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Abstract

A four-level atom is used to model recently proposed quantum systems that have challenged the fundamental

principles of thermodynamics. The simplicity of our system should help evaluate those challenges.
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1. Introduction

In the last few years examples have been
provided in which quantum coherence has been
translated into work. This applies in varying
degrees to Refs. [1–7]. In this article, we simplify
such exploitation so as to focus on its essential
features.

The motive for simplicity is clear. Historically,
apparent contradictions to the second law were
often hidden behind technicalities. In our attempts
to understand the schemes referred to above, we
found that they involved techniques of condensed
matter physics, statistical mechanics, quantum
optics and more. Some of these techniques carry
e front matter r 2005 Elsevier B.V. All rights reserve
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with them approximations, so that an exhaustive
check requires considerable expertise. Neverthe-
less, even our simple example has subtleties that
truly come with the territory: in particular, the
work/heat distinction.

We first present a degenerate two-state system in
contact with a single heat bath and evaluate both
the work available from coherence and the cost of
purifying to recover coherence. Next we consider a
two-level system which has a radiative transition
between these levels and which is in contact with a
single heat bath. We then suppose that a single
object is described by a Hilbert space that is the
product of those of the two foregoing systems.
This object is led through a Carnot cycle, like that
in Ref. [1], in which it radiates but is restored to its
original state. Despite being in contact with a
single heat bath, the system seems to perform net
d.
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positive work. A feature of our example is that for
the purpose of getting work, what replaces the low
temperature reservoir is information. The efficiency
of our cycle is less than unity. Nevertheless, it at
first appears that the net change in entropy of the
universe is negative. We discuss where a missed
entropy contribution enters. Finally, in an appen-
dix we show that obtaining work from informa-
tion is already (in a well-known way) present in
classical thermodynamics.
2. Two-state system

Let A and B be degenerate quantum states of
a system, to be called an ‘‘atom’’. They form
symmetric and antisymmetric combinations,
P and M:

jPi ¼
1ffiffiffi
2

p ½jAi þ jBi� ð‘‘ plus’’ Þ,

jMi ¼
1ffiffiffi
2

p ½jAi � jBi� ð‘‘ minus’’ Þ. ð1Þ

There is a heat bath or reservoir, R, at temperature
T that can be brought into contact with them.
Take units with Boltzmann’s constant, kB, unity
and define b � 1=T . R allows transitions between
the states. We ignore the in-principle level-splitting
due to this coupling, assuming it to be much
smaller than the energy level changes now to be
considered. We do not attempt to model R [8].
Thus, in the absence of other influences, the energy
of all the four states (A;B;P;M) is the same. We
take this energy to be zero.

An external object, to be called a ‘‘magnet,’’
will be assumed to couple to the atom when it is
in M, but not when it is in P. Its role is that
of a piston. We do not flesh out our model to the
point where it involves bona fide magnetic fields.
This fictive magnet can be brought to various
distances from the atom. When it is far away, the
coupling energy to M is zero; as it gets closer we
assume the coupling energy increases without
limit. With distance measured by ‘‘rM ,’’ there is
some function EMðrMÞ, with EM ð1Þ ¼ 0 and
EM ð0Þ ¼ 1. The actual rM -dependence is unim-
portant.
Assume that initially the atom is in P, and not
connected to R. Since M is unoccupied it costs
nothing to bring the magnet close. Quantum coher-
ence matters, since it is only because of the phase
relation between A and B that the magnet can
approach with no change in energy and thus no
force.

Now couple to the heat bath. For rM ever so
slightly positive, EMo1, and the state M is
occupied with non-zero probability. There is there-
fore a force pushing on the magnet, since moving the
magnet farther away decreases its coupling energy.
Energy flows, to and from R, will be analyzed, but
the overall picture is that in the course of the process
the system is doing work on the magnet, only
possible by virtue of its initial coherence.

We will calculate the work available due to this
coherence. But we also calculate the work needed
to recreate the initial coherent state. There will be
no free lunch. Coherence is converted to work with
the help of R; nevertheless, producing coherence
costs the same amount of work.
3. Extracting work in the two-state system

Work is extracted from coherence with the
following two-step process:

1. Withdraw magnet; heat bath uncoupled

Let the magnet be at rM such that EMðrMÞ ¼ E.
Then M is occupied with a probability

PM ¼ y=Z with y � e�bE and Z � 1 þ y. (2)

The expected internal energy U of the system is

U ¼ hInternal Energyi ¼ yE=Z. (3)

Moving the magnet farther changes EM to
E � dE. Due to the coupling, the magnet can be
thought of as being in a field of potential energy.
The field, and hence the system, has done work on
the magnet in the amount

dW ¼ PM dE ¼ y dE=Z. (4)

2. Couple to heat bath; keep magnet fixed

With the energy lowered in step 1, level
occupations are distorted. Coupling to R restores
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them to their proper values, as given in Eq. (2),
with E ! E � dE. This restoration requires heat
flow in the amount

dU ¼ d
yE

Z
¼

y dE

ð1 þ yÞ2
½1 þ y � Eb�. (5)

Perform these two steps many times, until
rM ! 1 and the magnetic coupling energy is zero
(and the system is equal parts P and M). The total
work performed by the system is

W ¼

Z
PM dE ¼

Z
y

1 þ y
dE

¼

Z
y

1 þ y

�1

b

� �
dy

y
¼

1

b
log 2, ð6Þ

where the limits on the range of E correspond to
0pyp1. The total heat transfer can be calculated
by integrating Eq. (5), or, more simply, directly
from Eq. (3). By Eq. (3), U is zero both for infinite
and zero energy. This implies that although energy
passes in both directions, the net heat transfer is
zero. [Eq. (5) implies that at early stages heat goes
from R to the system, and later, when the change
in occupancy is less important than the change in
energy, it goes back to R.]

Two conclusions follow: (1) Work in the
amount T log 2 is extracted, based on coherence.
(2) Although the heat bath is essential for the
coupling and for intermediate energy bookkeep-
ing, there is no net heat transfer.

To complete a Carnot cycle we must restore the
system to its initial state, P. We do not know a
better way to do this than the process just
described, run backwards. No profit. No loss.
No contradictions.
4. Two-state system with radiation

Consider a different system. It will later be
combined with that of Sections 2 and 3. This
system, also to be called an atom, has two states,
U (up) and D (down). It is in contact with a
different heat bath, R0, also at temperature T, and
can radiate, emitting a photon and dropping from
U to D. Let D have energy 0 and U have energy �.
The occupations of upper and lower states are
respectively x=ð1 þ xÞ and 1=ð1 þ xÞ, with
x � expð�b�Þ. When a photon is emitted by this
atom, is its energy to be considered heat or work?

The work/heat distinction is one of the pro-
found issues of thermodynamics; without it there
is no Second Law. In a previous publication we
have studied the definition of macroscopic that is
implicit in this distinction [9], but for now it is not
necessary to probe so deeply. We adopt the
standard perspective that work is energy without
entropy. This means that the energy is stored in
one or a small number of degrees of freedom. One
can also think of work as energy at infinite
temperature. In the well-known example of a
three-level maser acting as a heat engine [10], the
authors only ascribe work to the radiated photon
when it is emitted coherently, with the system
functioning as a maser. Another situation where a
photon’s energy is work is when it goes off into the
vacuum with no chance of return, and no
possibility that other photons enter via the channel
by which this one left. This ‘‘vacuum’’ acts as a
zero-temperature reservoir. If you are in contact
with a zero-temperature reservoir then your heat
can be considered work, since the Carnot efficiency
is unity.

Scully’s one-temperature work source [1] has a
further subtlety. The maser cavity that accepts
radiation acts as a one-way channel because only
excited atoms are exposed to the cavity. If
unexcited atoms were to enter the cavity, they
could absorb energy, and Scully’s scheme would
fail. Thus, the fact that these photons provide
work arises from information that you have about
the beam entering the cavity. The one-way passage
of energy to the cavity does not arise because the
cavity has zero temperature (its temperature is
essentially irrelevant), but because of what we
know about the system state. This sorting of states
is accomplished by what one might call a
Stern–Gerlach–Maxwell demon [1]. (Regarding
measurement, see Ref. [11].)
5. Four-state system

We combine the systems so far studied into a
two degree of freedom atom. The full state is
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specified by pairs of labels; one is for U vs. D,
the other for A vs. B (or P vs. M). The A/B/P/
M coordinate will be called ‘‘r’’ and the
U/D coordinate ‘‘q.’’ The r coordinate will be
used to sort for the q state, very much as the
position is used in Ref. [1]. R and R0 are both heat
baths at temperature T, but affect q and r in
different ways.

Initially r is in P and the system is in contact
with R0. See Fig. 1. This heat bath does not
facilitate A2B (or P2M) transitions. The
radiation channel (to the external world) is not
open and the four possible states have the
following probabilities:

PrðjPUiÞ ¼
x

1 þ x
; PrðjPDiÞ ¼

1

1 þ x
,

PrðjMUiÞ ¼ 0; PrðjMDiÞ ¼ 0. ð7Þ

Next, contact with R0 is broken and the system
is sorted according to q as follows. An operator
that exchanges jPUi and jMUi, while leaving the
other two states unchanged, is unitary. Call this
operator S and assume that it possesses a physical
realization [12]. Since jMUi was unoccupied,
the exchange gives jMUi probability x=ð1 þ xÞ.
Following Ref. [1], we assume that the P/M
distinction determines whether, the atom passes
through a cavity, a cavity in which U-state atoms
always radiate (inducing excitation in the radia-
tion field). The cavity, in which D-state atoms
could actually absorb radiation, thus acts as a
S

Fig. 1. A full cycle, from jPDi to jPDi. Heat is supplied by the

reservoir R0, and raises a fraction of the atoms to the U state.

The device S distinguishes between U and D states, and in

particular changes the state jPUi to jMUi and sends those

atoms into the cavity. Work is extracted from them, and when

they exit the cavity they are in the state jMDi. Work is then

supplied in the ‘‘R and Magnet’’ stage for purification, but no

net heat is transferred. R and R0 are at the same temperature, T.

Although it is convenient to use the terminology, ‘‘these atoms

go here, those go there,’’ the discussion actually applies to the

density matrix of a single atom.
one-way channel by virtue of the selection of
what enters it, despite its not being at zero
temperature. The work extracted in this way is
W ¼ �x=ð1 þ xÞ. After passage through the cavity
(and excitation of the cavity state, no photon
emission, so far) the atom’s wave function is a
superposition of jPDi and jMDi. However, do not
forget that it is now entangled with the electro-
magnetic field of the cavity, so it would be more
accurate to write these states as jPD; ni and
jMD; n þ 1i where n is the initial number of
photons in the cavity.

As above, this is not a Carnot cycle until we
have restored the initial condition. This can be
done by the procedure of Section 3. We assume the
magnet implements a measurement, presumably
because we notice whether or not a force is
being exerted on it [13]. After purification by R

and the magnet, the system is no longer entangled
with the cavity and is entirely in the state jPDi,
and could be reconnected to the heat bath for
another cycle.
5.1. Net work

Since the work needed to purify is ð1=bÞ log 2,
and this is applied with probability x=ð1 þ xÞ, the
net work is

W net ¼
�x

1 þ x
�

1

b
x

1 þ x
log 2

¼ �
1

b
x

1 þ x
log x þ log 2ð Þ ð8Þ

(using x ¼ expð�b�Þ). This quantity can take
both signs, and is maximal (and positive) for
xmax � 0:1572 [so that Emax ¼ ð�1=bÞ log xmax

� ð1=bÞ1:8503]. The maximal net work is easily
seen to be W net ¼ ð1=bÞxmax.
5.2. Efficiency

The efficiency of this system is less than
unity. The ‘‘work out’’ comes from photons, while
‘‘work in’’ is required for the purification
process. Efficiency is given by net work, divided
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by heat, namely

Z ¼
W net

heat in
¼

�
1

b
x

1 þ x
logð2xÞ

�
1

b
x

1 þ x
logðxÞ

¼ 1 þ
log 2

log x
¼ 1 �

T

�
log 2. ð9Þ

This quantity approaches one for decreasing T and
increasing �, but the profit is small in this limit.
6. Significance—and a turnabout

It appears that we have obtained work from a
system in contact with a single temperature. There
is no need for a low-temperature reservoir, since
the operation of the one-way channel is accom-
plished through the use of information.
6.1. Entropy

By the second law of thermodynamics the total
entropy of the universe should increase or remain
constant. In the course of one cycle our system
returns to its original state (jPDi). Therefore, the
entropy of everything else should increase or
remain constant.

The work created in the cavity equals the energy
lost by R0. Per atom, that heat thus equals the
radiation energy, which is work, and is x�=ð1 þ xÞ.
The reduction of energy in R0 means a decrease of
entropy (of the universe)

ðDSÞdue to heat bath ¼ �
DQ

T
¼ �b�

x

1 þ x
. (10)

The work however could only be done by virtue of
information we had concerning the r-state. (The
‘‘wrong’’-state component of the wave function
must not enter the cavity.) The amount of this
information is log 2, as evidenced by the fact that
purifying the atom to recover the original state
costs T log 2. Since the purification only need be
applied to atoms that decay, for a large collec-
tion of atoms, the per atom entropy cost is
½x=ð1 þ xÞ� log 2.
If this information cost and ðDSÞdue to heat bath are
the only entropy changes, then overall

ðDSÞTotal ¼ �
DQ

T
þ

x

1 þ x
log 2

¼ ½�b�þ log 2�
x

1 þ x
. ð11Þ

Up to a sign and factor of T, this is our previously
calculated W net. Since for appropriate � that was
strictly positive, for those same values ðDSÞTotal

will be strictly negative. This contradicts the Second

Law of Thermodynamics.

6.2. Resolution

Where has an entropy contribution been
missed?

6.2.1. Photons

Consider the entropy of the created photon. We
have called it work, but one can also take the
matter-of-fact perspective that photons in a
thermal distribution have entropy equal to about
3:6kB per photon, irrespective of energy [14].

Even if correct, this does not resolve our
dilemma. The total entropy change can be negative
if � is large enough.

6.2.2. The unitary preparation P2M

It is natural for suspicion to fall on the glibly
implemented unitary transformation, S, that
changed the quantum label P to M if and only if
the q coordinate was in the state U . [See the
discussion following Eq. (7).] In Ref. [1] this
transformation is done by the Stern–Gerlach
apparatus. Our suspicions are aroused because
Eq. (11) balances a term independent of � (the
information term) with one that manifestly does
depend on �. And it is the �-dependent term that is
negative. So to get rid of this it would seem that
manipulations on the atom when it is in the excited
state are the place to look. The purification, after
the cavity, only involves atoms in D. The creation
of the ðPMÞ-U correlation by S however should
involve (in a quantum description) a Hamiltonian
that connects states of order � apart.

Although this is a candidate, and the Hamilto-
nian does connect such states, we do not see why
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that is necessarily reflected in the entropy.
Presumably, a no-entropy assertion should be
accompanied by a working model, but we do not
attempt this, since an entropy source is identified
below.

6.2.3. Purification using a magnet and heat bath

The mischief is in the purification. After the
atom has passed the cavity stage (whether it
interacted with the cavity or not) there is a mixture

consisting of P and M quantum states. Our cost-
of-purification estimate has been log 2½x=ð1 þ xÞ�,
representing the ‘‘log 2’’ cost of changing M to P,
multiplied by the fraction of M states. However,
there is a flaw in this reasoning.

First consider the entropy of this mixture from
an information perspective. There is probability
x=Z of being in the state M [here Z ¼ 1 þ x and
x ¼ expð�b�Þ], and probability 1=Z of being in P.
As in the classical theory this has entropy

Smixing ¼ �
X

p log p

¼ �
1

Z
x log

x

Z
þ log

1

Z

� �
. ð12Þ

Our entropy-decrease problem arises for large �,
corresponding to small x, for which Eq. (12) takes
the form

Smixing ¼ �
1

1 þ x
log x þ logð1 þ xÞ

� � x log x ¼ b� expð�b�Þ. ð13Þ

Comparing this to Eq. (11), this clearly has the
possibility of resolving our dilemma.

The solution lies in R. We calculated the cost of
changing M to P, assuming that bringing the
magnet to the proximity of the atom will gradually
force M states to turn into P’s. But recall from
Section 3 that this can only be accomplished by
repeatedly exposing the system to a heat bath that
mixes A and B (equivalently, M and P) states. But
this will also allow some of the P states to turn
(partially) into M’s. Thus there is either a way to
distinguish these states before purifying, which one
would estimate must cost at least Smixing, or one
must do the process for all atoms, in which case
the x=ð1 þ xÞ multiplying the log 2 in Eq. (11)
must be removed and a full log 2 be added to
the entropy cost. The latter procedure leaves
the total entropy positive for all b� values (a
numerical fact).

6.3. Work reconsidered

The cost of purification, taking into considera-
tion the last argument of Section 6.2.3, must
include the cost either of separation of P and
M post-cavity, or else the cost of purifying all
atoms. Let us evaluate the situation for the latter
approach (we leave the possibility of clever
separation open—it might reduce estimates, but
not change the conclusion). Once the heat bath is
allowed to operate on P states, they will acquire
M components and the expenditure of T log 2 will
be required for the entire collection of atoms. This
will mean that the net work is just proportional
(with an opposite sign) to the entropy, hence, for
the net work, negative.
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Appendix A. Relation to ‘‘ordinary’’

thermodynamics

As emphasized by Brillouin [15], information can
be used to make positive the sum �Q=T þ S,
where the S can be entirely due to information.
This is why there should be no in-principle
objection to the idea that the sorting that takes
place prior to radiation (in Scully’s example [1] as
well as our own) can lead to work, despite the fact
that only one ambient temperature exists.

As a classical example, consider osmotic pres-
sure. Let a container be divided into two parts, on
one side is a mixture of gases A and B, on the
other only A. Both are at the same pressure and
temperature; they are in contact with a heat bath
at fixed temperature (same for both). Suppose the
solid partition is replaced (with neither work nor
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heat transfer) by a semi-permeable membrane that
allows only the passage of B, not A. Then B atoms
will develop an essentially one-way flow (for a
while at least), increasing the pressure on the
formerly A-only side. This pressure can perform
work. The net effect is that heat from the reservoir
is converted to work, with no temperature
differential. The key is information. As the B’s
become more evenly distributed, the entropy of the
system increases. Alternatively, restoring the initial
state would recover lost information, and would
require work.
Appendix B. Another perspective

In the approach of Ref. [16] to non-equilibrium
statistical mechanics, a one-way transition, as
postulated in this article, is problematic. The
context is stochastic dynamics. One works with
transitions between possibly coarse-grained states,
x, each of which has an entropy-weight, represent-
ing (the log of) the number of microstates
associated with x. If Rxy is the transition prob-
ability from y to x, then the stationary distribu-
tion, p0ðxÞ, absent external forces (a closed
system), satisfies detailed balance, Rxyp0ðyÞ ¼

Ryxp0ðxÞ. The intrinsic entropy of x is log p0ðxÞ.
External forces correspond to contact with reser-
voirs and induce processes in which a detailed
balance-like relation holds, but which includes
reservoir entropy. With a reservoir at temperature
T, an energy transfer Q induces a finite entropy
transfer jQ=T j, as usual. The entropy of the
reservoir changes by this amount. Therefore there
can be no one-way transition, 8xy, Rxya03
Ryxa0. For a nearly one-way transition, either the
final entropy is nearly zero or the temperature is
nearly zero. For a conventional reservoir, the
former is not possible and one-way transitions can
only be in the direction of zero temperature (this
could be the vacuum for radiation). The other
possibility is zero entropy, which corresponds to a
work transition.

With this perspective, consider the one-way
transition in the cavity in our process. If we
consider the photon energy to be heat, we must
take the cavity to be at zero temperature.
Alternatively, the cavity state may be considered
to have zero entropy, in that all photons are in a
single microscopic state.
Appendix C. Coherence, entropy and scattering

Much of the discussion of quantum mechanics
and the second law centers around the use of phase
information as a source of work. A recent cal-
culation [17] shows another statistical mechanics/
thermodynamic side of coherence.

Ref. [17] reports a surprising feature of wave
packet evolution that takes place when unequal
mass particles scatter. Start from Gaussian wave
packets, and assume that the spread of the packet
stabilizes. Then a collection of mixed-mass parti-
cles will evolve so that the wave packet spreads; s2

are related to corresponding particle masses, m, by
ms2�const. Moreover, if the wave packet was not
quite Gaussian, the calculation suggests that it will
tend to lose non-Gaussian components. Finally, it
turns out that when ms2�const, and the wave
function is Gaussian, there is no kinematic
entanglement. By this I refer to the fact that after
a scattering, the coordinates of the colliding
particles are intertwined, and even if the collision
has but a single outcome, momentum conservation
alone suggests—but apparently does not require—
entanglement. I will not go into details, but I will
mention a thermodynamic aspect of these results
with emphasis on the role of entropy.

The calculation (in Ref. [17]) goes from pre- to
post-scattering wave functions. Remarkably (and
which has long been known), if one is not close to
a resonance, the wave packet retains its shape,
even if many possible outcomes (e.g., scattering
angles) are possible. In general, after a scattering,
by momentum conservation, one obtains an
entangled wave function, so for the next scattering
of, say, particle #1, one needs to trace out over the
coordinates of #2. Obviously this is a loss of
information—an entropy increase. It follows that
convergence to the ms2�const limit, which is a
limit in which there is no entanglement, represents
a maximization of entropy (von Neumann entro-
py). As such we are seeing a kind of equilibration,
not of energy (well, that too), but of a purely
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quantum mechanical property, the wave function
spread. This is happily consistent with the theme
that coherence is a property meriting a role in
thermodynamics. Note too that the condition
ms2�const is reminiscent of classical equiparti-
tion, and now the connection is seen to be even
closer: both represent entropy maximization. In
Ref. [17] there is the implicit assumption that on
successive scatterings there is no memory of phase
relations; this recalls the Boltzmann Stosszahlan-

satz (molecular chaos assumption).
Checking the conclusions of Ref. [17] experi-

mentally would have implications beyond those
of that article. A positive result would confirm
that wave functions tend toward coherent states
as well as the issue of the stabilization of wave
packet spreads. In Ref. [18] is a discussion of the
experimental measurability of s.
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