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● LH1, LH2: excitonic interaction and energy transfer.

● RC, cytochromes: electron transfer reactions.

● Q, UQ: proton transfer reactions.

Source: M. Brederode, Thesis.
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Net result: for every 870 nm photon two protons are
transported over the membrane against a pH difference of
∆pH = 3.
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Electron tranfers reactions, redox potentials and transfer
times in the RC.
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● Equilibrium in the reactant well.

● Single reaction coordinate on adi-
abatic surface.

● Other (vibrational) modes irrele-
vant.

● No “electronic switching”.

● Classical motion over the barrier.

Rate constant:

k = κe−∆G‡/kBT = κe∆S‡/kBe−E‡
a/kBT

κ depends on dynamics in the barrier region (between SR
and SP . For TST: κ = kBT

h̄

Trans. Faraday Soc., 1938, 1–1556.
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Electron transfer reactions do not involve bond–breaking and
bond–making, so there is no barrier?

A charge has a reaction potential, (just like a dipole):

ψR =
q(ǫr − 1)

4πǫ0ǫra
≡ Aqq

The free energy of a charge in its own reaction field is

Geq =
1

2
Aqq

2
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If the amount of charge in the cavity is changed
instantaneously, the order in the solvent remains the same
(entropy), but the energy changes.

Non–equilibrium free energy:

Gneq =
1

2
ω2
s(q − δq)2

with
ω2
s = Aq

Reaction Coordinate = Solvent Polarization
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Solvent perspective: for a given polarization there is an
“equivalent charge”.

● ∆G⊖ = Geq,A −Geq,D:

driving force

● λ: reorganization energy.

● ‡: transition state.

● XD,A: Solvent in equilib-
rium with Donor, Accep-
tor.

At the crossing point XC it does not matter for the solvent
where the electron is, and transfer can take place.
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Donor Potential:

GD = Geq,D +
1

2
ω

2
s(X −XD)2

Acceptor potential:

GA = Geq,A +
1

2
ω

2
s(X −XA)

2

Crossing point:

XC =
1

2
(XA +XD) +

∆G
⊖

ω2
s(XA −XD)

Reorganization Energy

λ =
1

2
ω

2
s(XA −XD)2

Activation free energy:

∆G‡ =
(λ+∆G

⊖)2

4λ
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The reaction rate is the product of the Arrhenius factor
containing the activation free energy, and a transmission
coefficient κ:

kET = κe
−

(λ+∆G⊖)2

4λkBT

A charge (or charge distribution) creates its own barrier by
polarizing the environment.

J. R. Miller , L. T. Calcaterra , G. L.
Closs J. Am. Chem. Soc., (1984),
106, 30473049.
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What can happen when a donor gets excited?

● Fluorescence or radiationless decay.

● Electron and Hole transfer: Marcus Theory.

● Excitation transfer

✦ Förster: dipole–dipole interaction, distance between
donor and acceptor large.

✦ Dexter: overlap of wavefunctions

● Exciton coupling: dipole–dipole interaction, short
distance between donor and acceptor.

In photosynthesis the chromophores are organized in such a
way that energy or electrons are transfered before
fluorescence occurs.
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Fermi’s golden rule:

Γnm = 4π2|Vnm|2δ(νn − νm)

● δ(νn − νm): energy conservation

● Vnm: dipole–dipole interaction.

Vnm =
f2

4πǫ0ǫrr3
~µn ·

(

1−
3~r~r

r2

)

· ~µm
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Total transfer rate (sum over all vibrational levels):

ΓDA =
f4κ2

4ǫ20n
4r6

∑

n,m

µ2Dµ
2
AS

2
mS

2
nδ(νn − νm)

with orientation factor (carets denote unit vectors)

κ = µ̂D · (1− 3r̂r̂) · µ̂A
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● Normalized Fluorescence Spec-
trum:

F (ν) =

∑

m µ
2
DS

2
mδ(ν − νm)

∑

m µ
2
DS

2
m

● Absorption spectrum

ǫA(ν) =
8π3Na

3× 103h̄c ln 10

µ2Af
2

n

×
∑

n

S2
nδ(ν − νn)

in mol L−1cm−1
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Barbatruc

ΓDA =
f4κ2

4ǫ20n
4r6

∑

n,m

µ2Dµ
2
AS

2
mS

2
nδ(νn − νm)

=
f4κ2

4ǫ20n
4r6

∫

dν

[

∑

m

µ2DS
2
mδ(νn − ν)

][

∑

n

µ2AS
2
nδ(νn − ν)

]

After all the dust has settled:

ΓDA = 8.8× 1017
κ2

n4τDR6

∫

dν
FD(ν)ǫA(ν)

ν4
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● Overlap integral:

JDA =

∫

dν
FD(ν)ǫA(ν)

ν4

Overlap between the spectra is needed, otherwise
energy can not be conserved. Overlap is usually small
for the same molecule due to Stokes shift.

● Förster Length:

R6
0 = 8.8× 1017

κ2

n4

R0 is usually of the order 10 nm.
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● Two 6.3 D dipoles
at 10 nm:

V ≈ 0.2 cm−1.

● κ can range from 0
to 4 for fixed orien-
tations.

● It is usually pos-
sible to find good
labels for energy
transfer.

A. Sytnik et al., PNAS, 1996, 12959.
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● The LH1 antenna consists of 16 B820 dimers. A dimer
binds two bacteriochlorophylla pigments.

● CD spectroscopy measures optical activity.
Bacteriochlorophylla is not optically active.

C. Koolhaas et al , Biophysical J., (1997), 72, 1828.
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● When pigments are close together, the interaction
between transition dipoles starts to influence the
electronic states. The pigments are no longer
independent.

● In B820, the dipole–dipole interaction is approximately
300 cm−1.

● As a consequence the absorption spectrum changes
and the pigment pair becomes optically active, because
rotational invariance is broken.

● This so–called excitonic interaction plays an important
role in energy transfer within the antenna systems, and
in the optical properties of J–aggregates.
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Hamiltonian

H = Hpigment 1 +Hpigment 2 + V12

In B820 the interaction strength is

about 300 cm−1, and the orientation

of the dipoles is almost parallel.

An energy difference of 600 cm−1 at a wavelength of 800 nm
(absorption of BChl), is about 40 nm. Therefore one transition
is at 780 nm, the other at 820 nm.
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Hamiltonian:

H =
∑

n

Hpigment n +
∑

n,m

Vnm

Vnm: dipole–dipole interac-
tions between all the pigment.

Excitonic states are delocal-
ized states, where all the pig-
ments are taking part in the
excitation.

C. Koolhaas et al , J. Phys. Chem. B, (1997), 101, 7262.
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● Spectrum is shifted to the red. These bacteria live at the
bottom of ponds where only red light penetrates.

● Lowest excitonic state is dark. This prevents
fluorescence before energy is transfered to the RC.

S. Georgakopoulou et al , Biophysical J., (2002), 82, 2184.
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● Molecules can be considered collections of state dipole
moments and transition dipole moments. These are
measurable quantities.

● Solvents can be considered collections of dipolar,
polarizable molecules, described by their macroscopic
dielectric properties.

● Much of the spectroscopy of molecules in solution or
embedded in protein structures can be understood this
way.

● Two main problems: dynamics of the interaction and
protons. Want to know more: come to Finland.
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1. How much work does it take to transport a proton over a membrane
against a pH difference of 3?

2. Explain the behavior of the Marcus rate when the reorganization
energy λ goes to zero.

3. Explain the behavior of the rate vs the driving force in the figure of p.
13.

4. Explain the second figure on p. 22, What value does the paper use
for κ2? Can this be justified?

5. What causes the bleaching shown in the bottom right figure of p. 23.

6. Explain how diagonal disorder (energy disorder) leads to the side
peaks in the botton figure of p. 28
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