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1 Introduction

The two—level system, coupled to external fields can show an extraordinary set of different behaviors, which
in part can be derived analytically, but in this document we want to mainly explore it numerically by
direct numerical simulation of the quantum Liouville equation. The two—level system is characterized by
its Hamiltonian

H=e1) (1 (1.1)

that is, we choose the energy of the ground state zero. The second important operator for the 2LS is the
dipole operator, which in its most general form can be written as

i = fig 10) (O] + fic |1) (1] + /2[0) (1] + 3" 1) (0] (1.2)

This allows the system to have a ground state dipole moment ji,, an excited state dipole moment .,
and a transition dipole moment [, which may be complex, to account for circular dichroism, or magnetic
transitions. They are also vectors, which can have different directions in the molecular frame, and hence in
space. These are the operators that couple the state of the molecule to the externally applied field.

The external fields we will consider are both time-dependent light fields, but also static Stark fields, and
fluctuating polarization fields. For the second exact solutions can be derived, for the other two the usual
methods are series expansion, to get linear and non—linear optics, the rotating wave approximation in strong
resonant fields, and for instance Redfield theory for the fluctuating polarization fields. The 2LS can also
induce fields in the medium, and create reaction fields at its own position, leading to possible symmetry
breaking effects. The generic form of the coupling Hamiltonian is

Hiws = —fi- (1)

A note about units

We will express everything in cm™!, that is we use units such that A = ¢ = 1. Typical values we will use
for transition energies are 12500 cm™!, which corresponds to 800 nm light. The frequency of the transition
corresponds with an oscillation period of 2.67 fs.

Transition dipole moments are of the order of 6D for a decent transition at that frequency (oscillator strength
~ 0.5). Typical difference dipole moments are 1-2D. Typical field strengths in static (Stark) fields can be 1
MYV /cm, which give a 1D dipole an energy of 16.8 cm™*, for a 6D dipole this gives an energy of about 100
ecm~!. Laser fields, especially in strongly focussed short pulsed lasers can be as high or higher than that,
and internal fields close to charged groups can be even higher.

The interaction energy between two 1D dipoles at 1 nm distance is 5.035 cm~!. Since this depends strongly
on the distance the interaction energies can be quite large: at 0.5 nm two 6D dipoles have an interaction
energy of 1450 cm !, which is no longer small compared to electronic excitation energies. The field at 1 nm
from an elementary charge is 14.3 MV /cm.



2 Simulation set—up

The simulations are performed using the Liouvuille equation, since this allows us to investigate damping
mechanisms, and coupling to classical systems in a more—or—less consistent fashion.
The equation is in Liouville space notation:

a| |, :
—— = 27l 2.1
- o)) (2.1)
We will use the convention that | p)) is a vector with four components, numbered in base 2 order: |0) (0] =
|00)) = |0)), and so on. Operators on Hilbert space become vectors in Liouville space, and the commutator
relation between Hilbert space operators becomes an operator in Liouville space. The inner product of two
operators is denoted as

By
* * * * * B

((A| B)) = Tr[A'B] = Y (A'B)un = A Bn = (A5, AT, A3, A3) B; (2.2)
n n,m B3

where we again note that the vector index ¥ = m %2 +n. Note also that taking the Hermitian conjugate for
the operators correspond to turning the row vector in a column vector and taking the complex cojugates of
the elements.

The Hamiltonian operator becomes

0
0
H= 0 (2.3)
€
and the interaction Hamiltonian — fi - E:
i, ?
Hug = —fi-B=—| FE (2.4)
g-E
ﬁe -E

Since we are not going to use the complex dipole moments for some time, we neglect the complex conjugate
in the transition moment.
There is a simple way to determine Liouville space operators from the commutation relation:

—2mi[H, p] = —2miL (2.5)
The components of the matrix £ can be determined from
Lijm = HikGji — Hijin (2.6)

and of course we can turn the double indices of £ into single indices again with the above rule. Using this
we find for the total Liouvillian the following matrix

0 i E —i-E 0
i-E — i-E —i-E
ci=| *.% e+afi-b 0 , —i-E (2.7)
—i.E 0 e—Aj-E [p-E
0 —ji-E i-E 0

where Afi = fi, — jiy is the difference dipole moment.
Once the time—dependence of |p)) is determined we can find the physical properties of the system as a

function of time. The energy is given by E(t) = ((H| p(t))), and the polarization by P(t) = ((ji| p(t))).



Damping

Redfield theory provides a realistic way to introduce damping into the system. A minor problem is that
Redfield theory describes damping towards the equilibrium density matrix, for which we will take the ground
state. According to Redfield theory the damping operator can be written as

—~ 0 0 4r
| 0o —iy i 0
La=| o r —iy 0 (2.8)
i 0 0 —C

In terms of 77 and T5 we can also write

1 1 1 1
T = d — = 2.9
o, M VTt T T (2:9)

which means that v must be always larger than I'.
There is also a simplified form of this operator, which we will sometimes use to compare. It can be written
as
0 0 0 ir
10 =iy O 0
Las=1 9 o —iv 0
0 0 0 —ir

(2.10)

Another option is to couple the system to a damped harmonic oscillator; in that case we couple the ex-
pectation value of the polarization operator to a new coordinate x which is described by the equation of
motion P2 p
X . XL
Mo = —mw?z — p (2.11)
This just means adding the term z to E in the Liouville operator. If we also want to have the back reaction,
we can drive the oscillator equation by the expectation value of the polarization operator.

3 Simulations

Simulation programs can be found in the directory cprogs/gsl_odeint.

The first simulation we will perform is the one where we turn on an external static field at time zero. This
should be rather trivail, were it not for the fact that we need to know what the equilibrium state is the
system decays to.

The system can of course be solved exactly; we will take the permanent moments zero, which means that

we have to diagonalize
0 pE
(_pe ") (31)

As = % [e /T 4(,uE)2] (3.2)

The eigenvalues are

For a 2LS with 6.3 D transition moment, and vacuum excitation energy of 12500 cm~! in a 10 MV /cm field

the energy eigenvalues are -89 and 12589 cm™!.

The ground state of this system is the equilibrium state. This state can be determined by solving

(e ") (3) = (3) o9
a=——tE  aa p= A

or



The simulations are rather trivial, and we won’t bother to show them. Basically they show decay to
equilibrium energy and polarization. The final energy for the above numbers is indeed -89 cm~1!, and the
final polarization is 1.05 D, which is then of course the ground state dipole moment. We note here for the
record that the polarizability also changes.

Redfield simulations

The first simulation shown is where we use the Redfield matrix. This is mainly intended as a test of the
program, since for the 2LS the decay using the Redfield equations can also be solved analytically. The
numerical solution and the analytical agree completely.
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Figure 1: Simulation of the polarization decay of a 2LS using the Redfield matrix. The initial state is given
by |p)) = (0.5,3.5 + 5¢,3.5 — 5i,0.5). The decay time is 27yc, where c¢ is the spead of light. Also shown
(dashed) is the decay curve with that decay time.

An interesting exercise is to simulate the Redfield method directly. That is, we couple the 2LS to a
fluctuating damped harmonic oscillator, and study the influence of such an oscillator on the 2LS. To do
that we first simulate a damped harmonic oscillator with a random force.

Now here we start running into problems. Initial simulations indicate that the energy of the 2LS decreases
to —oo. Now several things may be going on here, including what we have seen for coupled oscillators,
namely that the system can become unstable for large coupling. There is an additional problem which can
probably best illustrated by looking at the harmonic oscillators again.

Starting point in that case is of course again the Liouville equation, but now coupled to a classical variable

- 21 _ _oricy ) - 2micaP | ) (35

where P is the Liouville operator corresponding to the dipole operator. The equation of motion for z
contains the expectation value of the dipole operator as the driving force:

me + mw?z + Cd—w = F,(t) —a{f) (3.6)
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Figure 2: Simulation of the energy decay of a 2LS using the Redfield matrix. The initial state is given by
|p)) = (0.5,3.5+ 5i,3.5 — 5i,0.5). The decay time is 27T'¢c, where c¢ is the spead of light.

We have to convert this to reasonable numbers. Dividing by the mass gives

&’z 9 ¢dr

(i) (3.7)

where we left out the random force for the moment. For electronic transitions this mechanism can’t do too
well, but for the excitonic states, or for vibrations it should work. We should get some reasonable numbers
for the coupling, and the masses. It should also work for NMR where the energy difference of the quantum
system is rather small. The interaction between the two systems is of course again dipolar, so we can take
anything for that. Maybe we should think about the proton transfer reactions for this case, or just at two
coupled oscillators.

Two coupled oscillators with 1D dipole moments at 1 nm have an interaction energy of 5.035 cm™! times a
factor between -2 and 2, depending on the angles.

4 Equilibrium
The coupled quantum-—classical Hamiltonian can be written as
H = €1) (1] + aal]0) (1] + 1) O] + 5 Az (4.1)
The free energy of such a system can be found from
G = —kBTln/d;c Tr [e7P¥] (4.2)

This can be calculated in the following way: first we diagonalize the operator part, then we take the trace,
and finally we integrate. The eigenvalues of
0 az
( oo ) (4.3)



Eigenvalues are
1
At(z) = 3 [e +4/€? +4(am)2] (4.4)

The matrix that diagonalizes this part of the Hamiltonian (UTHU) can be written as

U:( o(z)  s(z) ) (45)

—s(z) c(x)
So, this needs to satisfy
_ 0 ax c(z)  s(x) \ _ [ clx) s(z) A (z) 0
HU=UA or ( ar € ) ( —s(z) c(x) > o ( —s(z) c(x) ) ( 0 At (z) > (4.6)

This fixes s and ¢, using

fof Ve2 +4(ax)? —¢ t 1 @7

with s = ——, ¢=

c 20 V1t NS>

note that ¢ goes to zero when o — 0. This means that we can write for the trace:

Tr[e PH] = Tr [Ue*ﬂU‘”UUT] =Tt [Ue PAUT] = e A*- () 4 e Ar+ (@) (4.8)
So the partition function becomes:

0= / dz [e_ﬁ/\_(m) + C_ﬁ’\*'(m)] e~ 3BAT? (49)

This should allow us to find probabilities, for instance the probability of finding z:

Ple) = 2 7] _ [P @ 4 et ] ez (4.10)
Q J%_do [e () 4 e=BAL(@)] ¢~ £PAL? :

The probability P(z) can have some interesting behavior. Assume that the temperature is rather low
compared to the electronic excitation energy. In that case

B(Az? +2);) = B(A2® + e + /€2 + (2a2)?) (4.11)

is large for all values of x, and we can approximate P(z) by:

o~ 18[4s*~\/FFan)?]
P(z) ~ (4.12)

1% doe Pl VEG

The denominator is of course just a normalization constant, so we can just look at the behavior of the
exponential, which we can write in the form

b4 [22~\/2/A% +(2a2/A)2 (4.13)

Taking the derivative of the function occurring in the exponential we get

B 2z(2a/A)? _ T
2\/€2/A? + (2az/A)2  \/e2[A2 + (2az/A)?

[2\/62 JA% 1 (20/A) — (20/A)? (4.14)

The zeroes of this function are x = 0, and possible solutions of

Ve JA? + (2ax/A)? — 2(a/A)? =0 (4.15)



This equation also has two solutions:

2= () [1(2) - ()

which are real for a? > €A/2. Note that the temperature is irrelevant here.

A note about units again. The potential energy of an oscillator is %mwgﬁ, where w; is the solvent frequency.
We will see below that frequencies are of the order of 1-100 ps~!. Division by ¢? turns this in wavenumbers.
That means the position is scaled by vVme2. So, let us write the energy of the oscillator as

(4.16)

1 z\’
imw2$2 = —mw?x] (w_) (4.17)

1

where we take £o = 1 nm. For a solvent frequency of 1 ps~, and 1 proton mass we get

A=mpw?r2 =167 x10 2" x 10 x 107 ¥J=1.67x 10 * J~ 84cm ! (4.18)

This result of course depends on the mass of the oscillator, but we get numbers of the same order of mag-
nitude. Only now we measure the deviation of the oscillator in nm. For the coupling similar considerations
hold. We could also express the deviation in terms of the mass: for the same energies, but bigger masses,
the deviation is just smaller.

There is a related issue for the dynamical equations. The equations of motion for the (undamped) system

are
dx p

o _ P 4.1
d m (4.19)
and p
p T
i —mw?r = —(mw?z?) <%) (4.20)
This last equation can also be written as (we keep the constants h and ¢ for the moment):
dpzo/h mw?zy [z T
- _ Z )l =—cAlZ= 4.21
dct he To To ( )

Note that pxo/h is dimensionless. Now the time is scaled to cm (as is used in the program), but it also
means that the equation for the momentum has to be changed to:
dx/xg pxo/h

= 4.22
det mxic/h (422)

Taking again the mass of the proton, we get for the numerical value of the constant in this equation:

2 _27 ~18 8
mpzge  1.67 x 107" x 107° x 2.9979 x 10 9
n 6.626 x 10 1 76> 107" cm (423)

The above calculation means that above a certain interaction strength spontaneous symmetry breaking
occurs: the system acquires a permanent dipole moment. We have assumed here that the solvent frequency
does not depend on the temperature, but in reality it probably does.

Before attempting some real numerical calculations, we’ll also calculate the probility of finding a state |¢).
The most general state can be written as

) = cosf|0) + €™ sin @ [1) (4.24)

The probability of finding this state, and position z of the oscillator is of course

P(6,$,2) = % (] e PH ) (4.25)



The matrix element can be calculated using the above transformation:
Wle ) = (| UTUe P UMU ) (4.26)

which can be expanded to

costeosnd) (33 G5 ) (70 et ) (50 10) (00 )

(4.27)
This works out to:

[e‘ﬂ)‘—(”[c(m)2 cos? 0 + s(x)? sin? 0] + e P+ @) [5(x)? cos? 0 + ¢(z)? sin® 6]] e~ 3h40” (4.28)

So we note that the ¢—dependence drops out, which is not unexpected. Using this probability we can of
course calculate all other probabilities, such as the probability of finding 8, or z, and conditional probabilities,
such as P(0|x). Note that if we integrate over 8 we get the integral @, as in eq. (4.10).
Let’s try to find some reasonable numbers. For the excitation energy of the 2LS we take again 12500 cm™!,
and at room temperature kgT = B! is about 200 cm~!. The problem is what to take for the coupling
and for the frequency of the oscillator. The frequency of the oscillator (if we think of polarization being the
cause) can be related to the solvent frequency ws, for which in earlier papers we took values between 1 and
100 ps~—!. This corresponds to values between 30 and 3000 cm~!. The coupling can of course be anything,
mainly depending on the cavity radius if we think of an Onsager cavity type model. We’ve calculated before
that the energy of a dipole in its own reaction field can easily be 1000 cm ™!, so again we have a large range
of values that can be covered.
Let’s look at some limiting behavior. If we don’t couple the 2LS to an oscillator, a goes to zero, U becomes
the unit matrix, and we get
cos? @ + e P<sin? 0
1+ e Be

This at least seems correct. In the zero temperature limit it goes to cos? 8, whereas for infinite temperature
it approaches 1/2, as it should.
The expectation value of the dipole operator can be found from

P) =

(4.29)

(i) = % /_ " [(0] e =A™ [1) + (1] ePH |0)] = % /_ ” du s(2)c(z) [ePr- — e=BA]e=347"  (4.30)

In figure 3 we show the probability density P(x) for two sets of parameter values, one below, and one above
the point where phase separation occurs.

Something similar to this should happen to P () as well, but we can’t see it from the average dipole moment,
because it still has the same probability of pointing each way.

So, although the equilibrium situation can be complicated, there appears no problem with large coupling,
as in the case of two coupled oscillators which can become unstable for large coupling. Nevertheless,
dynamically the system does not perform as expected.

5 Coupled classical-quantum Liouville equation

Initial simulations of the coupled quantum—classical system do not appear to work properly. The population
of the quantum system does not decay to the ground state, and the coherences do not appear to decay at
all.

We first try to look at the equations themselves. The density operator elements satisfy the following
equations:

0

_6pto = 2miaxp; — 2mioTps

0

—6ptl = 2miaxp + 2miep; — 2miarps
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Figure 3: Probability density for finding the oscillator with position z. For a = 3000 cm ™!, which is below
the phase separation coupling constant, a single peak is found, centered around 0. For a = 5000 cm~! we
are above the transition point, and the density has two peaks, corresponding to two minima in the free
energy. The free energy now has a maximum at z = 0.

0

—8/;2 = —2miaxpy — 2miepy + 2miaxps

0

% = —2miazp + 2miozps (5.1)

The sum py + p3 should be constant, and indeed it is. Thus we can replace p3 by 1 — po. Furthermore
separating the equations into real and imaginary parts, using that z and py must be real, gives

0
ﬁ = —draxp]
!/
% = —2mep! (5.2)
6 11
;tl = 2mep) + 2max(2p0 — 1)

Again this system does not show decay behavior of the coherences, and also the probability for finding the
state |0) for instance, can be seen to exceed 1, or be below 0. This is not good.

To see where we possibly went wrong we consider the classical-quantum Liouville equation, where p is a
matrix depending on the parameters z,p. The equation can be written as

Op

with
H—£+1 22% + azfi + €]0) (0| (5.4)
=om 2mw T t+axp+e .

The Poisson bracket can then be written as:

_OHOp 0HOp _pOp _( o 0P
{H’p}_(')pam dx dp mox (mww—l—au)ap



Let us first try to derive the equations of motion for  and p from this. For z we get

dz op p

— =Tr [ dlTz— = — 5.6

dt / Y9t " m (56)
Obviously the commutator term vanishes because of the trace, and z is not an operator. The integral over
I is a phase space integral, and can be performed using partial integration. Similarly we get

% = Tr/dl"p—p = —mw?z — a (1) (5.7)

where (j1) is the expectation value of the dipole operator. Just integrating eq. (5.2) over phase space keeps
the quantum mechanical part of this operator:

0 . R

8_;) = —2mi[Ho, p] — 2miaz[fi, p] (5.8)
since obviously the Poisson bracket now drops out. So far it all looks good. We did make an appoximation
here, however. The position coordinate is defined as

x:ﬁ/mw (5.9)

and it is not immediately obvious that this is the same as
/da: xp = 2pPQ (5.10)

where pg is the quantum part of this operator, in other words pg = [ dz p.

There is a limitation on the values that the matrix elements can take. This is obvious for the diagonal
elements, they should add up to one, and represent probabilities, so that the cannot be less than zero,
but also the off diagonal elements cannot exceed 0.5, both for their real and imaginary parts. This can be
shown by looking at the probability of a state, for a given density matrix. Taking again the state (4.24),
the probability of finding it is given by:

(Y] p|) = poo cos? B + p11 sin® 6 + proe *? sinf cos @ + po1e’® sinfcosf < 1, VO, ¢ (5.11)
which can be written in the form
sin? 6 + poo cos 260 + sin 26 [pl, cos ¢ — pf; sind] < 1, V6, (5.12)

It can be inferred from this equation that, apart from p;; < 1, also py; < % and pg; < % This is a

major cause of the simulations not working properly before. We accidentaly started with higher values, and
this leads to, now expectedly, incorrect behavior for the diagonal elements as well. There are additional
restrictions. Suppose the density matrix is written as

(% .2)

The eigenvalues of this matrix are

1
Mgzi[ht¢l+MmP—4mﬂ—p@] (5.14)

The sum of these eigenvalues is one, as it should be, but in addition both these eigenvalues have to be larger
than zero and smaller than one for them to represent probabilities. This leads to the condition

V1+4]pi2 = 4po(1 — po) < 1 (5.15)

from which we derive that
Ip1]® < po(1 = po) (5.16)

10



This means that if in equilibrium py = 1, the off-diagonal elements must also be zero. It also means that
for a pure state (where the eigenvalues are 0 and 1) |p1|> = po(1 — po).

We will first do some simulations with the simplified system, described by the equations (5.2). We scale the
time with 27e, so that the equations can be written as

0
op)
op!!
6—t1 = p}+az(2p0 —1)

where a/e is now replaced by «, which now measures the interaction energy relative to the electronic energy.
The other equations are still

dx
— 5.18
it (5.18)
and p
d—f =—Az — (p+ aup) (5.19)

An interesting question is of course regarding the stationary state of this set of equations, which we should
be able to find by setting the right hand sides to 0. We introduced an additional parameter p here, which
can represent, the mass of the oscillator.

We then get

azp] =

pII

1

p1 +az(2pg — 1)
p =

—Az —(p+oapp; =

I
o oo o o

(5.20)
The solution is

pi=

p =

pL+ax(2po—1) =

—Az+appy =

o O O O

(5.21)

There is an infinite number of solutions, so how can we make it go to the correct equilibrium solution, and
what is the solution found in the calculations, in particular: how does it depend on the initial conditions?
From the simulations it even appears that there is no approach to this equilibrium at all in certain cases.
One curious thing about the equations as they stand is the following: at all times |p1]?> — po(1 — po) is a
constant. This can be seen as follows: multiplying the second of eqs. (5.2) by p} gives

,0p) _ 10p”

015 =37ot —2mep) plf (5.22)
Similarly we find from the third of egs. (5.2):
9" 19 12
ol g;l =3 g; = 2mep1py + 2mazpy (2p0 — 1) (5.23)
so that Bl 2
% = 4drazp} (2po — 1) (5.24)

11



Multiplying the first of egs. (5.1) with py gives

o 2
% = —8razpy po (5.25)

so that 5 )
w = dmazp!! (2p0 — 1) (5.26)

so that indeed )
Ol|p1]® — po(1 — po)]
ot

=0 (5.27)

and

po—Ipml*—p=0o (5.28)

This holds regardless of what the time dependence of z is. The constant ¢ is determined by the initial
values. If we are dealing with a pure state the eigenvalues are zero and one, and the state remains pure. It
also means that a pure state can never develop into a mixed state by this mechanism. So how can Redfield
theory be correct? And, is the same true if we also have permanent moments? (yes, see below).

Since we now have an additional constant of motion, this should also restrict the number of possible solutions
to egs. (5.21). From the last two equations we derive

o [1 + %(on - 1)] =\Jot+r-n [1 + %(2,)0 - 1)] —0 (5.29)

This has three solutions for pg:
1
Po =35 [1+V1-4o (5.30)

% [1 _ i] (5.31)

where the last solution can only apply if A < a®. Note that in the first case p; = = = 0, whereas in
the second case py and thus z is determined by the initial conditions. This is, however, no proof that the
solutions will actually converge to any to these.

Since we now have an additional relation between the variables (albeit dependent on the initial conditions
chosen), we can reduce the number of equations again.

and

Po

6 Redfield revisited

The starting point of Redfield, or for that matter, Kubo theory is the quantum Liouville equation with
coupling to external, classical, fields:

% — —arifto, ) - 2ri WL (6.1)
In this equation A is a set of system operators, and Ej are bath functions with a dynamics that may or
may not be influenced by the state of the system. In most cases the interaction is supposed to be weak,
and the effect of the quantum system on the bath neglected, so that the dynamics of the bath develops
independently. For a 2LS there are a maximum of three system operators |0) (0], |0) (1|, and |1} (0|, the
fourth one is dependent on these due to completeness. Since we want to keep the bath functions real, we
choose the following linear combinations for these operators, which makes them all hermitian:

Ao = 10) (0] — 1) (1] (6.2)

Ap = 10) (1] + [1) (0] (6.3)

12



and
Az =1i[|0) (1] = [1) (0[] (6.4)

Keeping the same notation for the density matrix (as a vector in Liouville space) as above, we can write
down the equations of motion of the various components. To that end we use

Y [Ak[0) OB = —(Ei +iE)|0) (1] + (Br —iE) 1) (0]

Zk:[Ak, 0) (L]Ex = —(Ex—iF2)|0) (0] + 2B [0) (1] + (Ey — iEp) |1) (1]

i[Ak, 1) OEx = (Er+1iE2)[0) (0] = 2Eo [1) (0] = (Ex +iE) 1) (1]

é[Ak, ) (U]E, = (Ex+iE2)[0) (1] = (Bx —iE2) |1) (0] (6.5)

Thus we can write for the time evolution of the elements of the density operator

Po 0 —(El + iEQ) (El - ’iEz) 0 Po
g P1 — —9mi —(El — 'LE2) —e+ 2E, 0 (El — lEg) P1 (6 6)
ot P2 - (E1 + ’LEQ) 0 € — 2E0 —(El + ’LEQ) P2 ’
P3 0 (E1 + ZEQ) —(El - ZEQ) 0 P3

Let’s again calculate the time rate of change of |p1|? + p3 — po; we can use that ps = pi:

LOpr L, 0p2 _ ,Op dp; _ dlpil® _
Pigy Thgy = Pigy TPg = 5 =
furthermore:
0 Op3 — . . . " . . *
(2po0 — 1)% = % = —2mi[-2(E1 +iE2)pop1 + 2(Er — iE2)popy + (Er + iEa)p1 — (Ey — iE»)pi]

(6.8)
Adding the last two equations indeed shows again that the quantity (can we call this the purity of the
density matrix? for a pure state o = 0, if the state is not pure o > 0. )

o=po—p,— ol (6.9)

is conserved under these dynamics, regardless of what the time—dependence of the externally applied fields
is.

So, here is the problem. In thermal equilibrium the density matrix for a 2LS is a mixed state (unless the
temperature is 0) given by

1 1 0
Pes = T oope ( 0 eBe ) (6.10)

and supposedly every state must evolve to this. Now suppose we start in a pure state, for instance |0) (0.
For this state 0 = 1. For the state the system is supposed to evolve to
e B
=— >0 6.11

0= (6.11)
for any finite temperature. In the zero temperature limit it goes to zero. However, o is conserved, so how
can this happen? Probably there is something in the limiting procedures used in the derivation of Redfield,
which changes this, but it certainly is a problem for direct simulation: the 2LS system, coupled to a damped
HO will never relax to equilibrium. On the other hand, we can also state that also the interaction with
an electromagnetic field will preserve the purity of the state, so if we start in thermal equilibrium, it can
eventually return to this state by this mechanism. We probably do have a problem if we look at excited
state vibrational distributions though, since it is unclear what type of state is created there.
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