

∂t

)

collision

(33)
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● The flow part:

(

∂f

∂t

)

flow

= −~v ·
∂f

∂~r
+

~F

m
·
∂f

∂~v
(34)

● The collision part:
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● Dilute Gas, only two particle collisions

(

∂f

∂t

)

collision

=

−

∫

d~r1 · · · d~v1
′ P (~r,~v, ~r1, ~v1, t)W (~r,~v, ~r1, ~v1|~r

′, ~v ′, ~r1
′, ~v1

′)

+

∫

d~r1 · · · d~v1
′ P (~r ′, ~v ′, ~r1

′, ~v1
′, t)W (~r ′, ~v ′, ~r1

′, ~v1
′|~r,~v, ~r1, ~v1)

(35)

● W (~r,~v, ~r1, ~v1|~r
′, ~v ′, ~r1

′, ~v1
′): collision cross section.

Follows from interparticle potential.

● P (~r,~v, ~r1, ~v1, t): two–particle distribution function.
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● No correlation between the particles before the collision:

P (~r,~v, ~r1, ~v1, t) = f(~r,~v, t)f(~r1, ~v1, t) ≡ ff1 (36)

● Use symmetries of W (after a considerable amount of
algebra):

The Boltzmann Equation:

∂f

∂t
+ ~v ·

∂f

∂~r
+

~F

m
·
∂f

∂~v
=

−

∫

d~v1d~v
′d~v1

′
[

ff1 − f ′f ′
1

]

W (~v,~v1|~v
′, ~v1

′) (37)
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● Only binary collisions play a role.

● Molecular Chaos: no correlation between between
positions and velocities of particles

● f(~r,~v, t) varies slowly as function of position.

● No correlations before the collision

● Irreversibility is introduced by the previous assumption.

● The Boltzmann equation is the basis of quite an industry.

Boltzmann thought he solved the irreversibility problem, but of
course he did not. He introduced it by his assumptions.
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● Definition of H(t):

H(t) =

∫

d~rd~v f(~r,~v, t) ln f(~r,~v, t) (38)

● Boltzmann was able to derive that:

dH

dt
=

1

4

∫

d~r · · · d~v ′ (f ′f ′

1
− ff ′) ln

(

ff1
f ′f ′

1

)

W (~v,~v1|~v
′, ~v1

′) (39)

● It is easy to show that:

(f ′f ′

1
− ff ′) ln

(

ff1
f ′f ′

1

)

≤ 0 (40)

● Hence:

dH

dt
≤ 0
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● Umkehreinwand: Turn all velocities around and the
system has to return to its initial state (Zermolo).

Boltzmann’s response: do it!

● Wiederkehreinwand: Every point in phase space is
approached arbitrarily close in the course of time
(Poincaré). So after some time the system has to return
to its initial state.

Boltzmann’s response: You should wait so long.
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In equilibrium the = sign in Eq. (41) holds:

(

f ′f ′
1 − ff ′

)

ln

(

ff1
f ′f ′

1

)

= 0 (41)

This means that ln f is invariant under collisions:

ln f + ln f1 = ln f + ln f ′
1 (42)

There are three invariants: mass, momentum, and energy. So
ln f must be a combination of those. This leads to

The Maxwell–Boltmann distribution

feq(~r,~v) = C(~r)e−
1

2
βm(~v−~u)2 (43)
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1. Without worrying about phase transitions and temperature
dependence of entropy and enthalpy, at which temperature becomes
the reverse reaction of (1) favorable?

2. Write down the Hamiltonian for the harmonic oscillator and the
Hamilton equations that follow from it.

3. Write down the Hamiltonian for three interacting particles, and find
the corresponding Newton equations of motion.

4. Derive, from the law of conservation of mass, the continuity equation
of a fluid:

∂ρ

∂t
= −~∇ · (ρ~v) (44)

where ρ is the density of the fluid, and v the velocity.

5. Prove that for an incompressible fluid ~∇ · ~v = 0

6. Prove the Liouville theorem, and derive the Liouville equation, Eq.
(19).

7. Prove the following properties of the Poisson bracket:
{A,B} = −{B,A} and the Jacobi Identity:
{{A,B}, C}+ {{B,C}, A}+ {{C,A}, B} = 0
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8. Make sure you understand all the steps in Eq. (24), and derive the
equation for the change of momentum, Eq. (25).

9. Use the Boltmann equation to derive the continuity equation. Hint:
derive an equation for

n(~r, t) =

∫
d~v f(~r, ~v, t) (45)

10. Use the symmetries of W to derive Eq. 39. Actually this is quite a bit
of work, but you may give it a try.

11. Prove Eq. (41). (This is not very hard.)

12. Derive Eq. (43).
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