Of Molecules and Media

Gert van der Zwan

June 19, 2014

Molecules

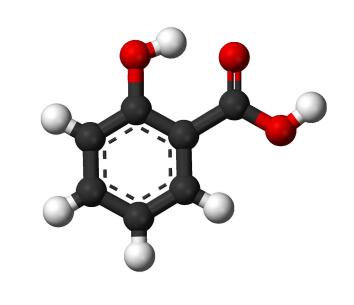
- Molecules
- ✤ Units
- Hamiltonian
- ✤ Indole
- Interaction
- Absorption
- Vibrations
- Stark

Media

Exercises and Problems

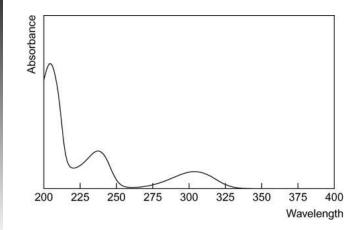
Molecules

What is a Molecule?


Molecules

Molecules

- Units
- Hamiltonian
- Indole
- Interaction
- Absorption
- Vibrations
- Stark


Media

Exercises and	t
Problems	

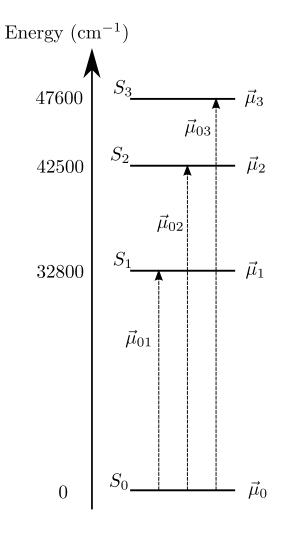
Quantum Chemists calculate:

- Positions of nuclei
- Electron density

Spectroscopists see:

- Peak positions
- Intensity profiles

What is a Molecule? II



Molecules

- Units
- Hamiltonian
- ✤ Indole
- Interaction
- Absorption
- Vibrations
- Stark

Media

Exercises and Problems

• Peak position \Rightarrow Energy difference

$$\lambda \left(\text{in nm} \right) = \frac{10^7}{\nu \left(\text{in cm}^{-1} \right)}$$

Peak intensity > Oscillator strength

$$f = 4.319 \times 10^{-9} \int_{\text{band}} d\nu \epsilon(\nu)$$

 $\epsilon(\nu)$ in L mol $^{-1} {\rm cm}^{-1}$

Peak Width = ?

Units

Molecules

Molecules

♦ Units

- Hamiltonian
- ✤ Indole
- Interaction
- Absorption
- Vibrations
- Stark

Media

Exercises and Problems The oscillator strength f is a dimensionless quantity, defined as the ratio of the absorption strength to the (hypothetical) absorption strength of a single harmonically oscillating electron. Oscillator strengths are between 0 and 1.

The transition dipole moment is related to the oscillator strength by the relation

$$\mu^2 = \frac{3e^2\hbar}{4\pi m_e\nu} \times f$$

where m_e is the mass and e the charge of the electron. This dipole moment is in Cm, a more common unit is the Debye (D). At 300 nm an oscillator strength of 1 corresponds to a transition dipole moment of ~ 5 D.

Hamiltonian, states, dipole moments

Molecules

Molecules

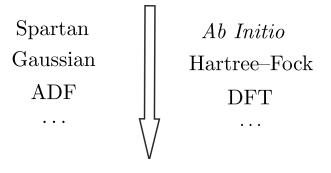
Units

✤ Hamiltonian

✤ Indole

Interaction

Absorption


Vibrations

Stark

Media

Exercises and Problems

$\mathcal{H} = \sum_{i \in \mathbf{e}} \frac{p_i^2}{2m_e} + \sum_{i \in \mathbf{N}} \frac{P_j^2}{2M_j} + V(\{\vec{r}\}, \{\vec{R}\})$

 $\mathcal{H} | \text{state} \rangle = E_{\text{state}} | \text{state} \rangle$

with

Hamiltonian:

 $|\mathsf{state}\rangle = |\mathsf{electronic\ density};\ \mathsf{vibrations}\rangle$

Quantum Chemistry

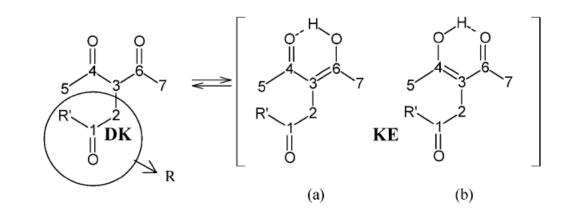
Molecules

Molecules

✤ Units

Hamiltonian

✤ Indole


- Interaction
- Absorption

Vibrations

Stark

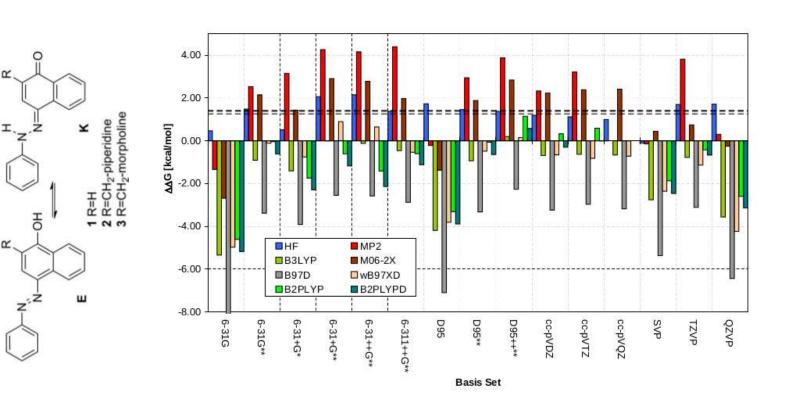
Media

Exercises and Problems

Table 1 Difference in free energy ΔG^0 (kcal mol⁻¹) and relative di-ketonic fractions ($f_{\rm DK}$) calculated *in vacuo* using different models, $\Delta G^0 = G^0_{\rm (DK)} - G^0_{\rm (KE)}$

	ΔG^0	fdк
B3LYP/6-311G**	2.46	0.02
CBS-4M	-2.40	0.98
G3 MP2	0.15	0.44
CBS-QB3	0.22	0.41
CBS-4M//B3LYP/6-311G**	-1.13	0.87

E. Ferrari et al, New J. Chem., (2011), 35, 2840.


Quantum Chemistry II

- Molecules
- Units
- Hamiltonian
- ✤ Indole
- Interaction
- Absorption
- Vibrations
- Stark

Media

Exercises and Problems

"The problem is that if you have a real equilibrium this means a ΔG value between -2 and +2 kcal/mol. Taking into account the real accuracy of the quantum chemistry of 1–2 kcal/mol, the results are meaningless in most cases."

L. Antonov et al., Dyes and Pigments, 2011, 92, 714.

Quantum Chemistry III

Molecules

Molecules

♦ Units

✤ Hamiltonian

✤ Indole

Interaction

Absorption

Vibrations

Stark

Media

Exercises and Problems

COMBINATION FORMS					
EXCHANGE CORRELATION					
S	VWN				
XA	VWN5				
В	LYP				
PW91	PL				
mPW	P86				
G96	PW91				
PBE	B95				
0	PBE				
TPSS	TPSS				
BRx	KCIS				
PKZB	BRC				
wPBEh	PKZB				
PBEh VP86					
	V5LYP				

LONG RANGE CORRECTION

LC-

STAND ALONE FUNCTIONALS					
EXCHANGE ONLY	PURE	HYBRID	RANGE-SEPARATED HYBRID		
HFS	VSXC	B3LYP	HSEH1PBE		
XAlpha	HCTH	B3P86	OHSE2PBE		
HFB	HCTH93	B3PW91	OHSE1PBE		
	HCTH147	B1B95	wB97XD		
	HCTH407	mPW1PW91	wB97		
	tHCTH	mPW1LYP	wB97X		
	M06L	mPW1PBE	LC-wPBE		
	B97D	mPW3PBE	CAM-B3LYP		
	B97D3	B98	HISSbPBE		
	SOGGA11	B971	M11		
	M11L	B972	N12SX		
	N12	PBE1PBE	MN12SX		
	MN12L	B1LYP			
		O3LYP			
		BHandH			
		BHandHLYP			
		BMK			
		M06			
		M06HF			
		M062X			
		tHCTHhyb			
		APFD			
		APF			
		SOGGA11X			
		PBEh1PBE			
		TPSSh			
		X3LYP			

Hamiltonian, states, dipole moments II

Molecules

Molecules

✤ Units

♦ Hamiltonian

✤ Indole

- Interaction
- Absorption
- Vibrations

Stark

Media

Exercises and Problems

Dipole Operator:

$$\hat{\vec{\mu}} = -e \sum_{i \in \mathbf{e}} \vec{r_i} + \sum_{j \in \mathbf{N}} q_j \vec{R_j}$$

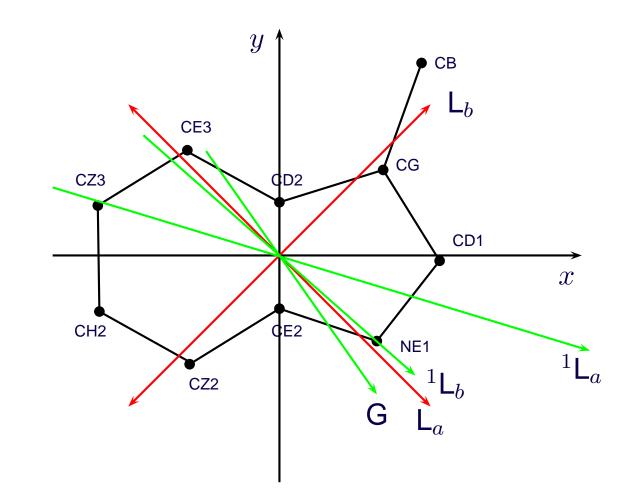
• State dipole moment:

$$ec{\mu_i} = \langle \mathrm{state}_i | \, \hat{ec{\mu}} \, | \mathrm{state}_i
angle$$

• Transition dipole moment:

$$\vec{\mu}_{ij} = \langle \text{state}_i | \, \hat{\vec{\mu}} \, | \text{state}_j \rangle$$

Tryptophan (indole)


- Molecules
- ✤ Units
- Hamiltonian

Indole

- Interaction
- Absorption
- Vibrations
- Stark

Media

Exercises and Problems

Red: transition dipole moments; Green: state dipole moments. Arrow length does *not* reflect magnitude.

Interaction

Molecules

- Molecules
- Units
- Hamiltonian
- ✤ Indole

Interaction

- Absorption
- Vibrations
- Stark

Media

Exercises and Problems

Interaction Hamiltonian with external fields:

$$\mathcal{H}_{
m int} = -\hat{ec{\mu}}\cdotec{E}$$

Linear and non–linear spectroscopies:

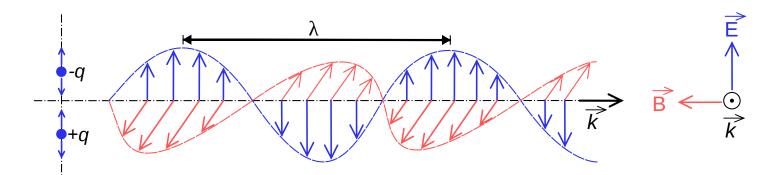
$$\vec{E}_{\text{light}}(t) = E_0 e^{-i\omega t + i\vec{k}\cdot\vec{r}} \left(\vec{e} + A e^{i\varphi}\vec{e}'\right)$$

- Stark Spectroscopy: constant electric field in addition to the light field.
- "Quantum relaxation" (Redfield theory): randomly fluctuating electric fields.
- Polarization fields due to media; reaction field; QM/MM.

Interaction with Light: Absorption

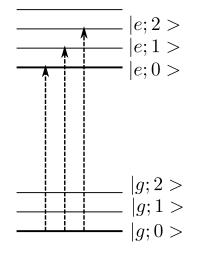
Molecules

- Molecules
- Units
- Hamiltonian
- ✤ Indole
- Interaction


Absorption

- Vibrations
- Stark

Media


Exercises and Problems Interaction of a classical, oscillating, electric field, with a quantum molecule.

Light

Quantum molecule

$$\mathcal{H}_0 = \sum_{i \in \text{states}} E_i \ket{i} \langle i \end{vmatrix}$$

Interaction with Light: Absorption II

Molecules

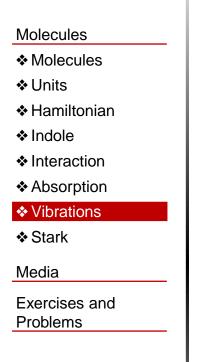
- Molecules
- Units
- Hamiltonian
- Indole
- Interaction
- Absorption
- Vibrations
- Stark

Media

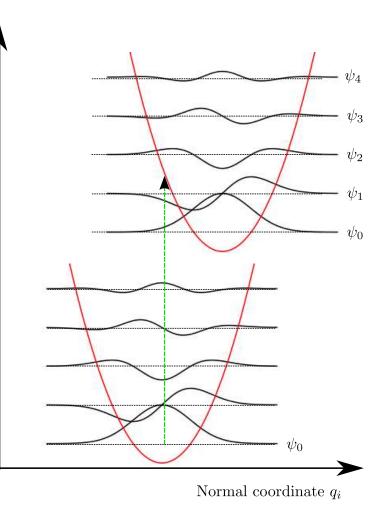
Exercises and Problems

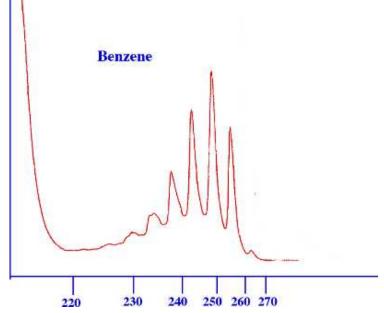
Quantum Liouville Equation

$$\frac{\partial \rho(t)}{\partial t} = -i\hbar \left[\mathcal{H}_0 - \hat{\vec{\mu}} \cdot \vec{E}(t), \rho(t) \right]$$


Solve to first order in the 'perturbation' gives the absorption spectrum of a single molecule:

$$A_0(\nu) = \frac{1}{\hbar} \sum_e \frac{\gamma \vec{\mu}_{ge} \vec{\mu}_{ge}^*}{(\nu - \nu_{eg})^2 + \gamma^2} \qquad \vec{\mu}_{ge} = \langle g; 0 | \, \hat{\vec{\mu}} \, | e; i \rangle = \vec{\mu} \, \langle 0 | \, i \rangle$$

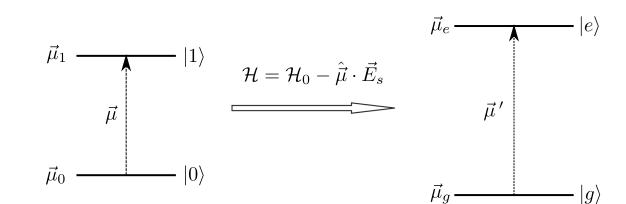

 $|\langle 0|i\rangle|^2$: Franck–Condon factor; γ : homogeneous (lifetime) broadening.


Still to do: average over orientations and inhomogeneous broadening.

Vibrations

Energy

Benzene has 30 vibrations. Why do we see so few, and why are the bands so sharp?


Interaction with a static field

- Molecules
- ✤ Units
- Hamiltonian
- ✤ Indole
- Interaction
- Absorption
- Vibrations
- Stark

Media

Exercises and Problems

A static electric field:

- Orients the molecules.
- Changes the absorption wavelength:

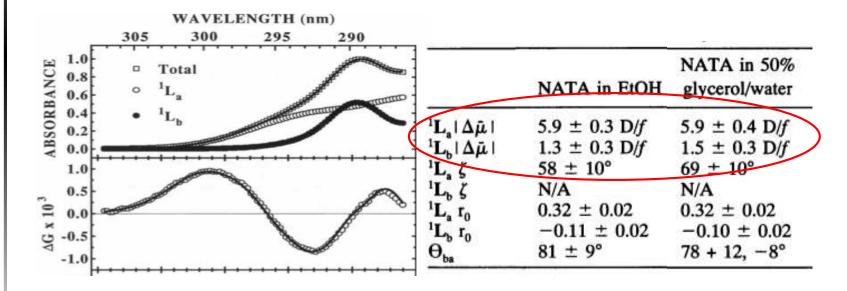
$$h\nu' = \sqrt{(h\nu - (\vec{\mu}_1 - \vec{\mu}_0) \cdot \vec{E}_s)^2 + 4(\vec{\mu} \cdot \vec{E}_s)^2}$$

- Changes the transition dipole moment.
- Changes the width.

Stark Spectroscopy

Molecules

- Molecules
- ✤ Units
- Hamiltonian
- Indole
- Interaction
- Absorption
- Vibrations
- Stark


Media

Exercises and Problems

Changes are small: A 1D dipole in a 1 MV/cm field gives

 $\vec{\mu} \cdot \vec{E} \approx 16.8 \, \mathrm{cm}^{-1}$

compare to $h\nu \approx 20000 \,\mathrm{cm}^{-1}$.

 ${}^{1}L_{a}$ and ${}^{1}L_{b}$ properties based on simultaneous fitting of absorption, fluorescence excitation anisotropy, and Stark spectroscopy.

D.W. Pierce and S.G. Boxer, *Biophys. J.*, 1995, 68, 1583.

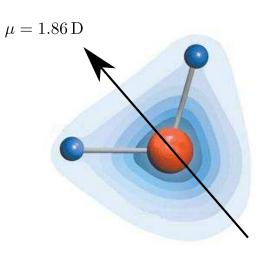
Molecules

Media

- Dielectrics
- Internal Field
- Interaction
- Reaction Field
- Stokes Shift
- ♦ ESIPT
- Dielectric Friction
- Dynamics
- \diamond conclusions

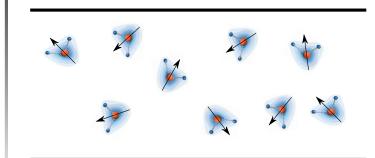
Exercises and Problems

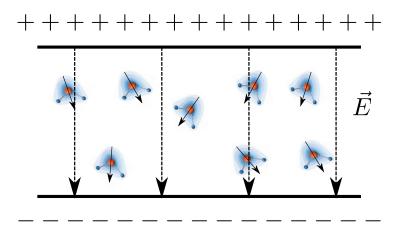
Media


Dipoles and Dielectrics

Molecules

Media


Dielectrics


- Internal Field
- Interaction
- Reaction Field
- Stokes Shift
- ♦ ESIPT
- Dielectric Friction
- Dynamics
- \diamond conclusions
- Exercises and Problems

- Dipole moments go from -q to q
- Water has a dipole moment of 1.86 D.
- 1 D is displacement of an electron over 0.2 Å.

External fields align the dipoles:

Dielectric Constant

Molecules

Media

Dielectrics

- Internal Field
- Interaction
- Reaction Field
- Stokes Shift
- ♦ ESIPT
- Dielectric Friction
- Dynamics
- conclusions

Exercises and Problems Polarization is the average dipole moment of the system:

$$\vec{P} = \frac{1}{Q} \int d\vec{\Omega} \operatorname{Tr} \left[\hat{\vec{\mu}} e^{-\beta \mathcal{H}} \right]$$

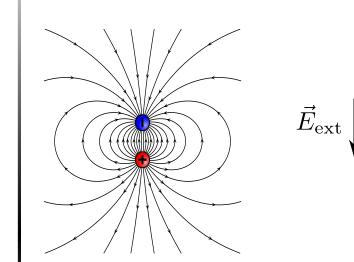
To lowest order in the external field:

$$\vec{P} = \epsilon_0(\epsilon_r - 1)\vec{E}$$

The relation between molecular dipole moment and dielectric constant ϵ_r is exceedingly complex.

Compound	Dipole moment	Polarizability	Dielectric constant		
	(D)	(Å ³)			
water	1.85	1.48	78.5		
methanol	1.71	3.23	32.6		
acetonitril	3.46		34.6		

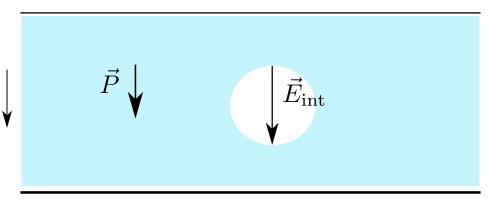
Dielectric Constant II


Internal Field

Media

- Dielectrics
- ✤ Internal Field
- Interaction
- Reaction Field
- Stokes Shift
- ♦ ESIPT
- Dielectric Friction
- Dynamics
- \diamond conclusions

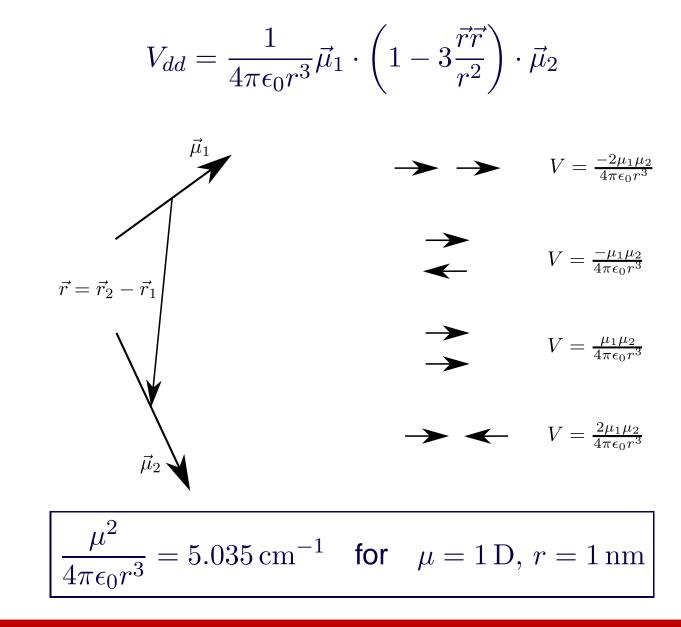
Exercises and Problems


Lorentz Cavity Field:

$$\vec{E}_{\rm int} = \vec{E}_{\rm ext} + \frac{1}{3\epsilon_0}\vec{P} = \frac{\epsilon_r + 2}{3}\vec{E}_{\rm ext}$$

Debye:

$$\frac{\epsilon_r - 1}{\epsilon_r + 2} = \frac{N\mu^2}{9\epsilon_0 k_B T V}$$


Dipole-dipole interaction

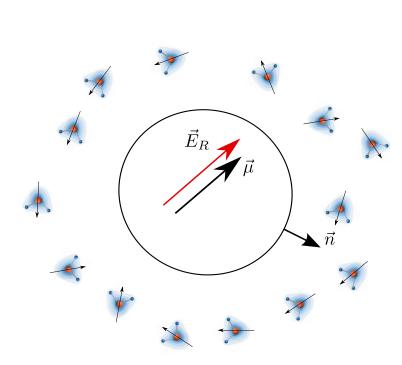
Media

- Dielectrics
- Internal Field
- Interaction
- Reaction Field
- Stokes Shift
- ESIPT
- Dielectric Friction
- Dynamics
- \diamond conclusions

Exercises and Problems

Onsager's Reaction Field

Molecules


Media

- Dielectrics
- Internal Field
- Interaction

Reaction Field

- Stokes Shift
- ♦ ESIPT
- Dielectric Friction
- Dynamics
- \diamond conclusions

Exercises and Problems

 $\begin{aligned} & \overrightarrow{\nabla} \times \vec{E} = 0 \\ & \overrightarrow{\nabla} \cdot \vec{D} = \rho \\ & \vec{n} \cdot \vec{D}_{\text{in}} = \vec{n} \cdot \vec{D}_{\text{out}} \\ & \vec{n} \times \vec{E}_{\text{in}} = \vec{n} \times \vec{E}_{\text{out}} \end{aligned}$

Reaction field:

$$\vec{E}_R = \frac{1}{4\pi\epsilon_0 a^3} \frac{2(\epsilon_r - 1)}{2\epsilon_r + 1} \vec{\mu}$$

Internal field due to Onsager:

$$\vec{E}_{\rm int} = \frac{3\epsilon_r}{2\epsilon_r + 1} \vec{E}_{\rm ext}$$

Dielectric Constant IV

Molecules

Media

Dielectrics

Internal Field

Interaction

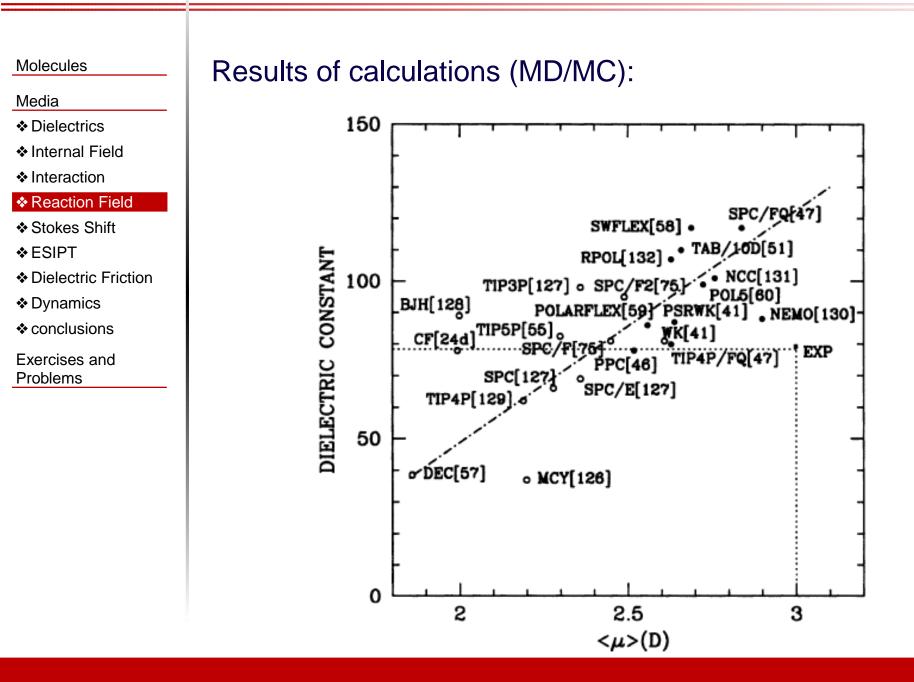
Reaction Field

Stokes Shift

♦ ESIPT

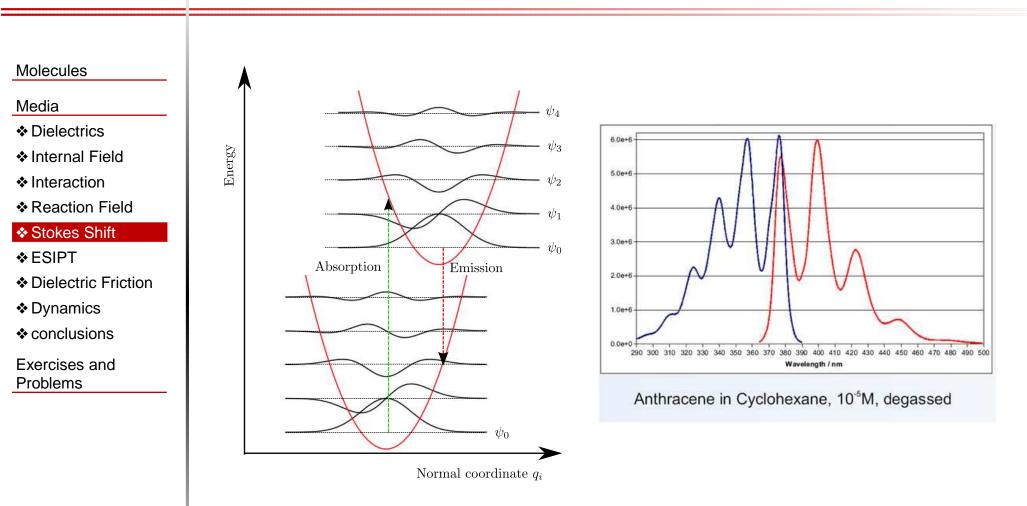
Dielectric Friction

Dynamics


conclusions

Exercises and Problems Reaction fields can be quite strong, and the energy of a dipole in its own reaction field, $U_R = -\vec{\mu} \cdot \vec{E}_R$, quite large. For a 6 D dipole in a cavity with 0.5 nm radius in water the field is 1.4×10^9 V/m, and the energy is $U_R \approx -1450$ cm⁻¹

Onsager's result for the relation between dielectric constant and molecular dipole moment:


$$\frac{(2\epsilon_r+1)(\epsilon_r-1)}{\epsilon_r} = \frac{N\mu^2}{\epsilon_0 k_B T V}$$

Dielectric Constant, V

B. Guillot, J. Mol. Liq., (2002), 101, 216.

Vibrational Stokes Shift

- Transition energies: Absorption $\nu_0 + n\nu_s$, emission $\nu_0 n\nu_s$.
- Oscillator strengths: $\mu^2 |\langle 0 | n \rangle |^2$.

Solvent Dependent Stokes Shift

Molecules

Media

- Dielectrics
- Internal Field
- Interaction
- Reaction Field

Stokes Shift

- ♦ ESIPT
- Dielectric Friction
- Dynamics
- \diamond conclusions

Exercises and Problems

Absorption

Reaction field:

First approximation:

$$\vec{E}_{R,g} = \frac{2(\epsilon_r - 1)}{4\pi\epsilon_0 a^3(2\epsilon_r + 1)}\vec{\mu}_g \equiv A_0\mu_g$$

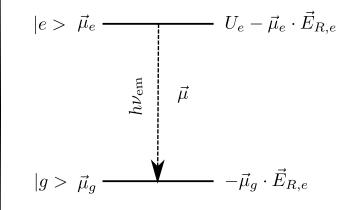
Absorption frequency:

$$h\nu_{\rm abs} = U_e - \Delta \vec{\mu} \cdot \vec{E}_{R,g} = h\nu_0 - A_0 \Delta \vec{\mu} \cdot \vec{\mu}_g$$

Solvent Dependent Stokes Shift II

Molecules

Media


- Dielectrics
- Internal Field
- Interaction
- Reaction Field

Stokes Shift

- ESIPT
- Dielectric Friction
- Dynamics
- \diamond conclusions

Exercises and Problems

Relaxed Emission Reaction field in equilibrium with the new (excited state) dipole moment:

 $h\nu_{\rm em} = h\nu_0 - A_0 \Delta \vec{\mu} \cdot \vec{\mu}_e$

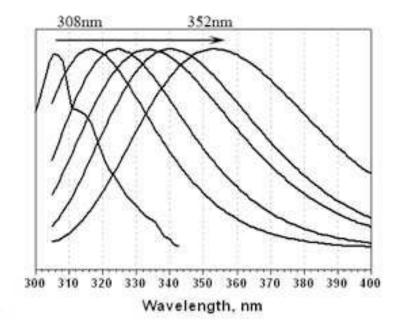
Lippert–Mataga (without polarizability)

$$\Delta \nu = \frac{1}{4\pi\epsilon_0 a^3 h} \frac{2(\epsilon - 1)}{2\epsilon + 1} |\Delta \vec{\mu}|^2$$

Tryptophan

Molecules

Media


- Dielectrics
- Internal Field
- Interaction
- Reaction Field

Stokes Shift

- ♦ ESIPT
- Dielectric Friction
- Dynamics
- \diamond conclusions

Exercises and Problems

Emission is from ${}^{1}L_{a}$, with $|\Delta \vec{\mu}| \approx 6 \text{ D} \Rightarrow$ sensitive to environment.

For tryptophan shifts range from 1400–5400 cm $^{-1}$, depending on polarity of the environment.

ESIPT

Molecules

Media

- Dielectrics
- Internal Field
- Interaction
- Reaction Field
- Stokes Shift

♦ ESIPT

- Dielectric Friction
- Dynamics
- conclusions

Exercises and Problems

Larger Stokes shifts, sometimes more than 10000 cm $^{-1}$, are also reported:

TABLE 1: Spectroscopic Data of the Salicylic Anion (2 μ M) in Various Solvents at 296 K^a

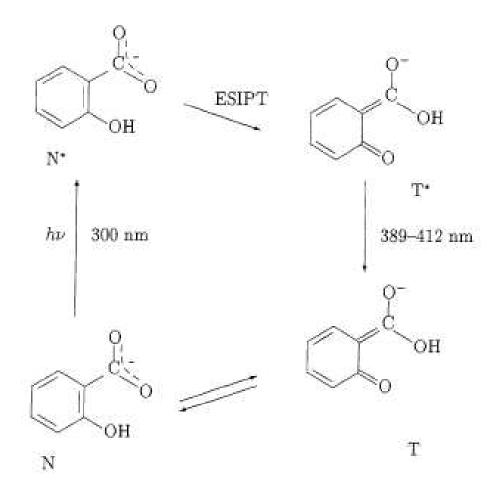
solvent	$E_{\rm T}(30)$ (kcal/mol)	π^*	α	β	λ_{abs} (nm)	λ_{em} (nm)	$\Delta (cm^{-1})$	φ	$\tau_{\rm F}$ (ns)
DMSO	45	0.98	0.00	0.76	296	391	8208	0.19	5.61
DMFA	43.8	0.88	0.00	0.69	296	389	8077	0.20	5.71
ACN	46	0.73	0.25	0.44	296	389	8077	0.24	6.56
2-PrOH	48.6	0.48	0.76	0.95	296	398	8658	0.23	6.30
EtOH	51.9	0.54	0.83	0.77	297	405	8978	0.25	6.71
EG	56.3	0.88	0.90	0.52	297	406	9039	025	6.56
MeOH	55.5	0.60	0.93	0.69	297	405	8978	0.26	6.78
H_2O	63.1	1.09	1.17	0.47	296	407	9214	0.16	4.3
TFE	59.5	0.73	1.51	0.00	296	412	9512	0.18	5.58
D_2O					296	407	9214	?	5.05
- 2~									

Usual cause: excited state reactions, *e.g.* Intramolecular Excited State Proton Transfer (ESIPT).

H. Joshi, C. Gooijer, G. van der Zwan, *J. Phys. Chem. A*, (2002), **106**, _{31/42} 11422.

ESIPT II

Molecules


Media

- Dielectrics
- Internal Field
- Interaction
- Reaction Field
- Stokes Shift

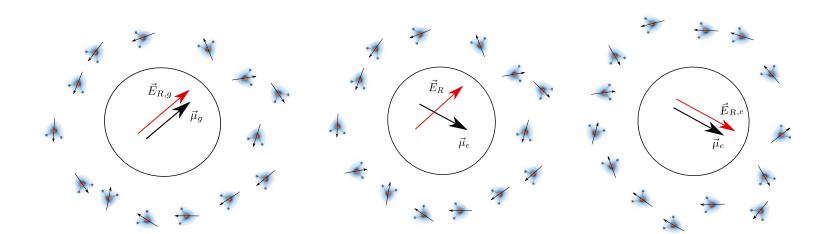
♦ ESIPT

- Dielectric Friction
- Dynamics
- \diamond conclusions

Exercises and Problems

Dielectric Friction

Molecules


Media

- Dielectrics
- Internal Field
- Interaction
- Reaction Field
- Stokes Shift
- ♦ ESIPT

Dielectric Friction

- Dynamics
- conclusions

Exercises and Problems

A rotating dipole experiences *dielectric friction* because the surrounding solvent dipoles need to adjust themselves to the new situation. Since this friction also applies to the solvent dipoles themselves the theory of dielectric relaxation is rather complicated.

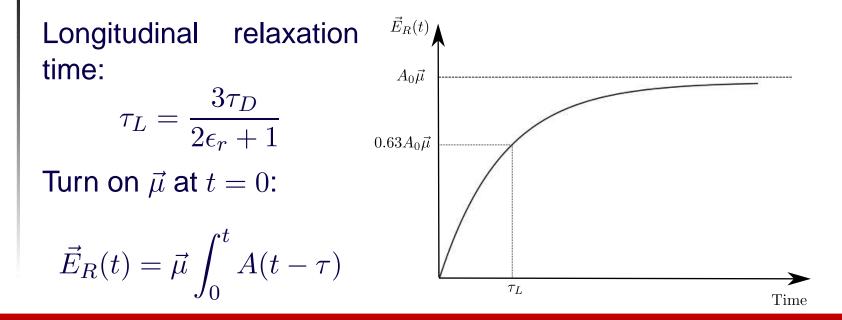
Debye:
$$\epsilon_r(\omega) = \frac{\epsilon_r - i\omega\tau_D}{1 - i\omega\tau_D}$$

 τ_D : rotational correlation time of the solvent dipole, Debye relaxation time.

J.B. Hubbard and P. Wolynes, J. Chem. Phys, (1978), 69, 998.

Dielectric Friction II

Molecules


Media

- Dielectrics
- Internal Field
- Interaction
- Reaction Field
- Stokes Shift
- ESIPT
- Dielectric Friction
- Dynamics
- conclusions
- Exercises and Problems

Onsager's solution is still valid:

$$\vec{E}_R(\omega) = A(\omega)\vec{\mu}(\omega)$$

$$A(\omega) = \frac{1}{4\pi\epsilon_0 a^3} \frac{2(\epsilon_r(\omega) - 1)}{2\epsilon_r(\omega + 1)} = \dots = \frac{A_0}{1 - i\omega\tau_L}$$
(1)

Dielectric Friction III

Media

- Dielectrics
- Internal Field
- Interaction
- Reaction Field
- Stokes Shift
- ♦ ESIPT

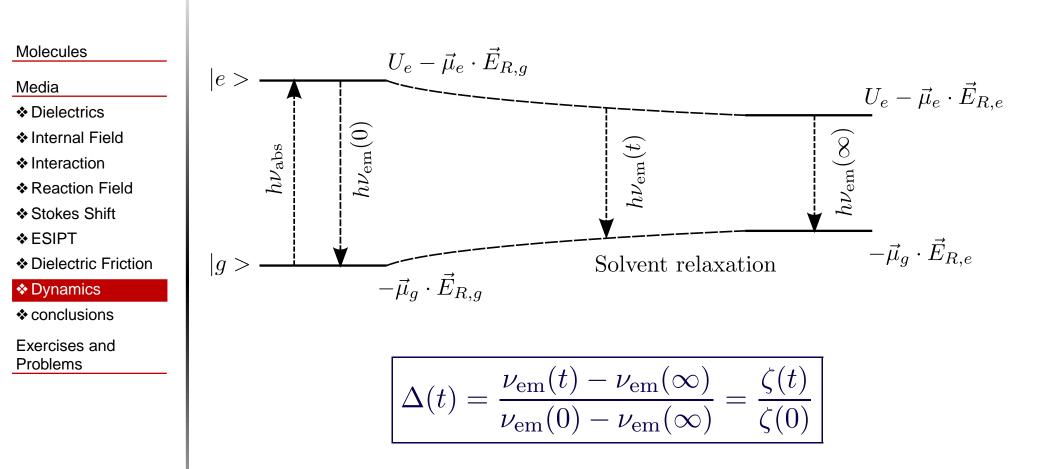
Dielectric Friction

 $\epsilon_r(\omega)$

- Dynamics
- \diamond conclusions

Exercises and Problems

Nee and Zwanzig: friction on a rotating dipole


$$\zeta(\omega) = \frac{A(\omega) - A_0}{i\omega} = \frac{A_0 \tau_L}{1 - i\omega\tau_L}$$

- $\omega \to \infty \Rightarrow \zeta \to 0$: solvent cannot keep up.
- $\omega \to 0 \Rightarrow \zeta \to A_0 \tau_L$: solvent needs to be dragged along.

Dielectric friction plays a role in isomerization reaction kinetics, electron, and proton transfer. Whenever charges are moved or dipoles rotated, there is dielectric friction.

T.W. Nee and R.W. Zwanzig, J. Chem. Phys., (1970), 52, 6353.

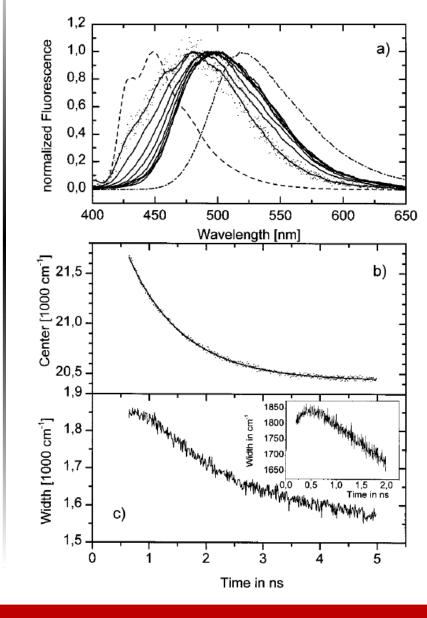
Dynamical Stokes Shift

 $\zeta(t)$ is the time-dependent friction [Fourier transform of $\zeta(\omega)$] on the *difference dipole moment* $\Delta \vec{\mu} = \vec{\mu}_e - \vec{\mu}_g$.

G. van der Zwan and J.T. Hynes, J. Phys. Chem., (1985), 89, 4181. 36/42

Dynamical Stokes Shift II

Molecules


Media

- Dielectrics
- Internal Field
- Interaction
- Reaction Field
- Stokes Shift
- ESIPT
- Dielectric Friction

Dynamics

conclusions

Exercises and Problems

(a) Fluorescence spectra of C153 in a hexane/EtOH mixture at $x_P = 0.029$ at different times $(\Delta t = 0.6 \text{ ns})$. For the first time step raw data are shown by the dots. The solid lines are the result of smoothing the raw data. Steady-state spectrum in hexane (dashed line) and in pure EtOH (dot-dashed line); (b) center of the band (dots) and monoexponential fit (solid line); (c) width of the band; inset shows data taken with higher time resolution.

F. Cichos et al., J. Phys. Chem. A, (1997), 101, 8179.

Remarks and Conclusions

Molecules

Media

- Dielectrics
- Internal Field
- Interaction
- Reaction Field
- Stokes Shift
- ♦ ESIPT
- Dielectric Friction
- Dynamics
- conclusions

Exercises and Problems

- Molecules and Media are both collections of dipoles.
- Molecules must be treated quantum mechanically: we have state and transition dipole moments.
- Media are treated classically: we have dipole moments and polarizability (ignored in this lecture, but not irrelevant).
- Polarization is not the only relevant property of media that influences spectroscopy: protons can also play an important role, *viz.* Kamlet–Taft parameters.
- Interaction between molecules and media is a very complex topic. For those who want to know more: come to Finland in august: www.jyu.fi/summerschool.

Molecules

Media

Exercises and Problems

Exercises

✤ Problems

✤ Literature

Exercises and Problems

Exercises

Molecules

Media

Exercises and Problems

Exercises

Problems

Literature

- 1. Show that Debye's expression (on slide 21) leads to a critical temperature T_c below which the system has a macroscopic permanent dipole moment. What would T_c be for water? Do these so-called electrets exist?
- 2. Show that Onsager's solution, on slide 24, does not suffer from the problem given in 1.
- 3. In which direction does the polarity increase in the figure of slide 29?
- 4. Derive Eq. (1). Explain how the field can relax much faster (for water about 50 times) than the solvent dipoles rotate.
- 5. For a rainy afternoon: rederive all expressions for the dielectric constant in these slides taking the polarizability of the solvent molecules into account.
- 6. And, while you're at it, derive the Lippert–Mataga expression including polarizability. Remember that polarizability adjusts instantaneously to a new situation.
- 7. Why is it a good idea to use a dilute solution of ethanol in hexane to do experiments in, as in the Cichos reference?

Problems

Molecules

Media

Exercises and Problems

Exercises

Problems

✤ Literature

As far as I know these topics have not yet been addressed in the literature, so they might make a good subject for a report.

- 1. What are the essential differences between the way polarization and magnetization is treated. In magnetization T_c (see exercise 1) is called the Curie temperature. Why is there no Onsager in the field of magnets who makes this temperature go away. In the mean time (since Onsager) electrets were discovered, so where is Onsager wrong?
- 2. The Stark field is most of the time much weaker than the Onsager reaction field. Nevertheless in Stark spectroscopy the perturbation is made on the quantum level, whereas for the reaction field we first make the molecule a classical system with dipole moment and polarizability (dipolar spring). Derive a self–consistent equation for a quantum system in equilibrium with its reaction field. Explore the solutions of this non–linear equation.
- 3. Explain the behavior of the width in Cichos' experiment.

Literature

Molecules

Media

Exercises and Problems

Exercises

Problems

♦ Literature

- S.K. Cushing, M. Li, F. Huang, and N. Wu, Origin of Strong Excitation Wavelength Dependent Fluorescence of Graphene Oxide, ACS NANO, (2014), 8, 1002–1013.
- N. Amdurski, Y. Erez, and D. Huppert, Molecular Rotors: What Lies Behind the High Sensitivity of the Thioflavin-T Fluorescent Marker, *Acc. Chem. Res.*, (2012), 45, 1549–1557
- A. Ajdarzadeh, C. Consani, O. Bräm, A. Tortschanoff, A. Cannizzo, and M. Chergui, Ultraviolet transient absorption, transient grating and photon echo studies of aqueous tryptophan, *Chem. Phys.*, (2013), **422**, 47–52.