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● Fundamentals

✦ Dynamics

✦ Statistical Mechanics

✦ Pure and Mixed States

● Applications

✦ (Non)–linear Optics

✦ Quantum Dissipation

✦ Proton Transfer

● Connections

✦ QM–CM interaction

✦ Measurement

✦ Quantum Computing

● Problems

✦ The Ehrenfest Problem

✦ Quantum Dissipation

✦ QM–CM Interaction

∂ρ(t)
∂t = −2πi[H0, ρ]− 2πi[H(t), ρ]



Classical and Damped Motion.

❖ Overview

Classical and
Damped Motion.

❖ Review

❖ Example

❖ Decay

❖ Brownian
Oscillator

❖ Coupling

❖ Langevin

❖ Classical
conclusions

Quantum Dynamics
in Hilbert and
Liouville Space

Exercises and
Problems

3 / 41



Review and Extension of Earlier Results

❖ Overview

Classical and
Damped Motion.

❖ Review

❖ Example

❖ Decay

❖ Brownian
Oscillator

❖ Coupling

❖ Langevin

❖ Classical
conclusions

Quantum Dynamics
in Hilbert and
Liouville Space

Exercises and
Problems

4 / 41

Classical particle, position ~r(t), momentum ~p(t), Hamiltonian H.
Probability density of finding it at position (~r(t), ~p(t)) in phase space Γ at
time t: ρ(~r(t), ~p(t), t)

Time dependence follows from the Hamilton equations:

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂~r
· d~r
dt

+
∂ρ

∂~p
· d~p
dt

=
∂ρ

∂t
+

∂ρ

∂~r
· ∂H
∂~p

− ∂ρ

∂~p
· ∂H
∂~r

=
∂ρ

∂t
− {H, ρ}

Liouville’s theorem:

dρ

dt
= 0

or

∂ρ

∂t
= {H, ρ} ≡ −~∇Γ · ~ρ = −~∇Γ · ~vΓρ
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Hamiltonian:

H =
p2

2m
+

1

2
mω

2
0x

2

Liouville equation:

∂ρ(x, p, t)

∂t
= − p

m

∂ρ(x, p, t)

∂x
+mω

2
0x

∂ρ(x, p, t)

∂p

mω0x

p

(x0, p0)

~vΓ

Phase space

Fundamental solution:

ρ(x1, p1, t|x0, p0) = δ(x1 − x(t))δ(p1 − p(t))

with

x(t) = x0 cosω0t+
p0

mω0
sinω0t

p(t) = −mω0x0 sinω0t+ p0 cosω0t
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Since {f(H),H} = 0,

ρeq =
e−βH

∫

dp
∫

dx e−βH

is a solution of the Liouville equation.

Remarks:

● Liouville’s theorem is derived from conservation of
probability: area in phase space is conserved.

● Density in phase space behaves like an incompressible
fluid.

● No decay to equilibrium, in general.

● Only for the harmonic oscillator: no distortion.
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Inclusion of friction effects (“coupling to a bath”) leads to

∂ρ(x, p, t)

∂t
= −

p

m

∂ρ

∂x
+mω2

0x
∂ρ

∂p
+ ζ

∂

∂p

[

kBT
∂

∂p
+
p

m

]

ρ

ζ = friction coefficient.

Alternative formulation:

dx

dt
=

p

m
dp

dt
= −ζ

p

m
−mω2

0x+ FR(t) (1)

Random force

Fluctuation–dissipation theorem:

〈

FR(t)FR(t
′)
〉

= 2kBTζδ(t− t
′)
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Single damped oscillator with random force:

Input Parameters:

m 1
ω0 1
ζ 0.1
kBT ≈ 2

Fit:

〈xx(t)〉 =
kBT

mω2
0

e−0.05t cos 0.999t

Program: langevin.c
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Equations of motion:

m1
d2x1
dt2

= −ω2
1x1 + γx2

m2
d2x2
dt2

= −ω2
2x2 − ζ

dx2
dt

+ γx1
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● Coupled equations

m1
d2x1
dt2

= −m1ω
2
1x+ γx2

m2
d2x2
dt2

= −m2ω
2
2x− ζ

dx2
dt

+ γx1 + FR(t) (2)

lead to non–Markovian behavior of oscillator 1.

● Formally solve the second equation (use Fourier transforms):

x2(ω) =
γx1(ω) + FR(ω)

m2(ω2
2 − ω

2)− iωζ
(3)

● And substitute in the first:

m1(ω
2
1 −ω

2)x1(ω)−
γ2x1(ω)

m2(ω2
2 − ω

2)− iωζ
=

γFR(ω)

m2(ω2
2 − ω

2)− iωζ
(4)
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● Some minor rearrangement:

m1(ω
2
pmf − ω

2)x1(ω)− iωζ1(ω)x1(ω) = FR(ω) (5)

● Potential of Mean Force (“Equilibrium Solvation”):

ω2
pmf = ω2

1

(

1−
γ2

ω2
1ω

2
2

)

(6)

● Frequency dependent friction:

ζ1(ω) =
γ2

ω2
2

−iω + ζ/m2

m2(ω2
2 − ω

2)− iωζ
(7)

● Fluctuation–Dissipation Theorem:
〈

FR(ω)FR(ω
′)
〉

= 2kBTζ1(ω)2πδ(ω − ω
′) (8)

D. Han, Y.S. Kim, and M.E. Noz, Illustrative Example of Feynman’s rest
of the universe, Am. J. Phys., 67, (1999), 61–66.
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● Classical Liouville equation, Liouville’s theorem: conservation
of probability.

● Fokker–Planck equation: approach to equilibrium.

● Coupled systems: Brownian oscillators, coupled to undamped
systems lead to equilibrium for the initially undamped system.

● Langevin equations give equivalent description.

● Two simple examples: uncoupled and coupled oscillators.

● Application: Kramers theory for chemical reaction kinetics.

● Brownian dynamics simulations are simple (up to a point).

● Non–Markovian behavior is the result of a lower layer of
dynamics.

● Fluctuation–dissipation theorems, relating spontaneous
fluctuations and dissipative aspects of an irreversible process
are valid on all levels. No dissipation without fluctuations, and
vice versa

H.B. Callen, M.L. Barasch, and J.L. Jackson, Statistical Mechanics and
Irreversibility, Phys. Rev., 88, (1952), 1382–1386.
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Schrödinger equation:

∂ |ψ〉

∂t
= −

i

h̄
H |ψ〉

Expansion in eigenfunctions of H:

|ψ〉 =
∑

n

ψn |n〉

Expectation values of operators A:

〈A〉 = 〈ψ|A |ψ〉 =
∑

n,m

ψ∗
m 〈m|A |n〉ψn =

∑

n,m

ψ∗
mψnAmn ≡

∑

n,m

ρnmAmn

“Density matrix” (von Neumann, (1927))

ρnm = ψ∗
mψn ⇒ 〈A〉 = Tr[ρ ·A]
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Properties: ρ is hermitian (ρ† = ρ), and Tr[ρ] = 1

Equation of motion (quantum Liouville equation)

∂ρ

∂t
= −

i

h̄
[H, ρ]

compare: Heisenberg picture for operator A:

dA

dt
=
i

h̄
[H, A]

compare: Classical Liouville equation

−
i

h̄
{H, · · · } ←→ [H, · · · ]

Commutator and Poisson brackets are both Lie brackets:
antisymmetric, and satisfying the Jacobi identity:

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0
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|0〉

|1〉

0

ǫ

E
ne

rg
y

● Hamiltonian: H = ǫ |1〉 〈1|

● Dipole operator:

~̂µ = ~µg |0〉 〈0|+ ~µe |1〉 〈1|+ ~µ[|0〉 〈1| +
|1〉 〈0|]

● Interaction Hamiltonian:

Hint = −~̂µ · ~E(t)

● Exact for spin 1/2 systems (ESR, NMR).

● Good approximation for resonant electronic transitions.

● In quantum computing: qubit.

● Nontrivial (e.g. non–linear optics).

Quantum state: |ψ〉 = cos θ |0〉+ sin θeiφ |1〉

Density matrix: ρ =

(

cos2 θ cos θ sin θeiφ

cos θ sin θe−iφ sin2 θ

)
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Ensemble average:

ρ =
∑

α

ψ(α)∗
m ψ(α)

n = ψ∗
mψn

Equilibrium density matrix (coherences vanish, and diagonal
elements become equilibrium populations):

ρeq =
e−βH

Q
=

1

1 + eβǫ

(

1 0
0 e−βǫ

)

(9)

It is impossible to find a single quantum state that corresponds to
this density matrix.

Mixed states: density matrices to which no single quantum state
corresponds

Tr[ρ2] < 1
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Operators (and therefore the density operator) are vectors in
Liouville space.

|ρ〉〉 =









ρ00
ρ01
ρ10
ρ11









Inner product:
〈〈A | B〉〉 = Tr[A†B]

Liouville equation:

∂ |ρ〉〉

∂t
= −

i

h̄
L |ρ〉〉 with Lij,kl = Hikδjl −Hljδik
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Liouville space is the space of operators. It is also a Hilbert
space.

● It is a complex vector space.

✦ Addition of operators is defined, and multiplication
by complex numbers

✦ Addition is commutative, multiplication distributive

✦ There is a unit element.

● There is an inner product: 〈〈A | B〉〉 = Tr[A†B].

● It is complete:
∑

n |n〉〉 〈〈n | = 1.
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For a 2LS it is the space of vectors with four complex
elements:

A =

(

a00 a01
a10 a11

)

⇔









a00
a01
a10
a11









≡ |A〉〉 (10)

and
〈〈A | =

(

a∗00 a∗01 a∗10 a∗11
)

(11)
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System (2LS) Liouvillian:

−
i

h̄
L0 =









0 0 0 0
0 −2πiν0 0 0
0 0 2πiν0 0
0 0 0 0









(12)

where ν0 = transition frequency.

Liouville Space, what is it good for?

● Coupled systems, reduced density matrix.

● Coupling to external fields.

● Relaxation (?), Redfield theory.

● Mixed quantum–classical dynamics ?.
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Why not just add friction to the Schrödinger equation?

● We dont want the wave functions to go to zero.

● If we do it in the Heissenberg picture, commutation
relations go to zero, and we dont want that either, we
want decay to the ground state (for instance).

● Apart from the T = 0 case, equilibrium is not a state. An
impure density matrix does not correspond to a quantum
state, but to a mixture.

● If we want decay to an equilibrium density matrix, we
need to start with a density matrix, even if it corresponds
to a pure state.
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The B820 subunit is a dimer of
bacteriochlorophylls.

Hamiltonian:

H = H1 +H2 +Hint = ǫ1 |1〉 〈1| ⊗ 12 + 11 ⊗ ǫ2 |1〉 〈1|

+
1

4πǫ0ǫrr3
~̂µ1 ⊗ ~̂µ2 : [1− r̂r̂] (13)

M.H.C. Koolhaas, et al, Biophys. J., 72, (1997), 1828.
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States of the dimer: |ij〉 = |i〉 ⊗ |j〉, monomer 1 in state i, monomer 2 in
state j.

Hamiltonian (only transition dipole moments):

H =









0 0 0 V

0 ǫ2 V 0
0 V ǫ1 0
V 0 0 ǫ1 + ǫ2









(14)

Diagonalize to get the new states:

|0〉 = c1 |00〉+ s1 |11〉
|1〉 = c2 |00〉+ s2 |11〉
|2〉 = −s2 |00〉+ c2 |11〉
|3〉 = −s1 |00〉+ c1 |11〉

|0〉

|1〉
|2〉

|3〉

1 2

2V
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The reduced density matrix is obtained by taking the partial
trace.
Reduced density matrix for system 1, when total system is in
the ground state:

σ1 = Tr2[|0〉 〈0|] =

(

c21 0
0 s21

)

Not a pure state (15)

System + Bath Hamitonian:

H = HS +HB +Hint (16)

Reduced Density Matrix:

σS = TrBρ (17)
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External (electric) fields ~E(t) couple to the dipole operator. These fields
can be due to

● Other systems (such as in previous slides): excitonic coupling.

● Optical fields ~E(t) = ~E0e
−i~k·~r+iωt+ cc: linear and non–linear optics.

● Applied static electric fields (such as in Stark spectroscopy).

● Random fields in polarizable media: homogeneous and
inhomogeneous broadening.

● Reaction fields in polarizable media: electronic structure changes.

● Damped fields in the environment: dissipation.

Hamiltonian:
H = H0 − ~̂µ · ~E(t)

Liouville equation:

∂ |ρ(t)〉〉
∂t

= − i

h̄
[L0 + Lint(t)] |ρ(t)〉〉

with
Lint · · · = [Hint, · · · ] = −[~̂µ, · · · ] · ~E(t)
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● Equation of motion:

∂ |ρ〉〉

∂t
= −2πi[L0 + Lint(t)] |ρ〉〉

● Formal solution (system initially in state |0〉〉):

|ρ(t)〉〉 = e−2πiL0t |0〉〉−2πi

∫ t

0
dτ e2πiL0(τ−t)Lint(τ) |ρ(τ)〉〉

● Resulting polarisation (which is what we measure):

~P (t) =
〈〈

~̂µ
∣

∣ρ(t)
〉〉
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Expand the formal solution to the desired order:

|ρ(t)〉〉 = e
−2πiL0t |0〉〉 − 2πi

∫ t

0

dτ e
2πiL0(τ−t)Lint(τ) |0〉〉 −

4π2

∫ t

0

dτ

∫ τ

0

dτ1 e
2πiL0(τ−t)Lint(τ)e

2πiL0(τ1−τ)Lint(τ1) |0〉〉+

8π3
i

∫ t

0

dτ

∫ τ

0

dτ1

∫ τ1

0

dτ2 e
2πiL0(τ−t)Lint(τ)e

2πiL0(τ1−τ)Lint(τ1)

e
2πiL0(τ2−τ1)Lint(τ2) |0〉〉 · · · · · · (18)
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Thus we get for ~P (t) (in isotropic systems)

~P (t) = −2πi

∫ t

0

dτ
〈〈

~̂µ
∣

∣e
2πiL0(τ−t)Lint(τ) |0〉〉 −

8π3
i

∫ t

0

dτ

∫ τ

0

dτ1

∫ τ1

0

dτ2
〈〈

~̂µ
∣

∣e
2πiL0(τ−t)Lint(τ)e

2πiL0(τ1−τ)Lint(τ1)

e
2πiL0(τ2−τ1)Lint(τ2) |0〉〉 · · · · · · (19)

Linear optics, absorption, CD, LD, etc.

Third order non–linearities; TG, 3PEPS, PP, etc.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy
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● Schrödinger equation does not offer the option for dissipation: there
is no state corresponding to equilibrium. Liouville space is much
bigger.

● Since [f(H),H] = 0, the equilibrium distribution is a stationary
solution to the quantum Liouville equation. As in the classical case,
there is no approach to this solution without introducing a decay
mechanism.

● Some equilibrium considerations: 2LS in polarizable media;
symmetry breaking, lineshapes, and Stark spectroscopy.

● Redfield theory: weak coupling, and slow relaxation (NMR).
Projection operator formalism (see Lausanne4.pdf).

● Mixed classical–quantum theories. Strong coupling. Formalities and
direct simulation.

Systems:

(1) 2LS in a cavity in a polarizable medium.

(2) 2LS coupled to (quantum, classical, damped, fluctuating)
oscillator(s).
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Some systems need to be described quantum mechanically:

● Proton transfer reactions, (even at high temperatures),
high frequency vibrations, spin

● Changes in electronic density of the molecule, including
electron transfer reactions.

Some things are very hard or impossible to describe quantum
mechanically:

● Solvents and proteins that constitute the environment of
the quantum system.

● Gravitational fields

Major Problem:

● The quantum backreaction

A. Anderson, Quantum backreaction on “classical” variables, Phys. Rev.
Lett., 74, (1995), 621–625
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Many systems can be solved or simulated directly:

● Action of a Stark field on a molecule

● Interaction of molecules with electromagnetic fields
(NMR, optical spectroscopy)

Some systems need a backreaction:

● Reaction field in polarizable media

● QM–MM methods.
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Attempt along the lines of the classical methods:

● Motion of the quantum system

∂ρ

∂t
= −2πi[H0, ρ] + 2πi ~E · [~̂µ, ρ] (20)

● Motion of the classical system (modelled as a damped
Harmonic Oscillator):

d2 ~E

dt2
= −ω2

s
~E − ζ

d ~E

dt
+A

〈

~̂µ
〉

(21)

● Coupling: the bath feels the expectation value of the
dipole operator

〈

~̂µ
〉

= Tr[~̂µρ] (22)
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● The oscillator position (x in the picture) does not decay
to zero.

● The coherences (the real part of ρ01 is depicted as ρ′1)
does not decay to zero.

● The population does not decay to the ground state.

Thus: this problem is completely unlike the classical
equivalent where

● The system oscillator decays to average position x = 0.

● The bath oscillator decays to average position x = 0.

● The system oscillator satisfies a generalized Langevin
equation.
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● This is what people do in QM–MM methods (and worse)

● Almost, if not all, work on so–called non–linear
Schrödinger equations suffers from the same problem.

● The equation is non–linear, and solutions are sensitive
to initial conditions (rather irrelevant in view of the larger
problems).

● It will never work since Eq. (20) conserves purity.

● Classical systems do not ‘feel’ expectation values, they
perform measurements. Measurement do not preserve
purity.
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1. Solve Eq. (1) formally. Give expressions for the average position and
deviations from it, and shows that the fluctuation dissipation theorem
gives the correct equilibrium value for

〈

x2
〉

.

2. Do some simulations with the program langevin.c. You need to have
a c compiler (or c++) with the gsl library installed. Otherwise, write a
similar program in your prefered programming language.

3. Derive Eqs. (5)–(8). Show that both oscillators go to thermal
equilibrium, with the correct equilibrium positions, and widths.

4. Show that it is impossible to find a quantum state corresponding to
the density matrix in Eq. (9).

5. Show that Eq. (12) is indeed the propagator for the unperturbed 2LS.

6. Calculate 〈〈A | A〉〉 and |A〉〉 〈〈A | for A in Eqs. (10) and (11)

7. Write the Hamiltonian and the dipole operators as a vector in
Liouville space (cf. Eqs. (10) and (11)).

8. Perform the diagonalization of Eq. (14), find explicit expressions for
the eigenvalues, and eigenfunctions (the coefficients c and s).
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9. The following states of a coupled system are called Bell States, the
Bell basis, or EPR pairs.

|β00〉 =
|00〉+ |11〉√

2
|β10〉 =

|00〉 − |11〉√
2

(23)

|β01〉 =
|01〉+ |10〉√

2
|β11〉 =

|01〉 − |10〉√
2

(24)

Prove that these states form an orthonormal basis of the two qubit
Hilbert space.

10. For each of the Bell states, find the reduced density operator for
each of the qubits.

11. Show that the entropy defined for the whole system
S = −kBTTr[ρ ln ρ] does not change in time.

12. Show that the entropy for a reduced subsystem S = −kBTTr[σ lnσ]
does change in time. What are the causes of this change?

13. Why does the second order term in Eq. (18) vanish for isotropic
systems?
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14. Calculate the first term (the absorption spectrum) in Eq. (19) for a
two–level system.

15. Mukamel makes the following remark (Nonlinear Optical
Spectroscopy, p. 135): “The entropy of the universe is time
independent, whereas the entropy of a subsystem is a significant
and useful measure of the amount of missing information about the
system”. Can you agree with that statement?

16. Give the explicit expression of Lint for a 2LS in a time–dependent
electric field.

17. Write down Hamiltonians for the systems on slide 30, for the
appropriate cases.
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