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For one open quantum system recently reported to work as a perpetuum mobile of the 
second kind, basic equations providing basis for discussion of physics beyond the system 
activity are rederived in an appreciably simpler manner. The equations become exact in 
one specific scaling limit corresponding to the physical regime where internal processes 
(relaxations) in the system are commensurable or even slower than relaxation processes 
induced by bath. In the high-temperature (i.e. classical) limit, the system ceases to work, 
i.e., validity of the second law is reestablished. 
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I I n t r o d u c t i o n  

The quantum theory of open system [1-3] is perhaps the most important  part 
of the nonequilibrium statistical physics, mainly owing to its impact on as com- 
plicated complex systems as living organisms. Mechanisms of energy, particle etc. 
transfer or transformation revealed by biologists are often connected with a par- 
ticular feature of macromolecular systems - topological instability upon detecting 
presence of a particle, molecular group, excitation etc. on a specialized place called 
usually receptor [4]. In other words, complicated molecular systems adjust very fast 
to the presence of the species to be processed [4]. For, e.g., the particle transfer and 
in terms of the language of physics, this is nothing but a clear manifestation of so 
called dynamical correlations between, e.g., position of the particle and quantum 
statistical state of its surroundings. These dynamical correlations have been until 
recently only little investigated, in particular, in connection with their role in the 
particle transfer. Recently, one specific model of an open quantum system utilizing 
these correlations has been reported to violate the second law of thermodynamics 
[5-7]. The model, as again presented below, is complicated but possible simplifica- 
tions [8] do not seem to amend the situation appreciably. That  is why we shall stick, 
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except for rather minor formal improvements, to its original form. We shall, how- 
ever, present here another and much simpler form of derivation of basic equations. 
The method (equations of motion for quantum operators) is generally known from, 
e.g., the laser physics. It also becomes exact in one scaling limit. This may help in 
convincing general public that  there is really no unjustified trick in the treatment. 

This goal is of particular importance, because possible violation of one of basic 
laws of thermodynamics could appreciably change structure and mutual relations 
among scientific disciplines, as we understand them now. The reader should not 
be, however, surprised by the declared potential violation of one of the pillars of 
thermodynamics. Reports on such violations, in both theory and experiment, now 
become more and more numerous - -  see, e.g., [9-11] and papers cited therein. 
The first violation of the second law in experiment has been reported in 1995 [12] 
and has been so far not questioned. That  is why one should feel sceptical but still 
open-minded in this rather contravening but rapidly developing part of theory. 

The paper is organized as follows: In the next section, we describe the model and 
physical principles on which its activity is based. In Section 3, equations of motion 
are derived starting from the usual equations of motion for the Heisenberg opera- 
tors. In Section 4, we discuss some special cases illustrating the reported behavior 
violating standard statistical mechanics. Reasons for this failure are to be looked 
for in specific correlations between particles and their surroundings. Standard sta- 
tistical thermodynamics is based on an idea of a weak system-bath coupling what 
is insufficient for proper descriptions of such correlations. 

II M o d e l  and descript ion of  its act ivi ty  

The fully quantum Hamiltonian of our model in its simplest version can be as 
usual written as a sum of the Hamiltonians of the system, thermodynamic bath, 
and that  of the system-bath interaction. Thus, 

where 

U s =  

H = Hs + HB + H s - B ,  

-I-oo 
Z {J(ct-1, ec0'~ q- ct0, *c-1'*) " Id)(dl + I(c[,,co,~ + ct0,LOI,,) • I~>(ul 

t.~-- OO 
A +1 +a,~ 

-}- K(c~'t'C-l'l'-}-i-~ CLI'~+ICl'~)} Jr" 3 Y---1 ~:-~-~cx) [3/" "-~-m]Ctm't'Cmd" 

+ 2  1 - 2  
L 

(1) 

(2) 

describes a particle that  could be located at three sites (m -- -1 ,  0, and 1) in a 
ring, and a two-level system with states ]d) and ]u) separated by energy gap e. We 
assume e > 0. The particle is assumed to slide on a periodic (macro)molecule in 
form of a screw that  cannot rotate but which is by the sliding molecule rotating 
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in the circle of sites ' - 1 ' ~ ' 0 ' ~ ' + 1 '  ~ ' - 1 '  etc. forced to move up and down in a 
potential field. The molecular screw may be arbitrarily long; for formal reasons, we 
take it as infinite. Position on the thread to which the particle located at site m is 
connected is designated as m, t. So, index m has a double meaning what should, 
however, cause no problems. Index L then designates the turn of the thread to 
which the particle can be appended. There are several important  features known 
from previous studies as well as Nature and incorporated in the Hamiltonian Hs: 

One can easily recognize that  (2) is nothing but, up to small modification, 
the model of [5-7]. Here, however, the screw molecule is described already 
in Hs,  i.e., it need not be additionally incorporated into theory as in the 
above papers. Clearly, A / 3  is the energy the macromolecular screw acquires, 
at the cost of the bath as shown below, upon one single particle hop ' - 1 ' ~ ' 0 ' ,  
' 0 ' ~ ' + 1 ' ,  or ' + 1 ' 4 ' - 1 ' .  In connection with that,  one should also understand 
the hopping integrals J ,  I ,  and K as not merely particle integrals but  repre- 
senting also inertial properties of the screw. This is why we can assume below 
that  these integrals are sufficiently small. 

For J = I = K = 0 (practically, for small enough tJh ]II and IKI), the 
particle does not move and the central two-level system with states Id) and 
lu) can be analyzed separately, according to the position of the particle. What  
is important  is the form of the particle vs. central system interaction which 
causes that  the order of energy levels of the central system reverses once the 
particle is brought to site '0'. This is a kind of a topological instability known 
in Nature to appear when a specific type of particle appears at, e.g., molecular 
receptors. 

The resulting instability upon the particle leaving or arriving at site '0' 
has a far-reaching impact in connection with the transfer (hopping) terms 
j(ct_l,~co,~ -t- cto,~c_l,~) • ]d)(d[ and I(c~,~co,~ + cto,~Cl,~) • [u)(u[. These parti- 
cle transfer terms become effective just when the central two-level system is 
in states [d) and lu), respectively. One can assume, e.g., that  transfer be- 
tween two states of our central system might mean transfer of site '0' in space 
which may connect or disconnect molecular bridges between the particle sites. 
This mechanism ensures, upon dynamic and sufficiently fast transfers between 
states of the central system, effective blocking of the return channels of our 
particle. We know this behavior from molecular pumps. 

Worth noticing is tha t  in (2), the forth and back transfers in any pair of the sites 
are always with the same amplitude as a consequence of the hermicity of Hs. The 
one-directional character of the process reported here is not owing to a contingent 
difference between these amplitudes but  results exclusively (as it will become clear 
later on) from the existence of spontaneous processes between states lu/ and Id) 
of the central system. The reason is that  these are the spontaneous processes that  
cause different population of central-system states lu) and Id), i.e., cause effective 
blocking of the back particle-transfer channels. Dynamic transitions between states 
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of our central system according to the instantaneous position of the particle is the 
basis of what is known about, e.g., activity connected with topological changes of 
real biomolecules working as molecular machines [4]. 

As for the Hamiltonians of the bath He, we assume the standard form of non- 
interacting bosons (phonons) 

HB = E hwkbtkbk' (3) 
k 

where bk and btk fulfil standard Bose commutational relations and wk represents 
the boson frequency. Finally, one should specify Hamiltonian of the system-bath 
coupling HS-B. First of all, we must keep in mind that there are two roles played by 
HS-B. This is the particle dephasing among different sites what conditions breaking 
of covalent bonds among the sites necessary for the particle flow. Second, we need 
that HS-B causes transitions between states l u) and I d) of our central system. These 
transfers ensure the dynamic blocking of the particle hopping integrals mentioned 
above what forms, in connection with uncertainty relations making localization of 
particle at one site energetically disadvantageous, the real reason why the particle 
starts to move in the direction that is allowed. This is the reason for appearance 
of the stationary flow utilized below. Such transfers between states lu) and Id) of 
our central system could also cause particle dephasing, i.e. breaking of the particle 
covalent bonds. Such a dephasing would become effective just in higher orders of 
the perturbation theory (see below). That is why we assume HS-B to consist of 
two terms which separately give rise to the lu) ~-* ld) transitions and the on-site 
dephasing. So, we take 

1 EtU~k(bk + btk) ak[lu)(dl + Id)(ul] + ~ ~ g'~c~,~cm,~ 
HS-B = ~ k m=-l~=-~ 

-- H~_ B + g~'_ B. (4) 

For the sake of technical simplicity, we assume that H~_ B and H~'_ B do not inter- 
fere. This may be ensured by assuming that condition gkG* k = 0 applies for each k. 
This condition, however, does not imply existence of two different baths. 

One comment is still worth mentioning here before we come to technical prob- 
lems below. We intend to prove that the mechanism encoded in the above model 
may provide a perpetuum mobile of the second kind. There are, however, intu- 
itive arguments against such a possibility saying that one cannot in general control 
phase (i.e. proper time of arrival) of excitations from the bath to be able to utilize 
their energy in a prescribed manner and at a proper time. This utilization should 
take place, for'a macroscopic energy effect, using a constructive superposition of 
the elementary acts of the bath excitation (phonon) absorption. This constructive 
superposition should efficiently suppress processes of the phonon (excitation) emis- 
sion which, unfortunately, (as particle downhill processes) prevail once the system 
in question has been previously excited by absorbing a previously arriving excita- 
tion. The latter feature is what is commonly believed to hinder macroscopic energy 
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gains at the cost of just thermal energy from the bath. Here, however, our system 
is  able to act in the prescribed manner. Really, as already argued above (and as it 
will be used below), the hopping terms are to be assumed to be the smallest ones 
in the total Hamiltonian (or at most commensurable with transfer rates between 
two states of our central system). This means a very slow particle transfer. Assume, 
e.g., that the particle hopped from site ' - 1 '  to site '0'. As seen from (2), 'site + 
central-system' energy increased in such a case by the amount e+ A/3. This amount 
cannot be, however, so far considered as a real energy gain as the transfer was elas- 
tic and site off-diagonal density matrix elements P-l,~,...;o,,,,... still remain nonzero 
(there is still a covalent bonding between sites ' - 1 '  and '0'). Now, the second stage 
of the transfer comes, where, because of the Hamiltonian H~I_B, fast dephasing sup- 
presses density matrix elements P-1 ...... ;0,~' ..... Only then one can consider e + A/3 
as an energy gain. What is its source? This is the thermal bath, as dephasing is 
nothing but a continuous absorption and emission of phonons (compare the form 
of H~'_ B in (4)). Simultaneously, however, the system loses energy e because the 
central system reconstructs, transferring (at low temperatures) from state Id) to 
state lu). This energy is returned to the bath so that the net energy gain is A/3. 
This is in fact the gain we work with. Now, because of transfer of the central system 
to state lu), the particle has already blocked the return channel; it cannot get back 
to site ' - 1 '  (returning thus, after next dephasing, the energy portion A/3 to the 
bath again) and can only continue to the next site '+1'. Classical particle would 
not do that but quantum particles cannot (for reasons connected with uncertainty 
relations) remain localized at any single site. At site '+1', however, the story is 
repeated and finally, upon the whole turn of the particle, the system 'particle ÷ 
the molecular screw' acquires energy A, fully at the cost of the thermal bath during 
the dephasing process. The latter process is ineffective from the point of view of 
the particle energy at general times. It becomes, however, in the manner described 
above, highly effective immediately after the particle transfer. That provides the 
proper timing necessary for utilization of the energy of the thermal excitations from 
the bath which thus appears possible irrespective of the fact that the excitations 
are mutually fully out-of-phase. The reader should convince himself/herself that 
the energy gain is thus, fully surprisingly, caused by a specific combination of de- 
localization behavior of quantum particles, dephasing, and prevailing down-hill (in 
energy) transfers due to spontaneous processes inside the (central part of the) sys- 
tem. All these phenomena are purely quantum ones. That is also why no classical 
analogue of the present model can work. 

A bit more arguments are perhaps needed in connection with the above state- 
ment that the particle cannot return from site '0' (with the two-level system relaxed 
to state lu)) back to site ' - 1 '  (with ensuing relaxation of the two-level system back 
to state Id/). In fact, such processes can really appear and could be of two possible 
types: 

- As a higher-order process where, between the asymptotic (initial and final) 
states, the two-level system must be first excited to state Id) (to open the 
transfer channel for the particle) and then the particle is transferred, by the 
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first term on the right hand side of (2) (that is c ( J ) ,  back to site ' -1 ' .  (In 
other words, the excitation of the two-level system [u / -~ [d) is just a virtual 
process.) This requires, however, a higher-order perturbational contribution 
(second-order in the amplitudes, i.e. fourth-order for the probabilities or in 
coefficients of the kinetic equations for diagonal as well as off-diagonal ele- 
ments of the density matrix). Such terms become thus negligible in the scaling 
limit used here (and corresponding to the regime investigated) in which only 
second-order terms survive - -  see below or [13]. Physically, such higher-order 
terms become negligible owing to presumed smallness of the transfer terms 
(as compared to the reciprocal time unit used). 

Second possibility for the above combined back-transfer ' 0 ' 4 ' - 1 '  is that  it 
is a consequence of two independent real (i.e. not virtual) processes. Such a 
possibility is in fact properly included into our formalism, and is connected 
with terms ~ /~T 1) determining, inter alia, the probability (per second) of 
excitation [u / ~ [d) with the particle still residing at site '0'. The fact that  
(for kBT << ~) F T = F 1 e x p ( - e / ( k B T ) )  << F~ explains why these processes 
result as less effective and why the particle prevailingly choses, upon arriving 
at site '0' and after the ensuing relaxation of the two-level system to state [u), 
going rather to site '+1' .  For such a process, there is (for A << e) no similar 
suppressing statistical factor able to compete e x p ( - e / ( k B T ) )  << 1 above. On 
the other hand, for k s T  ~> e, F T becomes comparable with F 1. That  is why 
our approach below really yields why the net effect disappears at high enough 
temperatures. 

With that,  let us now have a look at dynamic equations to which the chosen 
model (working as described above) leads. 

III Equations of  motion 

Technically, in our theory here, we shall not follow [5-7]. The reason is not 
connected with a tiny difference in the Hamiltonian but is, rather, due to little ac- 
quaintance of general public with the projection method of Tokuyama and Mori [14] 
used in [5-7]. Instead, we use here a method tha t  belongs to a standard weaponry 
of theoretical physics - -  equation of motion method. Before its application, one 
should add a few words considering small parameters of the problem and, thus, 
arguments in favor of omission of terms that  are of minor importance and, conse- 
quently, disappear in a properly performed scaling limit. 

Above, we have already mentioned that  hopping (transfer or resonance) integrals 
J ,  I ,  and K are, for deeply physical reasons, rather small. We shall be interested 
in the regime where their respective time scales, i.e. h/ IJ  I etc., are longer than 
(or at least commensurable with) those corresponding to the relevant bath-assisted 
processes. There are two such type of processes: The first type processes are those 

1) See (5) below for definitions of transfer rates F~ and F~ which are nothing but Golden Rule 
transfer rates for transitions between two levels of our two-level system. 
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describing mutual transitions (re-relaxation) between states lu) and Id). The corre- 
sponding up-hill and down-hill transfer rates read (up to higher-order corrections 
that  become irrelevant upon proper scaling) 

2~r 
/'1 = Y: ( k) lGkl2[1 + nB(hwk)lS(~k -- e), 

k (5) 
y  (r k)21Gkl2ns(r k)5( k _ e) = exp(-/3r k)5. r,=g- 

k 

Here nB(z)  = [exp(/3z)- 1] -1 is the Bose--Einstein-Planck distribution for phonons 
and /3 = 1 / ( kBT)  is the reciprocal (initial) temperature of our phonon bath in 
energy units. Clearly, F 1 and F T are the second-order Golden rule transfer rates 
between the above states of the central system caused by H~_ B in (4). So, the first 
necessary requirement for the regime we are interested in is that  

Ig__~ II__[~ << 0.5(FT + F~). (6) 
h ' h  

The second necessary condition is connected with the third transfer integral K 
describing particle transitions directly between sites +1 and -1 .  We require that  

IKI 
~< 2F-1,1. (7) 

h 

Here 
2F . = - g 1211 + 2nB( k)]SW( k), (8) 

Nh k 

where 5~(x) designates the &function properly (selfconsistently, as a Lorentzian) 
broadened by all the dephasing processes on the sites involved 2) So, 2F is the 
dephasing rate caused by the second term in (4), i.e. by H~'_ s. Conditions (6-7) 
could be a bit relaxed by replacing sign << by ~< but it would not change physics 
of our problem. In any case, ratio of the right and left hand sides in (6-7) should 
be kept finite. 

These conditions imply that  the physical regime we are interested in is certainly 
not that  one of the weak coupling to the bath. So we must refrain from the weak 
coupling theory. In accordance with [7] (see also [13] for mathematical details), we 
introduce a formal parameter A and set 

I,  J, K c< A 2, HS-B oc A. (9) 

Next, in the equations of motion below, we shall only keep all terms upto the order 
A 2 and use mathematics (originally due to Davies [15, 16]) ensuring that  after 
introducing a new time-unit oc A -u, all terms of higher (than second) order in A 
disappear. Readers more interested in details of this scaling are referred to [13]. 

2) Those who could feel embarrassed by necessity to incorporate the broadening, could, e.g., 
replace H~'_B in (4) by another form incorporating two-phonon processes. This leads, however, 
to no qualitative change. 
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This is the spirit of the method. Now let us have a look how it works in practice. 
First of all, we transfer all the operators into the Heisenberg picture, using the 
prescription 

A(t) =- e i H ' t / h A e  - i H 4 / h  (10) 

This implies that 
d A(t) = i -~ [H, A] (t). (11) 

The commutators on the right hand side of (11) have to be evaluated. So, for 
instance, 

bk(t) = -~[H, bk](t) = --iwkbk(t)-- --~ a'k~x(t) + ~_, (g'~)* ~_,(c~m,~,~)(t) , 
m = - I  i, 

-~bk(t ) = iwkbt(t) + - ~  Gka~(t) + E (gr) E(ct,~c~,~)(t) , (12) 
m = - - I  t 

~x = lu)(dl + Id)(ul,au = - i [ [ u ) ( d [ -  Id)(ul],~= = lu ) (u l -  [d)(dl. 

The solution reads 

f t f  +1 "~ 
bk(t ) ---- e_iW,tbk(O ) iwk I ~C*ka~(T)+E (g'~)*E(Ctm,'Cm")(r)~ e-iw'(t-r) dr'  

--~ Jo ( m=l , ) 

eiW~tb t (o~z iwk f t  +1 btk(t) -- Jo {Gk(r~(~-)+ E g~n E(C?m,~Cm,e)(.r)}eiW~(t-r)dr. (13) 
k I, l - -  V ~  m = l  

i t d[ct__l,,Co,~ ® ]d)(dl](t) = -~[H, C1,,C4),~ ® ]d)(dN(t ). (14) 

Evaluating the commutator and putting here (13), we get 

d t iA. t i t 
~ [ c _ l , ~ c o , ,  ® Id)(dl](t) = ~tc_~. ,co, ,  ® Id)(dl](t) + g J((co,,Co,, - cL~,~c_l,,) 

i t i t F ~ ® Id)(dl)(t) + gK(c,,~_a~O,~ ® Id)(dl)(t) - g,(c_~,,~o,, ® Id)(dl)(t) + -d,Od 

i fo' + N E w~Gk ( -2  sin(wk (t -- T)) 
k 

(c_~,~co,~ ® tu)(dl)(t) 
rn=-- I 

+ -Ni ~ wk2 (--2sin(wk(t--r)) X " V  
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X k l  a--k(Tx(T) -~- E gm-k E(Ctm, Lcm'L)(T) (C[1, ~cO'~ ® td)(dl)(t) 
m = - I  e ) 

-g~_,(c[1,~,~ ® Id)(dl)(t) a-ko~(,-) + y~ y~'g_'2k(c~,~,~)(~-) d~-. (15) 
t m-------I 

Here 

g ~ 

- -  d , O d  - -  

i 
v ~  EwkGk[(bk(O)e-i•kt + b-k(O)tei"~kt)(Ct-l'~C°'~ ® ]u)(dI)(t) 

k 
- (c[1,~co,~ ® Id) (u l ) ( t ) (bk(O)e - i ~ t  + b_k(O)teiwkt)] 

i -Jr- - ~  E wk[g;l(bk(O)e -iwkt q- b-k(O)fei~kt)(Ct_l,~co,, ® Id)(dl)(t) 
k 

o f -gk(c_l,~co,~ ® ]d)(dl)(t)(bk(O)e-i~kt + b_k(0)tei~kt)]. (16) 

Now, one should realize that  also the transfer Chopping or resonance) integrals 
J ,  I ,  and K are scaled as c( A 2 in our approach. Because the last two terms on 
the right hand side of (15) are already of the second order in the small scaling 
parameter A, we can work to just the zeroth order, i.e., we can omit, for purposes 
of evaluation of the last two terms in (15), the hopping integrals completely. This 
yields 

d i 
-~ax(t) = -~[H, ax](t) 

(17) 
d i 
-~ay(t) = -~[H, ay](t) 

1 - 2 Cto,~Co,~ (t) = 1 - 2 Cto,~Co,~ ax(t). 

Here, in the given order, t Co,~C0,~ can be already considered as time-independent, i.e. 
at the initial time t -- 0. From (17), we get 

ay(T) ,~, (1-2 ~--~ Cto,LCo,~)ax(t)sin [-h(T --t)] + ay(t)cos [h(7- t)]. 
(18) 

Next, we shall use the assumption of non-interference of dephasing and transitions 
m G gk k = 0. This yields 

d i f 
[ct_l,~co,~ ® [d)(dl](t) ~ -~ J((co,~Co,, - ct_l,~c_l,~) ® [d)(dl)(t) + 
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i t i t F ~ + -~K(cl,,_lco,, ® [d)(dl)(t) - ~e(C_ldco d. ~ [d)(dl)(t) + -d,Od 

i fo + -~ Z w  2 (--2sin(wk(t -- r)))[lg~-ll 2 - Ig°121 dT(ct_l,~c~0 ® Id)(dl)(t). (19) 
k 

Here, we have neglected A/3 as compared to e what amounts to neglecting a weak 
A-dependence of transfer rates. 

Now, we must evaluate FL d,O d in detail. For this purpose, to the first order in 
A and again neglecting A/3 as compared to e, we get using again the equations of 
motion for the corresponding operators that 

(CLl,eCo,e ® [d) (d[)(t) ~ e-iet/h(Ct_ l,e Co,e ® [d)(d[)(O) 

i /o 4. ~ W k  {gkl(bk(0)e -i~k~ + bt_k(O)ei"~k')(ct_l,,Co,~ ® [d)(dl)(r) 

0 t --gk(C_l,~Co,~ ® [d) (d[)(T)(bk(O)e -i~k~" + bt_k(0)ei~kr)} dT, 

(ct_l,~o,~ ® Id)(~l)(t) = (c[1,~co,~ ® Id)(~l)(0) 

+ ~ •k k{(bk(0)e + bt_k(0)ei~k~)(cLl,~co,~ ® [u)(ut)(r ) (20) 

- (~t~,~o,~ ® Id>(dl)(r)(bk(O)e - i ~  + b[k(0)e * ~ }  d~, 
(c~l,~co,~ @ [u) (dl)(t) ~ (ct_l,~co,~ @ lu) (dl)(O) 

i t 
4. ~ ~ w k / o  Gk{(bk(0)e- i~  4-bLk(0)eiW/'l")(CLl,eC0,e ® Id)(dl)(r) 

-(cL~,~o,~ ® I~)(~l)(r)(b~(0)e - i ~  + bt_k(0)e i ~ }  d~. 

Now we use (21) in (16) and put everything into (15). We get 

d i t 
[ct_l,,co,~ ® Id)(d[](t) ~ -~J((co,~Co,, - C~l,~C-l,e ) ® Id)(d[l(t) 

i t i (_~ ) 4- -~g(cl,,_lCo,, ® ]d)(dI)(t ) + -~ - e (ct 1,~Co,~ ® [d)(dI)(t) 4. P_ld,Od(t) 

i fot + -~ E w  2 (--2sin(wkT"))[lgkll 2 --Ig012](Ct_l,~C0,~ ® Id)(dl)(t)dr 
k 

1 ~-"w ~-ltb tn~e-i~kt f t  N ~ kYk ~ ktu) 4. bt--k(O)ei~kt) JO e-i~(t-~)/nWk' 
k,k' 

x {g-~l(bk,(O)e-i~'r 4. bt_k, (O)eiW~:'~')(CLl,tcO,~ ® Id)(di)(r) 
_gO, t (c_~,,co,~ ® [d)(d[)(r)(bk, (O)e -i~*'* + b[k,(O)e~'~)} dr  

4. "-~ E Wkg 0 e-ie(t--r)/hCOk,{9-~,l(bk,(O)e -i~°~'r 4. b'~_k,(O)e i~°~'~') × 
k,k' 
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x (ctl,~co,~ ® Id)(dl)(T) -g°,(c[1,~co,~ ® Id)(dl)(T) 

x (bk, (0)e -iw~'r -k btk , (0)eiWk'r)} dT (bk(0)e -iwkt -I- btk(0)e iwkt) 

1 fo N E Gk(bk(O)e-i~kt-kbtk(O)ei~t) Gk'{(bk'(O)e-i~k"-t-bt-k'(O)ei°~k") 
k,k I 

× (ct_,,~Co,~ ® Id)(dl)(T ) -- (ctl,~C0,~ ® lu)(ul)('r)(bk,(O)e -i"~k'r -t- btk,(0)ei~k'r)} d'r 

1 ~o t + ~ Gk Gk,{(bk,(O)e -i~k'~ + bt_k,(O)e'":k")(ct_l,~Co,~ ® lu)(ul)(~) 

-- (ctl,~ co,~ ® Id) (dl)(T)(bk, (0)e -i~k'~ + bt_k, (0)ei~k'~)} dr  

x (b/c(0)e - i ~  + bt/c(0)ei~t). (21) 

Here 

i ~_~kG/c{(b/c(O)e_i~t + b[k(O)ei~t)(c[~,~Co,~ ® lu)(dl)(O) P-lu,od(t) = - - ~  /c 

- (ctl,,co,~ ® Id)(uJ)(O)(b/c(O)e - i~* + bt_/c(O)eiWkt)} 

i t iwkt t + - ~  E w k { g ; l ( b k ( O ) e  -i°:kt + b_k(0)e )(c_l,~co,, ® ld)(dl)(O) 
k 

--g°(ctL~co,, ® Id)(dl)(O)(b/c(O)e -i~kt + btk(O)eiO:kt) }e -ia/n (22) 

is a stochastic force. Now we shall preserve just  terms with creation and annihilation 
operators of phonons with k' -- - k  (other terms disappear upon taking average with 
the initial density matrix of the bath in the canonical form) and use that, within 
the lowest order in A, (ctl,~co,, ® Id)(dl)(v ) ..~ (CLI,tC0,~ ® Id) (dl)(t) exp(ie(t - r) /h)  
and similarly (ctl,,co,~ @ lU)(Ul)(T) ~ (Ctl,~C0,~ @ lU)(Ul)(t)exp(--ie(t- "r)/h). Also 
the use may be made of the fact that within the relaxation terms and within 
the required second order, creation and annihilation operators of the particle, 
those of the bath, and of the two-level system may be taken as commuting (com- 
mutators yield higher-order terms). Then, after some algebra and identification 
fo exp(-t-iw~) dv .~t~+~ rS(w) 3) (21) reduces to 

d t i t -~[c_l,~co,~ ® Id)(dl](t) ~ -~ J((co,~Co,~ - ctl,~c_l,~) ® Id)(dl)(t) 

i t i(_~ ) 
+ ~K(cl,~_lCO,~ @ Id)(dl)(t ) + -~ - e (CLl,,Co,~ ® Id)(dl)(t) + I [ l d , O d ( t  ) 

1 2 r  1 
+ ] - / - ~  ~ ( ~ / c ) : l G / c l ~ ( ~  - ~/c)[1 + 2b~(0)b~(0)]{(ctl,~o,~ ® I~)(~l)(t) 

/c 

, - g/c] 5~(hw/c) x -- (CL 1 LCO,I. ® Id)(dl)(t)} - ] ( r~/c)~lg~ ~ 0 2 

3) As usual, error caused by this step can be reduced to a renormalization of terms already 
present, 
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x [1 + 2b~(0)4(0)](c[~,,co,, ® [d)<dl)(t). (23) 

Here 5~ (...) is to be understood as a 5-function broadened by transversal relaxation 
processes. We then identify 

1 21r,t~ ,2, --1 2F = 5 - # t  k) Igk - g°l~5~(t~D[1 + 2b~(0)bk(0)], (24) 

21r 1 
FI - /i N E ( ~ " ; k ) 2 [ G k ] 2 t ~ ( e  -- taZk)[l -[- bt(0)bk(0)]' 

k 
(25) 

and 
27r 1 

rT -- - E ~  ~--](t~k)=lCkl=5(~ -- ~klb~(O)b~(O). (26) 
k 

(Clearly, (24-26) are nothing but (5) and (8) in the operator form.) Then (23) 
is the final operator equation that  we aim at here. We now multiply it by the 
initial density matrix p(0) of the system and the bath (which are initially assumed 
uncorrelated), assume the initial density matrix of the bath to be canonical, and 
take the trace. Finally, we define the density matrix of the reduced system, i.e. of 
the particle and the two-level central system, as 

pm~,~(t) = ~ ~(p(O)(c~,,~,,)(t) ® (l~><~l)(t)), 
L 

]a) and IV) being lu) or Id). (27) 

Presuming then that  dependence on 5, ~' of Tr(p(O)(ctm,cm,¢)(t ) ® (l'y)(at)(t)) is 
smooth, and summing up the result over ~, we immediately obtain the fifteenth 
equation of the set (14) of [7]. Let us only add that  the above smooth dependence 
on ~, # is a result of very small dephasing processes applied to the state of the 
molecular screw. 

In a fully analogous way, one can rederive all the remaining equations. In order 
to write them down explicitly here, we arrange all the 36 matrix elements p~(t) 
in groups of nine designating 

(Puu)T = (P-lu,-lu, POu,Ou, Plu,lu, P-lu,Ou, P-lu,lu, POu,-lu, POu,lu, Plu,-lu, Plu,Ou) , 

(Pdd) T-~ (P-ld,-ld, POd,Od, Pld,ld, P-ld,Od, P-ld,ld, POd,-ld, POd,ld, Pld,-ld, Pld,Od) , 

(Pud)T--- (p-lu,-ld, POu,Od, Plu, ld, P-lu,Od, P-lu,ld, POu,-ld, POu,ld, Plu,-ld, plu,Od) 

(28) 
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and similarly for p~.  Superscript ...T designates transposition. With all that and 
proceeding in all technical details analogously as above, we obtain the set 

d i c y  o 
O 0  . . . . . .  " 

\ Pdu I \ pd,, i 

(29) 

Here, in the square matrix, all the elements are in fact blocks 9 x 9. Hence, the whole 
set splits into two independent sets of 18 equations each. That is why we shall be 
interested here in just that one for P~,u and Pdd. This reads as in (29) with typical 
forms of the block 9 x 9 matrices ,4, B, C and i/). In order to make the presentation 
as simple as possible, we first fully neglect the above Hamiltonian H~_B describing 
a direct coupling of the particle to the bath, responsible for the above additional 
dephasing. A direct calculation then yields 

A =  

-F~ 0 0 0 ih 0 0 - i K / h  0 

0 - F  T 0 0 0 0 i I /h  0 - i I / h  

0 0 -F1 0 - i K / h  0 - i I / h  iK/h i I /h  

iA iI/li 0 0 0 - iK / l i  o o o k + ~  
0 1 5  

iA 
i g / h  0 - i K / h  i I /h  -1-' 1 3Ii 0 0 0 0 

0 0 0 0 0 k* iA i g / h  - i I / h  0 

iA 
0 iI /h - i I / h  0 0 iK/h k* + -~  0 0 

i,d - i g / h  0 ig /h  0 0 - i I /h  0 -Fl  + -~ 0 
iA 

0 - i I / h  iI /h - iK / l i  0 0 0 0 k - -~  J 

(30) 

Here k = - i e / h  - 0.5(F T + F~) with all the rates defined already by (5) and 
(8), and ...* designates complex conjugation. Let us mention that via F~ and FI, 
the initial bath temperature T (entering the problem via the initial bath density 
matrix PB) enters the game. The rates F T and F 1 are known from the usual Pauli 
Master Equation approach to general kinetic problems. Still, however, our theory is 
(via inclusion of also the off-diagonal elements of p) much more rigorous including 
many higher-order processes. One can check that by formally excluding the off- 
diagonal elements of p from (29). For the diagonal ones, one then gets a set of 
time-convolution equations with kernels (memories) partially summed up to the 
infinite order. The resulting decay of the memories (owing to nonzero values of F T 
and F~) then implies the required broadening of the original lowest-order energy 
conservation law, allowing transitions that were forbidden in the lowest order by 
the lowest-order energy arguments. 
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As for the block B, it is fully diagonal with diagonal elements Bn , . . . ,  B99 equal 
to FT, Fl, FT, (F T + F/)/2, FT, (_F l + F/)/2, (F T + FI)/2 , F T and (F T + F1)/2 , respectively. 
Next, 

D= 

- F  T 0 0 iJ/h iK/h  - i J / h  0 - i K / h  0 

0 - F  1 0 - i J / h  0 iJ/h 0 0 

P 0 0 - F  T 0 - ig / t~  0 0 ig/l~ 

iz~ - i g / h  iJ/h -iJ/t~ 0 k* + -~  0 0 0 0 
iA 

iK/h  0 - i K / h  0 - F  T - -~  0 - i J / h  0 0 1 • 

iA iK/tt 0 

r - i g / h  iJ/h 0 0 0 k -  -~  iA 

0 0 0 0 -iJ/t~ i g / h  k + -~  0 

iA iJ/h 1 - i g / h  0 i g / h  0 0 0 0 - F  T + -~  
. i A  I 

0 0 0 - i K h  0 0 0 iJ/h k - - ~ ]  

(31) 

As for the block g, it reads as B except for the interchange F T ~ F~. 
Ignoring for simplicity our screw molecular chain, the form of all the matrices 

in (29) is exactly the same as, e.g., that one that we would get from the stochastic 
Liouville equation SLE [17] provided, however, that (as so far assumed) H~" s 
is neglected and H~_ B is replaced by a proper stochastic (e.g. Gaussian delta- 
correlated) potential field acting on the central system. The only difference between 
our form of the ,4-/3 blocks and that of the same matrices in the corresponding 
SLE theory is dictated by physics of the problem: Namely, in contrast to the SLE 
approach, spontaneous processes with respect to the bath naturally appear in our 
fully quantum model (H~_ B is, in our case, a coupling to a genuine quantum bath). 
Thus, F T < or even << F 1 in our model. (In any SLE theory, F T = F~ because 
of lack of the spontaneous processes.) This inequality really results here from the 
above calculations in the same way as in any other calculation taking the quantum 
character of the bath properly into account. 

Now the last point is how to include the second term H~IB of HS-B. The 
resulting additive contributions in the above equations can be easily guessed from, 
e.g., the correspondence with the stochastic Liouville equation model [17]: Nothing 
but an additional dephasing appears in (29) what means that terms -2F_1,o should 
be added to 44 and 66 elements of ,4 and D, -2F-1,1 should be added to 55 and 88 
elements of ,4 and :D, and similarly -2Fo,1 should be added to 77 and 99 elements 
of ,4 and/~. That is what we shall automatically assume everywhere below. In [7], 
all these three terms -2Pm~ (see (8)) were supposed to have the same value -2/". 

I V  Spec ia l  cases  

Equations (29-31) are exactly those derived in [5-7]. Their numerical solution 
was shown there to yield that the above system violates the second law, working 
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as a real perpetuum mobile of the second kind. This conclusion was based on the 
analysis of the mean particle flow - 1  ~ 0 ~ .1.1 ~ - 1  etc. that  is responsi- 
ble, via the motion of the particle along the thread of the screw molecule, for an 
increase of the energy of this screw molecule. Derivation of equations (29-31) in 
[5-7] was, however, more complicated and required details of the not fully stan- 
dard Tokuyama-Mori theory [14]. This theory was fully avoided here. As the final 
conclusions are, however, the same, we mention here just two special cases. 

- For the energy gain of the screw molecule per unit time, we have 

d E i [ ~ +1 " ~ ) c ~ ' ~ ' ~  1 

~ ~-~h{K" ~m(plu,-1,~ + Pld,-ld) + I .  ~mpou,l,~ + J"  ~mp-ld,oa}. (32) 

In the approximate equality, we have again used a smooth dependence of the 
density matrix elements Tr[p(O)(ct~,~cm,~,)(t) ® (l~}(al)(t)] on indices L, ~' of 
the thread. Energy gain (32) was studied numerically [5-7]. In the stationary 
state, it was found nonzero and positive what confirms our interpretation 
of the activity of our system as that  of the perpetuum mobile of the second 
kind. Explanation and description, in physical terms, of its activity were given 
above. 

- One very instructive example illustrating why the above system behaves as 
argued is provided by the situation when we break the cycle putting K = 0. 
If the above picture is correct, one should expect that  the particle gets finally 
prevailingly localized at site '-t-1', having no possibility to continue further on. 
Notice that  for A > 0, this is the site with the highest site-energy. As for the 
central system, it should turn prevailingly to state Id}. This conclusion can 
be easily confirmed analytically: For temperatures T << e/kB, F, becomes 
completely negligible (compare (5)). Omitting it completely allows one to 
check analytically that  stationary solution to (29) reads as Pld,Zd = 1, with 
all other matrix elements p,,~,,~.y = 0. Already this fact contradicts basic 
principles of the usual equilibrium statistical thermodynamics. 

As for high-temperature (i.e. classical) limit T >> e /km the system may be 
easily argued to cease its activity as described above. The central system be- 
comes completely decoupled from the particle, with occupation probabilities 
of both its states [u} and [d} turning to ~ 0.5. So the "gate" not allow- 
ing the particle to return on the thread becomes inactive and in the infinite 
temperature limit, the particle becomes homogeneously distributed on the 
circle prom = p,~,m~ + Pma,md "~ 1/3. Also this may be analytically checked 
from (29). 
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