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What is a Molecule?
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Quantum Chemists calculate:

e Positions of nuclei

O Absorption
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0 Stark

e Electron density

Media

Exercises and
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Spectroscopists see:

Absorbance

e Peak positions

e Intensity profiles
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The oscillator strength f is a dimensionless guantity, de-
fined as the ratio of the absorption strength to the (hypo-
thetical) absorption strength of a single harmonically oscil-
lating electron. Oscillator strengths are between 0 and 1.

The transition dipole moment is related to the oscillator
strength by the relation

9 3e*h

— X
a 4Tmer !

where m. Is the mass and e the charge of the electron. This
dipole moment is in Cm, a more common unit is the Debye
(D). At 300 nm an oscillator strength of 1 corresponds to a
transition dipole moment of ~ 5D.




Hamiltonian, states, dipole moments
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Quantum Chemistry
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Table 1 Difference in free energy AG" (kcal mol™') and relative
di-ketonic fractions (fpk) calculated in vacuo using different models,

0 _ 0 ]
.&G T G{DI{} s G:[{E}

AG® fok
B3LYP/6-311G** 2.46 0.02
CBS-4M —2.40 0.98
G3 MP2 0.15 0.44
CBS-QB3 0.22 0.41
CBS-4M//B3LYP/6-311G** —1.13 0.87

E. Ferrari et al, New J. Chem., (2011), 35, 2840.
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“The problem is that if you have a real equilibrium this means
a AG value between -2 and +2 kcal/mol. Taking into account
the real accuracy of the quantum chemistry of 1-2 kcal/mol,

the results are meaningless in most cases. ”

L. Antonov et al., Dyes and Pigments, 2011, 92, 714.
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e Transition dipole moment:

fiij = (state] ﬁ]stateﬁ
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Tryptophan (indole)
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Red: transition dipole moments; Green: state dipole
moments. Arrow length does not reflect magnitude.
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e Linear and non-linear spectroscopies:

e Stark Spectroscopy: constant electric field in addition to
the light field.

e “Quantum relaxation” (Redfield theory): randomly
fluctuating electric fields.

e Polarization fields due to media; reaction field; QM/MM.
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Interaction with Light: Absorption
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Interaction with Light: Absorption Il
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0 Stark spectrum of a single molecule:
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Probl hz I/—V 7 Hge <g |:LL| > ,LL<| >
(0| ) |?: Franck—Condon factor; v: homogeneous (lifetime)
broadening.

Still to do: average over orientations and inhomogeneous
broadening.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Ch. 6



Vibrations

Molecules A ,

00 Molecules L l \

O Units Py

0 Hamiltonian \ e J \\ Benzene
O Indole 3 ¥s

-
<

O Interaction

: .
O Asortion X\ \;\L j}j I PJ |
X \\J/ \\/ \J \
’ / N

Media
\

Exercises and
Problems
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y Benzene has 30 vibrations.
St v > Why do we see so few, and
Normal coordinate ;. WHY are the bands so sharp?
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Interaction with a static field
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e Orients the molecules.

e Changes the absorption wavelength:

h! =\ (hv — (i — o) - Bo)? + 4G - B2
e Changes the transition dipole moment.

e Changes the width.
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Stark Spectroscopy
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Changes are small: A 1D dipole in a 1 MV/cm field gives

i-F~168cm™!

compare to hv ~ 20000cm~".

WAVELENGTH (nm)

ABSORBANCE

AG x 10°

NATA in 50%

Lol Af |

1.3 + 0.3 D/f
58 + 10°

e er
YLIARI  59*03Df 59 = 04Djf

1.5 + 0.3 DJf
69 + 10°

N/A

0.32 = 0.02
—=0.11 = 0.02
81 +9°

N/A

0.32 = 0.02
-0.10 = 0.02
78 + 12, —8°

'L, and ' L; properties based on simultaneous fitting of absorption,

fluorescence excitation anisotropy, and Stark spectroscopy.

D.W. Pierce and S.G. Boxer, Biophys. J., 1995, 68, 1583.
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Dipoles and Dielectrics
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| e Dipole moments go from
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O Interaction
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e Water has a dipole mo-
ment of 1.86 D.

e 1 D is displacement of
an electron over 0.2 A.

00 Dynamics
0 conclusions
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Dielectric Constant

Molecules Polarization is the average dipole moment of the system:
Media

- 1 = ~

O Internal Field P=— /dﬂ Tr [IL_L)e_BH}
O Interaction Q

[0 Reaction Field

0 Stokes Shift To lowest order in the external field:

U ESIPT

[ Dielectric Friction — —

0 Dynamics P = 60(6,4 — ].)E

O conclusions

Exercises and The relation between molecular dipole moment and dielectric
ronlems

constant ¢, is exceedingly complex.

Compound | Dipole moment | Polarizability | Dielectric constant
(D) (43)

water 1.85 1.48 78.5

methanol 1.71 3.23 32.6

acetonitril 3.46 34.6
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First attempt: Dilute gas of non—polarizable molecules.
Average orientation in the external field:

PA ; B f_lldcosﬁ cos QePrE cost _uE
(cos b)) = : ~
|, dcos @ ebrEcos? 3kpT
0
so that ,
I T
Polarization:
BNy =N B e, - 1)E
= — — — ¢ol€, —
v W TV 3kaT 0

So that
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Debye:
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Maxwell equations:

g
A « ¥ x F =0
- L
A LS V-D=p
“+~ {% ﬁ'ﬁin:ﬁ°ﬁou‘c
’ i ﬁxﬁin:ﬁxﬁom
-« > 4
74” > 4 Reaction field:
ko
- 1 2(e — 1
Fo_ 1 2e—1)

Arepga’ 2e, + 1 a

Internal field due to Onsager:




Dielectric Constant IV

xc’:w'es Reaction fields can be quite strong, and the energy of a
Dziﬁecmcs dipole in its own reaction field, Ur = —pu - E'r, quite large.
0 Internal Field For a 6 D dipole in a cavity with 0.5 nm radius in water the
O Interaction . . . —
field is 1.4 x 10°V/m, and the energy is Ur ~ —1450 cm~!
[ Stokes Shift

U ESIPT

O Dielectric Friction
00 Dynamics
(0 conclusions

ercices an Onsager’s result for the relation between dielectric constant
X | .
Problems and molecular dipole moment:

(2¢, + 1)(e, — 1) N p?

€, - ekgTV
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Dielectric Constant, V
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Results of calculations (MD/MC):

150

100

a0

DIELECTRIC CONSTANT

J I I | L I 1

swruzx(se] . STO/E)
RPOL{132) »° Tmig,}un[m]

<'s NCC[131]

- TIP3P(127) o SPC/F2[78}"* o cra)
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L cr[zm]ﬂpﬁp{ﬁﬁ]

TIP4P[129).0"
°

rf.
- -
-

- o DEC[57]

SPC/F

sPc[lz?,l

K[41]
[Tﬁgpﬂ[ 48] ;TIHP,«’PQHT] " EXP

°spc/E[127]

o MCY[126)

L

PﬂLARPLE{[ﬁB]"PsHIK[u] « NEMO[ 130]+

2.5 3
<u>(D)

B. Guillot, J. Mol. Lig., (2002), 101, 216.



Vibrational Stokes Shift
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y Anthracene in Cyclohexane, 10°M, degassed

Yo
h 5 >

Normal coordinate g;

e Transition energies: Absorption vy + nrs, €mission
Vg — Nls.

e Oscillator strengths: 12| (0] n) |%.
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Solvent Dependent Stokes Shift
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First approximation:
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O Interaction
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Dissolve
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Reaction field:

—

fig = Aopg

E o Q(ET — 1)
97 4repa®(2e, + 1)

Absorption frequency:

Wabs = Ue — Afl - Eg g = hig — AgAfL - i,
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Solvent Dependent Stokes Shift |l
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Lippert—Mataga (without polarizability)

1 23— 1)
 Amegadh 2e+ 1
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Tryptophan

Molecules Emission is from *L,, with |Afi| ~ 6 D:= sensitive to
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[ Dielectrics

O Internal Field
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O Reaction Field
P

O ESIPT :
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T

Wavelength, nm

For tryptophan shifts range from 1400-5400 cm~1,
depending on polarity of the environment.
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ESIPT

Mol I . . .
e Larger Stokes shifts, sometimes more than 10000 cm—1!, are
Media .
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O Dielectrics
O Internal Field TABLE 1: Spectroscopic Data of the Salicylic Anion (2 gM)
0 Interaction in Various Solvents at 296 K¢
0 Reaction Field ET(3O) A-ab\ Aem
0 Stokes Shift solvent (kcal/mol) 7* o S (nm) (nm) [ ') (ns)
DMSO 45 098 0.00 076 296 19 5.6
O Dielectric Friction DMFA 438  0.88 0.00 0.69 296 389/ & 020 5.71
. ACN 46 0.73 0.25 0.44 296 024 6.56
1 Dynamics 2-PrOH 486 048 0.76 095 296 58 0123 6.30
O conclusions EtOH 51.9 0.54 0.83 0.77 297 0125 6.71
. EG 563  0.88 0.90 0.52 297 39 0[25 6.56
Sxereises and MeOH 555  0.60 0.93 0.69 297 0126 678
H.O 63.1 109 1.17 0.47 296 214 (.16 4.3
TFE 595  0.73 1.51 0.00 296 18 5.58
D,O 296 5.05

Usual cause: excited state reactions, e.g. Intramolecular
Excited State Proton Transfer (ESIPT).

H. Joshi, C. Gooijer, G. van der Zwan, J. Phys. Chem. A, (2002), 106, ;4

11422.



ESIPT I

Molecules

Media
O Dielectrics

O Internal Field

O Interaction

[0 Reaction Field

[ Stokes Shift

[ Dielectric Friction
00 Dynamics

O conclusions

Exercises and
Problems

o 0~

: | 0 4}’

__ ESIPT PPlLe

N = 0
H Ti

|
he | 300 nm | JRO-412 nm
L]

l?_
™ ,,a-*-{l
[ !-u-' “H«]I.-"’ ~NH
fﬁ“’f Ny = g
] iy
S OH



Dielectric Friction
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F »
g T ¥ x T X -
4 * % . T < %
4 " 1y P
: ¥
- 4 « x , S
%/\«‘F v *.\&T}“X \Ki# A

A rotating dipole experiences dielectric friction because the sur-
rounding solvent dipoles need to adjust themselves to the new situa-
tion. Since this friction also applies to the solvent dipoles themselves
the theory of dielectric relaxation is rather complicated.

€r — IWTD

Debye: €r(w) = T

Tp. rotational correlation time of the solvent dipole, Debye re-
laxation time.

J.B. Hubbard and P. Wolynes, J. Chem. Phys, (1978), 69, 998.



Dielectric Friction Il

Molecules Onsager’s solution is still valid:

Media

O Dielectrics n _ e

O Internal Field ER(W) T A(CU)ILL((.U)

O Interaction
0 Reaction Field with
[ Stokes Shift
OESIPT 1 2(e(w) —1) Ao

Aw) = R (1)
0 Dynamics 477600/3 267~ (CU + ].) 1 — 1WTT,

0 conclusions

Exercises and =

Problems Longitudinal relaxation “#®\
time;: Aoji
3TD
TL =
26, + 1 0.63 A0/

Turnon g att = 0:

Bult) = i [ Alt=) .

TL

Time
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Nee and Zwanzig: friction on a rotating dipole

C(W) _ A(w) — AO o A()TL

W 1 —dwry

e w — 00 = ( — 0. solvent
cannot keep up.

e w—>0 = (— Ayr: solvent
needs to be dragged along.

Dielectric friction plays a role in iIsomerization reaction
Kinetics, electron, and proton transfer. Whenever charges are
moved or dipoles rotated, there is dielectric friction.

T.W. Nee and R.W. Zwanzig, J. Chem. Phys., (1970), 52, 6353.



Dynamical Stokes Shift

Molecules

Media
O Dielectrics

O Internal Field

O Interaction

[0 Reaction Field

[ Stokes Shift
OESIPT

[ Dielectric Friction

(0 conclusions

Exercises and
Problems

e > \Ue fe  ER.g .
? i —————————————— — Ue T ﬁe ) ER e
s L T~
SR = 2
2012 N g
T = 3
A e — y ¥
g > - /”:’ Solvent relaxation —Hg " ER.e
_/jg ' ER,g
A(t) = Yemld) Zvem(00) _ C(0)
Vem(o) l/em(OO) C(O)

((t) is the time—dependent friction [Fourier transform of {(w)]
on the difference dipole moment Ap = fi. — fiy.

G. van der Zwan and J.T. Hynes, J. Phys. Chem., (1985), 89, 4181. 36 / 42
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normalized Fluorescence
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(a) Fluorescence spectra of
C153 in a hexane/EtOH mixture
at zp = 0.029 at different times
(At = 0.6 ns). For the first time
step raw data are shown by the
dots. The solid lines are the re-
sult of smoothing the raw data.
Steady—state spectrum in hex-
ane (dashed line) and in pure
EtOH (dot-dashed line); (b) cen-
ter of the band (dots) and mo-
noexponential fit (solid line); (c)
width of the band; inset shows
data taken with higher time res-
olution.

F. Cichos et al., J. Phys. Chem. A, (1997), 101, 8179.




Remarks and Conclusions

Molecules

Vedia e Molecules and Media are both collections of dipoles.

O Dielectrics

O Internal Field e Molecules must be treated quantum mechanically: we
0 Interaction have state and transition dipole moments.

O Reaction Field
O Stokes Shift
O ESIPT

e Media are treated classically: we have dipole moments

0 Dielectric Friction and polarizabllity (ignored in this lecture, but not
- Dynamics irrelevant).

i d . . . .
Sovhiedel o Polarization is not the only relevant property of media

that influences spectroscopy: protons can also play an
Important role, viz. Kamlet—Taft parameters.

e Interaction between molecules and media is a very
complex topic. For those who want to know more: come
to Finland in august: www.jyu.fi/summerschool.
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Exercises

Molecules 1. Show that Debye’s expression (on slide 21) leads to a critical

Media temperature 7. below which the system has a macroscopic

Exercises and permanent dipole moment. What would 7. be for water? Do these
T so—called electrets exist?

0 Problems 2. Show that Onsager’s solution, on slide 24, does not suffer from the
D Literature problem given in 1.

3. In which direction does the polarity increase in the figure of slide 297

4. Derive Eq. (1). Explain how the field can relax much faster (for water
about 50 times) than the solvent dipoles rotate.

5. For a rainy afternoon: rederive all expressions for the dielectric
constant in these slides taking the polarizability of the solvent
molecules into account.

6. And, while you're at it, derive the Lippert—Mataga expression
including polarizability. Remember that polarizability adjusts
instantaneously to a new situation.

7. Why is it a good idea to use a dilute solution of ethanol in hexane to
do experiments in, as in the Cichos reference?
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Problems

Molecules As far as | know these topics have not yet been addressed in the literature,
Media so they might make a good subject for a report.

E i d . . . .
Propleme 1. What are the essential differences between the way polarization and
0 Exercises magnetization is treated. In magnetization 7. (see exercise 1) is
called the Curie temperature. Why is there no Onsager in the field of

H Literature magnets who makes this temperature go away. In the mean time

(since Onsager) electrets were discovered, so where is Onsager
wrong?

2. The Stark field is most of the time much weaker than the Onsager
reaction field. Nevertheless in Stark spectroscopy the perturbation is
made on the quantum level, whereas for the reaction field we first
make the molecule a classical system with dipole moment and
polarizability (dipolar spring). Derive a self—-consistent equation for a
guantum system in equilibrium with its reaction field. Explore the
solutions of this non—linear equation.

3. Explain the behavior of the width in Cichos’ experiment.

41142
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