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drop at the point of contact with the supporting surface.”® So,
by taking advantage of the entire profile, the computational
procedure described above yields a much more accurate
measure of the contact angle.

“Present address: Department of Physics, California Institute of Technol-
ogy, Pasadena, CA 91125.
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The well-known discussion on an engine consisting of a ratchet and a pawl in [R. P. Feynman, R.
B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, MA,
1963), Vol. 1, pp. 46.1-46.9] is shown to contain some misguided aspects: Since the engine is
simultaneously in contact with reservoirs at different temperatures, it can never work in a reversible
way. As a consequence, the engine can never achieve the efficiency of a Carnot cycle, not even in
the limit of zero power (infinitely slow motion), in contradiction with the conclusion reached in the
Lectures. © 1996 American Association of Physics Teachers.

L INTRODUCTION

Chapter 46 of The Feynman Lectures on Physics' contains
a celebrated illustration of the impossibility of obtaining
work from thermal fluctuations with an efficiency greater
than that of a Carnot cycle. A careful analysis of a device
that, at first sight, seems to lift a weight using the thermal
energy of a gas, reveals that there exists, in fact, a dissipation
which prevents the failure of the second law of thermody-
namics. The device is nothing but an axle with vanes in one
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of its ends and a ratchet in the other that, in principle, can
move only in one direction (Fig. 1). If the vanes are sur-
rounded by a gas at a given temperature, they will undergo
collisions with the molecules of the gas and oscillate as a
one-dimensional Brownian rotor. However, due to the pres-
ence of the ratchet at the other end of the axle, only fluctua-
tions in one direction, if they are strong enough, could make
the ratchet lift the pawl and advance to the next notch.2
Feynman carried out an analysis of such an engine proving
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Fig. 1. The ratchet and pawl machine (from Ref. 1).

that, in order to obtain work out of thermal fluctuations, the
vanes must be within a thermal bath at a temperature T,
higher than the temperature T, of the ratchet. Moreover, he
calculated, under some simplifying assumptions, the effi-
ciency of the engine and found it equal to that of a Carnot
cycle. This example and the corresponding analysis, besides
its pedagogical interest, is cited as proof of the impossibility
of an automatic device acting as a Maxwell demon® and has
been also inspiration of a currently very active research field
on transport induced by Brownian motion in asymmetric
potentials.4

We point out in this paper a misconception of Feynman’s
analysis which, from our point of view, diminishes its peda-
gogical virtues. Feynman’s analysis focuses on an ideal situ-
ation in which the device is supposed to work in a reversible
way, so Carnot efficiency is reached. This ideal situation
corresponds to the limit of very slow motion of the engine,
i.e., to a quasistatic process. We claim that such a quasistatic
process is not reversible. The reason is that, in the ratchet
engine of Fig. 1, the system is in contact simuitaneously with
the two thermal baths at different temperatures. Conse-
quently, it cannot be in thermal equilibrium and an irrevers-
ible heat transfer unavoidably occurs.

It should be emphasized that we do not refer to a heat
transfer through the materials of the elements of the ratchet
engine. These materials can be considered perfect isolators.
In Feynman’s discussion the vanes and the ratchet are me-
chanically linked, but are thermally isolated. This would be a
pertinent pedagogical idealization. However, in this paper we
show that the mechanical link between the vanes and the
ratchet necessarily implies that the thermal baths are not
thermally isolated. There is an essential incompatibility be-
tween mechanical coupling and thermal isolation because the
mechanical coupling induces, via fluctuations, a heat transfer
between the thermal baths.

Notice the difference between the Carnot and the ratchet
engine. In a Carnot cycle the heat transfer can ideally occur
in a reversible way because the engine is never simulta-
neously in contact with the two thermal baths. The steps
where the heat transfer takes place, the isothermal expansion
and compression, can be considered approximately revers-
ible if they are slow enough or, more precisely, much slower
than the relaxation to equilibrium of the gas in the engine.
For the ratchet this is not the case. The system is simulta-
neously in contact with the two thermal baths, so the heat
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transfer cannot be performed reversibly, not even in the qua-
sistatic limit. There are no two time scales, as in the Carnot
cycle, to compare.

The paper is organized as follows. In Sec. II we briefly
review Feynman’s analysis and in Sec. III we discuss our
criticism in detail. We first recall that Camnot efficiency is
equivalent to zero entropy production and then we analyze
the stationary regime that Feynman assumes to be reversible,
arguing its intrinsic irreversibility on the grounds of general
principles from statistical mechanics. Finally, we present our
conclusions in Sec. IV,

II. SKETCH OF FEYNMAN’S ANALYSIS

Consider first the setup of Fig. 1 without any weight.
Feynman convincingly argues that the engine cannot work if
the vanes and the ratchet are at the same temperature. Let T
be this temperature and e the energy required to lift the pawl
just above the tooth against the spring that pulls it down. For
low temperatures, the rate at which a fluctuation provides the
vanes with enough energy to move the ratchet to the next
tooth can be approximated by the Arrhenius factor, i.e., is
proportional to e~ </*27, But the paw] itself is also embedded
in a thermal bath at temperature T, so it can be lifted by
fluctuations from this bath and, moreover, these backward
jumps occur at the same rate. Therefore, if both baths are at
the same temperature, no systematic motion of the ratchet
occurs.

Feynman then supposes different temperatures T, > T, for
the thermal baths, i.e., the pawl to be colder than the vanes.
Now the rates of jumps are no longer equal and this drift can
eventually be used to lift the weight. Indeed, there is a value
of the weight L, such that both rates are equal and the ratchet
does not undergo any systematic motion. Assuming again
that the rates are proportional to the Arrhenius factor with the
same proportionality constant, this value L is easily calcu-
lated.

If L 8 is the potential energy’ the weight L gains when the
ratchet performs a forward jump (forward direction being the
expected direction of motion of the ratchet), then e+L 6 is
the energy needed for such a forward jump. This energy is
mainly obtained from the vanes, so the rate of forward jumps
is proportional to e+ 93Tt For a backward jump the
energy required is € and Feynman assumes that this energy is
taken from the ratchet bath, so the corresponding rate is pro-
portional to e~ ¢ ksT2, There is a weight L, for which both
rates are equal:

LO 6+e€ T]
€ T2 ’

Let us now turn to the evaluation of the energy transfer
between the baths and the ratchet and vanes. We have seen
that in a forward jump the system takes an energy e+L 6
from bath 1. After the jump, an energy e has been dissipated.
Feynman assumes that this energy is entirely dissipated to
bath 2. In a backward jump, the energy e is taken from bath
2 and after the jump an energy e+L 6 has been dissipated.
The further assumption is that this energy is dissipated to
bath 1. Table I, which is a partial reproduction of Table 46-1
in Ref. 1 summarizes the energy transfer for both types of
jump.

If L is now chosen to be smaller but close to L, then the
wheel will move forward very slowly, lifting the weight.
With the above assumptions on the energy transfer, it is not

0))
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Table I. Summary of operation of ratchet and pawl (from Ref. 1).

Forward: needs energy €+L 6  from vane. Rate=(1/7)e
takes from vane LO+e
does work Le
gives to ratchet €
Backward: needs energy € from pawl. Rate = (1/7)e~ /%872
takes from ratchet
releases work Lé same as above with sign reversed

gives to vane Lo+e

difficult to calculate the efficiency of the engine. If the
ratchet performs N, forward jumps and N_ backward
jumps, the total work done is (N, —N_)L # and the amount
of heat taken from bath 1 is (N, —N_)(L 6+ €). Therefore,
the efficiency is

Lo o
T~ Lot+e

and, in the limit L—L, (or zero power), the efficiency con-
verges to that of a Carnot cycle [see Eq. (1)]:

Ut b €

III. THE CRITICISM

Camot efficiency is reached when an engine works be-
tween two baths at different temperatures 7 >T, in a revers-
ible way. If in a given period of time the engine takes an
amount of heat Q, from bath 1, releases @, to bath 2, and
performs work W=0,—Q,, ending in its initial state, the
only entropy variations in the universe are those of the ther-
mal baths: bath 1 decreases its entropy by Q,/T and bath 2
increases its by Q,/T,. Reversibility implies that the entropy
must remain constant. Then,

AS T, T 0 4
and Carnot efficiency W/Q = 7, immediately follows. Any
irreversibility, i.e., any finite entropy production AS>0, will
reduce the efficiency of the engine.

Therefore, Feynman’s calculation implies that the ratchet
engine works in a reversible way, i.c., AS=0, when L is
infinitely close to L. A look at Table I gives us the expla-
nation of such reversibility. The energy transfer between the
engine and the baths in a forward jump is exactly the same as
in the backward jump reversing the signs. Consequently, if a
forward jump is followed by a backward one, the net flow of
energy is zero. No heat is taken from bath 1, released to bath
2, no work is done on or by the weight. When L =L, the rate
of jumps is the same in each direction, thus the situation is
completely reversible.

However, as stressed in Sec. I, the ratchet is a system
subject to nonequilibrium constraints: different parts are si-
multaneously in contact with thermal baths at different tem-
peratures. Consequently, the system can never be in thermal
equilibrium. The nonequilibrium nature of the state of a sys-
tem which is in contact with two thermal baths at different
temperatures shows up by means of an irreversible heat con-
duction. On the other hand, notice that, if Table I were cor-
rect, in the stationary regime L =L, the two baths at different
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~(LO+€)/kgT,

temperatures do not exchange energy. In other words, the
thermal conductivity of the engine—vanes, axle, ratchet, and
pawl—would be identically zero. As it will be clear below,
here we do not refer to a heat conduction through the mate-
rials of the elements of the ratchet engine but through the
very degree of freedom that allows the engine to work.

It is not an easy task to estimate the thermal conductivity
of the ratchet engine. In the Appendix we calculate the con-
ductivity of simpler but related systems, as a rigid or flexible
axle with vanes at both ends. We use a Langevin approach to
deal with these examples. In this approach one can see that
the energy transfer between a system and a bath consists of
two terms: one due to fluctuations (flow from the bath to the
system) and the other due to dissipation (flow from the sys-
tem to the bath). These two terms cancel each other if the
state of the system is the Gibbsian equilibrium state
e H/ksT However, if a single system is coupled to two ther-
mal baths at different temperatures, its state is no longer
e H%8T (which T would we write?) and deviations from
equilibrium imply that fluctuation—dissipation balance no
longer holds. A net energy flow from the hotter bath to the
system and from this to the colder bath occurs. This energy
flow is in the form of incoherent fluctuating motion of the
mechanical link between both thermal baths, i.e., in the form
of heat. It should be emphasized that heat can be transferred
through a single degree of freedom. In the Appendix we
consider two simple systems and show that they act, as
should be expected, as heat conductors, having a nonzero
thermal conductivity.

For the ratchet engine, we conclude that the stationary
regime, L =L, is an irreversible situation: No work is done
but nevertheless a flow of heat goes from the hotter to the
colder bath through the mechanical link between both baths.
If k is the conductivity of the engine in this stationary re-
gime, then heat flows from the hot to the cold bath at a rate
Q=k(T,—T,) and entropy is produced at a rate AS
=Q(1/T,—1/T,). This nonzero production of entropy pre-
vents the system from possessing the Carnot effeciency. In
fact, in the quasistatic limit, L=L, the efficiency of the
engine

_w .
"o ©)

obviously vanishes, for W goes to zero whereas Q; remains
finite. Notice that in this respect the ratchet engine also dif-
fers from many of the irreversible engines considered by the
finite time thermodynamics® which achieve Carnot efficiency
at zero power but smaller efficiencies at finite power (cf. the
celebrated Curzon—Ahlborn formula for the efficiency of an
engine working at maximum power.)’

Let us go back to Table I in order to find out which are the
least convincing estimates that it contains. We find the last
entry in Table I extremely doubtful. One could conceive of
limiting situations agreeing with the rest of the entries in the
Table I: The Arrhenius factor is a good approximation for
low enough temperatures®® and, if T, is much larger than T,
the energy e+L @ for a forward jump will be mostly taken
from the vanes and the excess € mostly dissipated to the
ratchet. But why is there no dissipation to the ratchet bath in
a backward jump? In the first page of the chapter it is said:
*“... an essential part of the irreversibility of our wheel is a
damping or deadening mechanism which stops the bouncing
[of the pawl]”” (here ‘irreversibility’’ stands for the asym-
metric behavior of the ratchet and it has nothing to do with

J. M. R. Parrondo and P. Espanol 1127



thermodynamical irreversibility). This damping mechanism
could take place in the collisions between the ratchet and the
pawl and/or because both are embedded in a gas. In any case,
when the pawl is going down in a backward jump, undergo-
ing both the force of its spring and the force of the hanging
weight, a damping occurs in the ratchet-and-pawl end of the
axle as well as in the vanes end; even the damping will be
greater in the former if we consider situations where the
vanes are much hotter than the ratchet, T,>T,.

The last entry of Table I should be replaced in the follow-
ing way: In a backward jump a part of the excess of energy,
say (L 6+ ¢) with 0<y<1, is dissipated to the vane and the
rest, (1—y)(L 6+e¢) is dissipated to the ratchet. Then, in the
stationary regime, the flow of heat is

Q=N,(1-y)(LO+e)=N,(1-7)e 5, (6)
2

where N . is the number of forward jumps per unit of time.

There is another important objection that could be made to
Feynman’s analysis. The assumption that the constant 1/7 in
front of the Arrhenius factor is the same for the two thermal
baths is not completely justified. These constants, say 1/7
and 1/7,, depend on the detailed structure of each bath and it
is possible to conceive of situations where they are different.
Nevertheless, if the entries in Table I were correct, one could
obtain efficiencies bigger than 7, in the case 1/7>1/7,.
Since there is no indication of how Table I should be modi-
fied in order to deal with this case, Feynman’s analysis is a
rather incomplete proof of the compatibility of the ratchet
engine and the second law.

The answer to this objection lies again in the above modi-
fication of Table 1. The relationship between 7y, 1/7;, and 1/7,
should yield an efficiency compatible with the second law.
This relationship is however hard to find and depends on
details of the baths and the coupling between the system and
the baths.

IV. CONCLUSIONS

To conclude, let us stress that our criticism is not only
focused on quantitative aspects of Feynman’s analysis but it
reveals that it is in contradiction with two fundamental facts
from thermodynamics and statistical mechanics: (1) Carnot
efficiency follows from a zero entropy production, as ex-
plained in Sec. II; and (2) a system simultaneously coupled
to two thermal baths at different temperatures cannot be in
thermal equilibrium and therefore it cannot undergo a revers-
ible process.

The above deviation from equilibrium, as indicated by the
examples worked out in the Appendix, implies a continuous
transfer of heat from the hotter bath to the colder one, i.c., a
nonzero thermal conductivity and consequently a production
of entropy. This thermal conductivity is missing in Table I.

The misconception in Feynman’s analysis is specially rel-
evant from a pedagogical point of view, for it does not con-
tribute to clarifying under which conditions a process is ther-
modynamically reversible and mixes up the concept of
reversible process and quasistatic process. Reversibility nec-
essarily implies that the system is in equilibrium at every
time during the process. A quasistatic process is usually a
reversible one because the constraints of the system are
moved much more slowly than the relaxation of the system
to equilibrium, so it can be considered in equilibrium with its
constraints at every time. This is the case in a Carnot cycle.
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Fig. 2. The axle with two vanes.

However, if the constraints themselves are of a nonequilib-
rium nature, as, for instance, those of a gas in a box with
each side at a different temperature or pressure, a quasistatic
process is not a reversible one. In fact, even when the con-
straints do not change in time, the system is not at equilib-
rium, as happens in the ratchet engine.
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APPENDIX: THERMAL CONDUCTIVITY OF
SIMPLE MODELS

In this Appendix we calculate the thermal conductivity of
two simple models related to the ratchet engine. Both consist
of a system coupled to two thermal baths at different tem-
peratures.

1. One degree of freedom

Consider an axle with vanes at both ends. Each end is
embedded in a thermal bath at temperatures T, and T, re-
spectively (see Fig. 2). The angle of the axle, x, performs a
Brownian motion due to fluctuations induced by the baths.
We will obtain the equation of motion for x and from this
equation the energy transfer between the two baths.

Recall that the position of a Brownian particle at tempera-
ture 7 in a potential V(x) is well described by the Langevin
equation

mi=—V'(x)—Ni+&(1), (A1)

where \ is the friction coefficient and &(f) is a Gaussian
white noise with zero average and temporal correlation:

(E(E(t"))=2NkgT 8(t—1"), (A2)

where kg is the Boltzmann constant. The Fokker—Planck
equation for the probability density p(x,p;t) of the position
x and the momentum p=mx corresponding to the Langevin
Eq. (Al) reads!”

J. M. R. Parrondo and P. Espanol 1128



a( A )
“m 3 V(x)+ J4

(92

d f=
ot P(xaP, -

+MkgT —=|p(x,p;t). (A3)

The stationary solution of (A3) is precisely the thermal equi-
librium Gibbs state

(A4)

1 1 [p?
(st) [ Pl
(x.p)= exp[ 0T +V(x)H
Using the Fokker—Planck equation (A3), one can derive the
following evolution equation for the average energy of the
particle:

o Zaven)= 2 - 2]

dt m

The second term of the r.h.s. is the energy dissipated by the
particle (per unit of time) into the bath, whereas the first one
is the energy the system takes from the bath due to fluctua-
tions. They, of course, cancel each other at thermal equilib-
r1um as can be easily seen from the equipartition theorem:
(P )/m=kgT.

Let us consider now the system of Fig. 2. The Langevin
equation for the angle x is (for ¢ large enough'!)

mx=—A\x+&(t)—Ax+&(2),

(A5)

(A6)

where we have assumed the friction coefficient to be equal
for the two baths. Now the white Gaussian noises are char-
acterized by the following temporal correlations:

(EdD)€;(¢"))=28;MkpT;8(t—t") i,j=1.2. (A7)

The stationary solution corresponding to (A6) still can be
easily found: It is the equilibrium Gibbs state at temperature
To=(T1+T5,)/2.

The evolution equation for the average energy of the sys-
tem now reads

d [p>\ A ¢

dt \2m| m
and, by analogy with Eq. (A5) and the interpretation follow-
ing it, we can identify

<p2>}

Lt kgT,— %2)] (A8)

T__
B+ 1 m

+_
m

A
o | kBTim —— (A9)

as the energy flow from bath i to the system. In the stationary
regime the whole r.h.s. of (A8) is zero but not each term Q,
separately, indicating that there is a continuous flow of heat
from one bath to the other. Assuming T,>T,, heat flows
from bath 1 to bath 2 at a rate

. . A Akp

0= Qz—m [kpT —kpTer]= m (T;—T2) (A10)
as it can be immediately derived by computing {(p®) with the
Gibbs ensemble at temperature T .. Therefore, we see that
there is a heat transfer obeying a Fourier law and that the
thermal conductivity of the axle is Akg/(2m).

The heat transfer takes place because the dispersion of p
no longer satisfies the equipartition theorem. The system
reaches a stationary state which does not correspond to ther-
mal equilibrium. In this particular case, this state has the
form of a Gibbs state with an effective temperature but, in
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general, the form of the stationary probability distribution
could be completely different, as in our next example.

2. Two degrees of freedom. Linear case

Let us assume now that the axle of the previous example is
not rigid but it has a finite torsion coefficient x. The system
now must be described by two degrees of freedom x,,x,
corresponding to the angle of the vanes at each end of the
axle, respectively. The equations of motion are now

k(xy—x2)+ &1(2),

mx,=—Nxy+ k(x;—x2)+ &(1),

(Al1a)
(Al1b)

and the noise correlations are again given by (A7). Note that
the same equations apply for a dumbell with each mass im-
mersed in a thermal bath at a different temperature.

The evolution equation for the average energy of the sys-
tem reads

m)'c'1= —)\xl—

i ﬁ ﬂg_ K(xl_x2)2
dt \2m 2m 2
A () (p3
=— kBTl_T kBTZ"_m— , (A12)

and, as in the previous example, we can identify the first
term on the r.h.s. as the energy transfer rate Q; from bath 1
to the system, whereas the second one is the heat transfer rate
Q, from bath 2. Again, in the stationary regime the whole
r.hs. is zero, Q1= —Q,, but not each term separately, indi-
cating that there is a continuous flow of heat from one bath
to the other.

The calculation of (p?) and (p3) in the stationary regime is
now more involved. We present the main steps of the calcu-
lation. Let r=x,—x,. From the Langevin equations (A11) or
its corresponding Fokker—Planck equations, one can get the
following evolution equations:

d
m —(r")=2(r(p1~p2)), (A13a)
ar <P1>_ - <P1> 21{p1r)+2NkpTy, (A13b)
d ., 2\,
ar (p2)=-— m (p2)+2K(pyr) +2N\kpT,, (A13c)

2\

1 (P2 === (pp2) + (r(p1=p2)),  (A13d)

d
m 2 (r(p1+p2))=(PD) = (p2) = Mr(p1+p2))-

(A13e)

In the stationary regime the above time derivatives are zero.
One thus obtains

(PD+(p)= ka(Tl +T5), (Al4a)

(pD)— (P2>_ 1+ T\—T,), (A14b)

where a= Km/)\?'. The second moment of the momentum

(2+ a)T 1+ aT,] (A15)

<P1> 2(1+ )[
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is again mkp times a weighted average of the two tempera-
tures. If a=0, this average is T, that is, x; and x, do not
interact and each one is in equilibrium with its corresponding
bath. On the other hand, for @—o we recover the result
obtained above for the rigid axle.

Finally, the heat flow reads

Ak B&
2m(1+a)
i.e., we obtain again the Fourier law with a positive conduc-
tivity Akga/[2m(1+ a)]. Notice that the stationary state
cannot be written as proportional to e~ #/*sTetr for some ef-

fective temperature, since, for instance, r and p; are corre-
lated if Tl # TZ .

0,=—0,= (T,—T>), (A16)
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YA rigorous derivation of this equation shows that a term depending on
initial conditions is present (Ref. 9). This term is important as far as
transient behavior is concerned and, in particular, the relaxation of a sys-
tem coupled to a single bath at temperature T.=(T,+T,)/2 is different
from that of a system coupled to two baths at temperatures T, ,T, . We will
use Eq. (A6) in order to compute steady state properties only and therefore
we can safely neglect this initial condition term.
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The effect of rolling friction on the motion of a ball rolling on a uniformly spinning horizontal
turntable is evaluated by a first-order perturbation approach, in which the unperturbed trajectories
are the circular gyrations of the rolling ball in the absence of rolling friction. The analysis provides
qualitative and quantitative understanding of the effect of rolling friction by itself and in

combination with other ‘‘perturbations,”” such as a tilt of the turntable.

Association of Physics Teachers.

I. INTRODUCTION

The surprisingly interesting problem of a ball rolling on a
uniformly rotating surface (a turntable) has a long history
that has been traced by Robert H. Romer.! Analytical results
for horizontal and tilted turntables without rolhng fnctlon
have been given in this ]ournal by Weltner,’ Burns,” and
Gersten, Soodak, and Tiersten,* and for a horizontal turntable
with a nonstandard rolling friction model, by Sokirko, ez al’®
Weltner® derives the effect of rolling friction on special types
of trajectories, which he uses to measure coefficients of roll-
ing friction. He presents photographs of actual trajectories.
Photographs of a number of trajectories on tilted and para-
bolically shaped turntables have been given by Ehrlich and
Tuszynsk1
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In this paper, we present a first-order perturbation analysis
that takes as the unperturbed motion the circular gyration of
constant frequency and radius around a fixed center of a ball
rolling on a uniformly rotating horizontal turntable without
rolling friction, which we call a simple turntable. When
““perturbed”’ by the action of a rolling friction torque, or by
an external force due to a tilt or curvature of the turntable, or
by a combination of these or other effects, the trajectories are
described as gyrations of possibly shifted frequency and pos-
sibly varying radius around a possibly drifting guiding cen-
ter. The perturbation strategy is used to obtain some new and
some already known results for the effect of rolling friction,
for any dependence of the rolling friction coefficient x, on
the spin rate o of the ball, and for the standard model of
rolling friction, in which u, is independent of w. The stan-
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