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This course presents the Hilbert space background and the solution
theory of a class of operator equations involving time-differentiation
(evolutionary equations). This class is comprehensive in the sense that
it covers all typical models of mathematical physics such as acoustics,
thermodynamics, visco-elastics, electrodynamics, quantum dynamics
as well as systems describing various couplings of such model equations
in a unified Hilbert space framework. It extends the typical problem
classes accessible via a classical evolution equation approach to so-
called differential-algebraic systems. In order to make the theoretical
framework easily accessible, the course will to a large extent be review-
ing the needed results from Hilbert space theory on which our approach
to evolutionary equations is based. In later parts of the course we shall
focus on specific applications of the approach to problems of mathe-
matical physics and engineering.
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Nomenclature

A∗ adjoint relation or mapping to a relation or mapping A∧
for all or for every, as in

∧
x∈M x ∈ N , all quantifier∨

there is or there exists, as in
∨

x∈M x ∈ N , existence quantifier

Ā closure of A
Å closure of a closable operator A restricted to elements in C̊∞(Ω) for some open subset in

Rn+1, n ∈ N
z∗ complex conjugate of a complex number z
C̊∞(Ω)) set or space of smooth functions with compact support contained in the open subset in

Rn+1, n ∈ N
D the selfadjoint differentiation operator D := 1

2πi∂
⊕ direct sum, orthogonal sum⊕

direct summation sign or orthogonal summation sign as in
⊕

t∈M Ht

Div divergence of (0, 2)-tensor fields
∈ element sign as in x ∈ C
∈ element function as in x = ∈ ({x}) giving the element of a set containing only one element
Lν Fourier-Laplace transform with parameter ν ∈ Rn+1

Lν temporal Fourier-Laplace transform with parameter ν ∈ R
Grad (0,2)-tensor obtained as symmetrized covariant derivative of a 1-form/(0,1)-tensor
⇒ if . . . then . . ., as in x > 1 ⇒ x > 2
⇐⇒ . . . if and only if . . . , as in 1 = 1 ⇐⇒ 2 = 2
〈 · | · 〉X inner product of the inner product space X

E−1/2[X] inner product space derived from the inner product space X by modifying the inner
product 〈 ·| · 〉 X to 〈 ·|E· 〉 X , where E : X → X is continuous, linear, symmetric and
strictly positive definit

brc largest integer less or equal to the real number r, integer part∩
big intersection symbol, as in

∩
M =

∩
{X|X ∈M} =

{
y|
∧

X∈M y ∈ X
}
or
∩

X∈M X

`2(M) space of square summable complex-valued functions with at most countable arguments of
non-zero values defined on M , i.e. functions f ∈ CM with M \ ([{0}]f) countable, such
that

∑
m∈M |f(m)|2 =

∑
m∈M\([{0}]f) |f(m)|2 <∞

L2(Ω) space of (equivalence classes of) square integrable functions on Ω, (equivalence relation is
equality ’almost’ everywhere)

∆ (spatial) Laplacian
→ mapping, as in A→ B

→ strong convergence, as in xn
n→∞→ x∞ for the convergence of a sequence (xn)n∈N to its

limit x∞ in the norm topology
Lin linear hull, as in LinKA, the smallest linear space over the field K containing A
∧ logical and
¬ logical negation, not
∨ logical non-exclusive or
{· · · | · · · } the set of all · · · such that · · · , as in {x ∈ R|x > 2}∧

··· for all · · · / for every · · ·∨
··· there is · · · / there exists · · ·

7→ maps to, as in x 7→ x2

−A the set of all ordered pairs (a,−b) for (a, b) in a relation A ⊆ X × Y
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8 Nomenclature

−[A] the set of all negatives of elements in the set A
[{0}]f , N(f) null space or kernel of a mapping or function f
C field or set of complex numbers
Re real part
Im imaginary part
K field or set of numbers (either K = R or K = C)
N monoid or set of natural numbers {0, 1, 2, , . . .}
Z group or set of integers
w (A) numerical range of A
⊥ orthogonal, as in x ⊥ y
M⊥ ortho-complement of M ,
2B the set of (left-total) mappings from B into 2 = 0, 1A, i.e. the power set of B
AB the set of (left-total) mappings from B into A
× Cartesian product as in X × Y or Cartesian multiplication sign as in ×

s∈M
Hx, where

X,Y,M,Hs are sets, t ∈M
× vector product in R3 as in x× y, where x, y ∈ R3

PC orthogonal projector onto the closed subspace C
%(C) resolvent set of operator C
A
∣∣
M

A restricted toM for a mapping A : D(A) ⊆ X → Y , i.e. the mapping A
∣∣
M

: D(A)∩M ⊆
X → Y where x 7→ A(x)

RH Riesz mapping, which unitarily maps H∗ onto H
σ(C) spectrum of operator C
Cσ(C) continuous spectrum of C
Pσ(C) point spectrum of C
Rσ(C) residual spectrum of C
supp support
suppν0

support in direction ν0
supp0 temporal support⊗

tensor product sign, as in
⊗

n∈M Wn

⊗ tensor product
σα re-scaling transformation, α ∈ R \ {0}∪

big union symbol, as in
∪
M =

∪
{X|X ∈M} =

{
y|
∨

X∈M y ∈ X
}
or
∪

X∈M X
grad vectoranalytic differential operator grad, gradient
curl vectoranalytic differential operator curl, curl
div vectoranalytic differential operator div, divergence



Part 1

Some Basics of Hilbert Space Theory





CHAPTER 0

Some Useful “Well-Known” Elementary Preliminaries

The foundations of mathematics are logic & set theory. All mathematical objects are classes (i.e.
of the form

{x|P (x)} ≡ {x|P (x) = 1} ,
where P is a predicate in the sense of predicate logic, 0, 1 truth values, 1 for true and 0 for false).
Usually even only “good classes” are of interest, i.e. sets, as defined in the axioms of set theory).

In particular (following John von Neumann)

N :=
∩

{M |0 ∈M, n ∈M =⇒ n ∪ {n} ∈M}

is a set, although {M |0 ∈M, n ∈M =⇒ n ∪ {n} ∈M} is merely a class and also the members
of this class may be classes. In other words, the smallest class containing the empty set 0 and with
every element n also its successor n ∪ {n} is (by axiom) a set, called the set of natural numbers.
We use the usual number names

n+ 1 := n ∪ {n} ,
which results in the suggestive notation

n+ 1 := {0, . . . , n} .
In particular 0 ∈ N and 1 = {0}.
Unfortunately, as clear-cut matters are at the beginning, for easier communication we frequently
use jargon rather than rigorous mathematical terms. The trouble with jargon is:

I Same words or symbols for different things, different words or symbols for
equal things.

I An abundance of terminology.

We should always be conscious of and conscientious about this issue.

Example 1.

I A function x 7→ f (x) usually identified with mapping f : D (f) ⊆ X → Y, x 7→ f (x),
sometimes even with the expression f (x) generating the function1. Following the early
history of calculus, the functionf is also still sometimes referred to as the dependent
variable, compare “random variable”. By another abuse of logic, functions make their
appearance as “constants depending on ...”, thus completing the confusion between vari-
ables, functions and constants.

I A function f : D (f) ⊆ X → Y , X,Y metric spaces, is called bounded if its range
R (f) = f [X] is a bounded set in Y . If in addition X,Y are linear spaces and f is linear,
then f is called bounded if it maps bounded sets into bounded sets.

I R+ is used for the positive reals R>0 or the non-negative reals R≥0 or the additive group
(R,+).

1To avoid the possible confusion between f (x) as a mathematical expression with the so-called “free” variable
x with the function f , we shall, if the need arises to express a function in this fashion, write x 7→ f (x). As a typical
example rather than writing the ambiguous x2 meaning the function of squaring, we prefer x 7→ x2. We may also
use the notation f ( · ) for the function f . Note that the widely used “y = x2” is not a function but, clearly, an

equation. The intended function would be
{
(x, y) ∈ R2|y = x2

}
. Usually this casual jargon does not cause too

much difficulties, but it is always good to know that if confusion arises, we can be precise.

11



12 0. SOME USEFUL “WELL-KNOWN” ELEMENTARY PRELIMINARIES

I R+ is used for the positive reals R>0 or the non-negative reals R≥0 or the additive group
(R,+).

I + for numbers, vectors, matrices etc. .
I sets and structures: (M,+) group, jargon: the group M , x ∈M is a group element.
I Let fk : X → C, k ∈ N, denote continuous linear mappings (mappings into num-

bers are called functionals). Then (fk)k is called weak-*-convergent to f∞ if fk (x) →
f∞ (x) for every x ∈ X, which in turn is equivalent to saying (fk)k converges strongly
to f∞ or (fk)k converges point-wise to f∞.

The advantages of jargon: it may serve to recognize historical achievements, may inspire intuition,
may ease speaking, facilitate interpretation and may simplify communication with the scientific
main stream. So: jargon is okay, but rigorous mathematics should always be available as a fall-back
in case of trouble.

An important concept within set theory is the so-called binary relation, which is a set R of ordered
pairs, i.e.

r ∈ R =⇒ r = (a, b) for some sets a, b.

The now generally agreed concept of an ordered pair goes back to Kuratowski 1921:

(a, b) := {{a} , {a, b}} .

Cartesian product of set X0 with set X1:

X0 ×X1 := {(x0, x1) |xk ∈ Xk, k = 0, 1}

Recovery of the first component of (a, b).

Big intersection, big union: ∩
M := {x|x ∈ A for all A ∈M} ,∪
M := {x|x ∈ A for some A ∈M} .

With this we have ∩
(a, b) =

∩
{{a} , {a, b}}

= {a} ∩ {a, b}
= {a}

and so

a =∈
(∩

(a, b)
)

=
∪

{a} =
∩

{a}

=
∪∩

(a, b)

=
∩∩

(a, b) .

The recovery formula for b can be given as2

b =∈
({
x ∈

∩
(a, b) |

∪
(a, b) \

∩
(a, b) 6= 0 =⇒ x ∈

∪
(a, b) \

∩
(a, b)

})
=
∪({

x ∈
∪

(a, b) |
∪

(a, b) \
∩

(a, b) 6= 0 =⇒ x ∈
∪

(a, b) \
∩

(a, b)
})

=
∪

({x ∈ {a, b} | {a, b} \ {a} 6= 0 =⇒ x ∈ {a, b} \ {a}})

=
∪

({x ∈ {a, b} |a 6= b =⇒ x = b}) .

2Note that ∈ ({x}) := x =
∪

{x} =
∩

{x}. The domain of ∈ ( · ) is {{x} |x ∈ U}.
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We choose3 to denote

bRa := (a, b) ∈ R.

[M ]R pre-set of a set M under a relation R, R [N ] post-set of a set N under a relation R. R−1

denotes the inverse relation to R, i.e.

R−1 := {(x, y) | (y, x) ∈ R} ,

A correspondence is an ordered pair of a relationR and a Cartesian productA×B := {(x, y) |x ∈ A, y ∈ B}
such that R ⊆ A×B: (R,A×B).

The inverse correspondence to (R,A×B) is given by(
R−1, B ×A

)
.

A function is simply a right-unique relation f . If f is a function we write

x 7→ f (x) := f.

The total post-set f [U ] is here also called the range R (f) of f and the total pre-set [U ] f is called
the domain D (f) of f (here U denotes the class of all sets; the “universe”). A function f is called
one-to-one if f−1 is also a function.

A mapping is a correspondence (f,A×B) where f is a function. Notation: D (f) = [B] f

f : D (f) ⊆ A→ B,

x 7→ f (x) :=∈ (f [{x}]) =
∪
f [{x}] .

A mapping (f,A×B) is onto if the correspondence (f,A×B) is right-total, i.e. if f [A] = B.
This concept clearly only makes sense for mappings not for functions.

Analogously a mapping or correspondence is called left-total if A = [B] f .

A mapping (f,A×B) is called one-to-one if f is one-to-one. In this case
(
f−1, B ×A

)
is a

mapping, i.e.

f−1 : f [A] ⊆ B → [B] f ⊆ A,

x 7→ f−1 (x) :=∈ ([{x}] f) =
∪

[{x}] f.

Every function f gives rise to an onto and left-total mapping in an obvious way:

D (f) → R(f) ,

x 7→ f (x) .

A relation R gives rise to a function x 7→ R [{x}] and a mapping

FR : [U ]R→ 2R[U ],

x 7→ R [{x}] .

Note that F−1
R has little to do with R−1 or FR−1 .

To give some more warnings about jargon trouble, here some more examples in connection with
the concepts relation and correspondence.

Example 2.

I of a one-to-one function f is often said that “f is invertible”, although the inverse f−1

of of a function f always exists, but usually is not a function. One should always say
“invertible function” not just “invertible” to avoid this terminological problem.

3Note the permutation in the order of appearance of a, b. This is chosen for consistency with the usual

perspective on functions. We shall explain later.



14 0. SOME USEFUL “WELL-KNOWN” ELEMENTARY PRELIMINARIES

I a correspondence (R,A×A) is also known as a (directed) graph4, the elements of R are
called edges and if (a, b) ∈ R then a, b are called end vertices. In this interpretation A
would be the set of vertices and the standard notation for the graph would be (R,A).

I a correspondence (R,A×B) written as a triple (R,A,B) is called a formal context
in the field of formal concept analysis. A objects, B properties, R incidence relation.
formal concept5 (U, V ) ∈ 2A × 2B , i.e. U ⊆ A, V ⊆ B, if

V = [U ]R =: U ′, U = R [V ] =: V ′.

2A ∪ 2B → 2A ∪ 2B

S 7→ S′

is called derivation6, a term we know in a totally different context from analysis. U
extent of the formal concept (U, V ) and V its intent.

I for a correspondence (R,A×B) the relation R is also referred to as the graph of the
correspondence, unfortunately also called relation graph although the graph is the rela-
tion.

I correspondence (R,A×B) and relation R are as a matter of jargon used equivocally
(the same for mapping and function). So self-confusing that later the relation R of the
correspondence (R,A×B) is referred to as the graph of the relation R.

I due to vigorous self-confusion apparently long forgotten “relations” make their ghastly
appearance as so-called “multi-valued functions” (or “multi-valued mappings”) or “set-
valued functions” (or “set-valued mappings”). The latter is a typical jargon term since
of course every function/mapping has sets as values (recall for example that numbers are
also sets!).

I The element relation we need from set theory ε ⊆ U × U fits into our terminology. It
is x ∈ M ⇐⇒ (M,x) ∈∈, ∈ [U ] = {y| (S, y) ∈∈, S ∈ U} = {y|y ∈ S, S ∈ U} =

∪
U ,

∈ [{S}] = {y|y ∈ T, T ∈ {S}} = {y|y ∈ S} = S.

[X] ∈= {S| (S, x) ∈∈, x ∈ X} = {S|x ∈ S for some x ∈ X} .

{({x} , x) |x ∈ U} ⊆∈
The sub-relation {({x} , x) |x ∈ U} is obviously right-unique defining a mapping

{{x} |x ∈ U} → U ,
{x} 7→ x,

for which we keep the notation ∈: {{x} |x ∈ U} → U , it is ∈ ({x}) = x. {{x} |x ∈ U}
is the largest pre-set on which ∈ will be a function, which supports our round-bracket
notation. ∈ (S) reads as “the member of S” with the implicit assumption that S has
only 1 member so that

S = {∈ (S)} .

4In an undirected graph the edges are not ordered pairs but just subsets of cardinality two or, if one allows
for “edges connecting a point with itself”, of cardinality one or two. In the latter case the graph would be (E,A)
with some set

E ⊆ {{a, b} |a, b ∈ A} .
If multiple edges between the same end vertices are permitted edges need to be indexed. In this case

E ⊆ I × {{a, b} |a, b ∈ A} ,

where I is an index set such as N or Z or for example a finite index set n+ 1 := {0, . . . , n}, n ∈ N.
52A denotes the so-called power set of A

2A = {U |U ⊆ A} .

6Also U ′ is used in classical set theory to denote the complement U \ U of a set in a prescribed “universe” U ,

a sufficiently large set.
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In other words, x 7→∈ (x) is the inverse of function that results in singletons:

x 7→ {x} .

Recall our convention
bRa := (a, b) ∈ R.

E.g. R =≤
≤=

{
(y, x) ∈ R2|x ≤ y

}
,

then ≤ [{3}] = {y|3 ≤ y}. This choice may be slightly confusing, but it is the price to pay for
consistency with the case of functions f , where we prefer the input to be to the right of the
function symbol but as the first component in the ordered pair. The right component is then
the image f (x) (to support the input-output metaphor for functions). Fortunately, we can keep
the resulting potential for confusion small by avoiding to mix the notation bRa and (a, b) ∈ R.

We note that for a function f

yfx ⇐⇒ y = f (x) ⇐⇒ (x, y) ∈ f

so that our choice for general relations seems to be more intuitive, which is the actual reason for
this convention.

Since the mapping

R : {p : {0, 1} → X0 ∪X1|p (k) ∈ Xk, k = 0, 1} → X0 ×X1 := {(a, b) |a ∈ X0, b ∈ X1}
p = {(0, p (0)) , (1, p (1))} 7→ (p (0) , p (1))

has

R−1 : X0 ×X1 → {p : {0, 1} → X0 ∪X1|p (k) ∈ Xk, k = 0, 1}
(a, b) 7→ {(0, a) , (1, b)}

as its inverse, we have one-to-one correspondence

(R, {p : {0, 1} → X0 ∪X1|p (k) ∈ Xk, k = 0, 1} × (X0 ×X1))

indeed a bijection R, which allows to identify ordered pairs with left-total mappings in

{p : {0, 1} → X0 ∪X1|p (k) ∈ Xk, k = 0, 1} = X0 ×X1.

This identification also allows for a consistent and convenient generalization to triples, quadruples,
quintuples, ... (n+ 1)-tuples for n ∈ N, . . ., N -tuples for an arbitrary set N .

Take7 e ∈MN := {f |f : N →M} then we may associate with e the N -fold Cartesian product

×
n∈N

e (n) :=

{
t ∈

(∪
e [N ]

)N
|t (n) ∈ e (n) , n ∈ N

}
.

The elements t ∈ ×
n∈N

e (n) are written as N -tuples

t = (t (n))n∈N .

In this sense every mapping f ∈ SN can be considered as an element of ×
n∈N

S and so the identifi-

cation
f = (f (n))n∈N

is motivated. This works for arbitrary sets M,N . If, however, N = n+ 1 := {0, . . . , n} (following
John von Neumann) we get so-called (n+ 1)-tuples, wher one often writes

fk := f (k) , k = 0, . . . , n,

7The notation MN is somewhat suggestive in so far as for sets M and N with finite cardinalities #M , #N ∈ N
we have

#
(
MN

)
= (#M)#N .

Moreover, for m,n ∈ N we have that the cardinality of (m+ 1)(n+1) = {0, . . . ,m}{0,...,n} is just the number

(m+ 1)(n+1) in the sense of usual arithmetic.
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and so
f = (fn)n∈n+1 = (fn)n=0,...,n

If N = N we speak of a sequence. Any f ∈ SN or f ∈ Sn+1, n ∈ N, which is a bijection8 is called
an enumeration of S.

N arbitrary, S = 2 ≡ {0, 1}
2N = {P |P : N → {0, 1}}

{P |P : N → {0, 1}} → {U |U ⊆ N}
P 7→ {x ∈ N |P (x) = 1} .

Recall that “x ∈ U true” means (x ∈ U) = 1 and x 6∈ U means (x ∈ U) = 0 we get as the inverse
function

{U |U ⊆ N} → {P |P : N → {0, 1}}

U 7→

N → {0, 1}

x 7→ x ∈ U


and so we have a bijection between 2N and the so-called power set {V |V ⊆ N} of N , which finally
justifies the common notation 2N for the power set. The mapping

χ
V
: U → {0, 1}
x 7→ (x ∈ V )

is called characteristic function of V . These observations motivate in particular to make little
distinction between sets and their characteristic functions.

In general: if (G, a, b, . . .) is a set with operations or mappings a, b, . . . acting on some Cartesian
product of the set G one usually re-uses the name of the set G for the structure (G, a, b, . . .),
allowing to write x ∈ G for members of the first component of the structure (G, a, b, . . .). Consider
for example an “additive group” (G,+) then we can write x ∈ G meaning x is an element of the
group, rather than having to say x is a member of the first component of the group (G,+).

8A bijection is a left-total, one-to-one and onto mapping.



CHAPTER 1

Hilbert Spaces

1.1. Inner Product Spaces

Definition 3. A normed linear space1 ((M, +, (α·)α∈K) , | · |M ) is called an inner-product
space if the norm | · |M is induced by a functional 〈 · | · 〉M : M ×M → K, (x, y) 7→ 〈x|y〉M ,
satisfying

(1) 〈x| · 〉M :M → K is a linear functional for every fixed x ∈M ,

(2) 〈x|y〉M = 〈y|x〉M for every x, y ∈M ,
(3) 〈x|x〉M ∈ R≥0 for every x ∈M ,
(4) 〈x|x〉M = 0 implies x = 0 for every x ∈M ,

in the sense that

(1.1.1) |x|M :=
√
〈x|x〉M for all x ∈M.

We speak of an inner product and as a matter of jargon of an inner-product space M (assuming
that linear structure and inner product are clear from the context).

Note that since 〈x| · 〉M : M → K is linear and the property 2. holds, we also have that 〈 · |x〉M :
M → K satisfies

〈 · |x〉M (α · u+ v) = 〈α · u+ v|x〉M
= α 〈u|x〉M + 〈v|x〉M

for all α ∈ K, u, v ∈ H. A functional F : M ×M → K, such that F (x, · ) and F ( · , x) are both
linear, is called sesqui-linear. In the special case K = R such a mapping F is called bi-linear.

Definition 4. Let ((M, +, (α·)α∈K) , | · |M ) be a real or complex inner product space. For any
finite families u := (ui)i∈n+1 , v := (vi)i∈n+1 ∈Mn+1, n+1 := {0, . . . , n} , n ∈ N, in M the square
matrix

G〈 · | · 〉M (u|v) :=
(
〈ui| vj〉M

)
i,j∈n+1

1A normed linear space is an ordered pair of a linear space (M, +, (α·)α∈K) and a norm | · |M . A norm is a

functional in RM with the properties

I |αx|M = |α| |x|M
I |x+ y|M ≤ |x|M + |y|M
I |x|M = 0 =⇒ x = 0

for all x, y ∈ M , α ∈ K, where K denotes the underlying field for the linear space.

17
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of the pair-wise evaluation of the inner product 〈 · | · 〉M on F and G is called the Gramian2 of
F, G. We have for fixed (vi)i∈n+1\{k} that

M → C(n+1)×(n+1)

vk 7→ G〈 · | · 〉M (F | (vi)i∈n+1)

is a linear mapping, k ∈ n+ 1. Moreover,

G〈 · | · 〉M (F |G) = G〈 · | · 〉M (G|F ).

Lemma 5. Let ((M, +, (α·)α∈K) , | · |M ) be a real or complex inner-product space and 〈 · | · 〉M its

inner product. Moreover, let u := (ui)i=0,...,n , v := (vi)i=0,...,n ∈ M{0,...,n}, n ∈ N, be a finite

families in M. Then we have for the corresponding Gramian matrix G〈 · | · 〉M (u|v) that

(1.1.2) z∗G〈 · | · 〉M (u|v)w = 〈z · u | w · v〉M for all z, w ∈ Rn+1 or z, w ∈ Cn+1, respectively.

Here z · u abbreviates the linear combination

z · u :=
n∑

i=0

zi · ui for all z = (z0, . . . , zn) ∈ Rn+1 or all z = (z0, . . . , zn) ∈ Cn+1, respectively.

Remark 6. This result shows in particular that G〈 · | · 〉M (u|u) is a selfadjoint, positive semi-definite

real or complex matrix. Moreover, G〈 · | · 〉M (u|u) is a selfadjoint, positive definite matrix if and

only if u = (ui)i=0,...,n is linearly independent, i.e.∧
z∈Kn+1

z · u = 0 ⇒ z = 0.

Corollary 7. Let ((H, +, (α·)α∈K) , | · |H) be a real (K = R) or complex (K = C) inner product
space with inner product 〈·|·〉H . Then the Cauchy-Schwarz inequality holds

(1.1.3)
∧

x, y∈H

|〈x|y〉H | ≤ |x|H |y|H .

Equivalently, we have

(1.1.4)
∧

x, y∈H

|Re 〈x|y〉H | ≤ |x|H |y|H .

If 〈·|·〉H is an inner product, then the equality sign holds

I in (1.1.3) if and only if x and y are linearly dependent with coefficients in K,
I in (1.1.4) if and only if x and y are linearly dependent with coefficients in R.

2Somewhat suggestively we may consider u, v as column matrices and then G〈 · | · 〉M (u|v) as a formal matrix

product of u> and v, where multiplication is carried out in the sense of the inner product. Using the 〈 · | · 〉M as
the corresponding product symbol we have

G〈 · | · 〉M ((u0, . . . , un) | (v0, . . . , vn)) =


u0

.

..

un


>

〈 · | · 〉M


v0

.

..

vn



=
(
u0 · · · un

)
〈 · | · 〉M


v0

.

..

vn



=


〈u0|v0〉M · · · 〈u0|vn〉M

.

..
. . .

.

..

〈un|v0〉M · · · 〈un|vn〉M

 .
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Proof. The result is a special case of the previous considerations. Indeed, taking F = (x, y)
then

G〈·|·〉H (F |F ) :=

 〈x|x〉H 〈x|y〉H
〈y|x〉H 〈y|y〉H


is positive semi-definite and so it must have a non-negative determinant

det
(
G〈·|·〉H (F |F )

)
= 〈x|x〉H 〈y|y〉H − |〈x|y〉H |2 ≥ 0.

This yields (1.1.3). That (1.1.4) is actually equivalent to (1.1.3) becomes clear if we replace y by
κ · y with κ ∈ C such that |κ| = 1 and κ 〈x|y〉H ∈ R. The linear dependence results are immediate
from (1.1.2) applied to 〈·|·〉H and Re 〈·|·〉H , respectively. �

The Cauchy-Schwarz inequality shows that an inner product in an inner product space M induces
indeed a norm, since it implies the triangle inequality for x 7→

√
〈x|x〉M .

Lemma 8. In an inner-product space (M, +, (α·)α∈K, | · |M ) the parallelogram equality holds:

(1.1.5) |x− y|2M + |x+ y|2M = 2 (|x|2M + |y|2M )

for all x, y ∈M.

Definition 9. An inner-product space (M, +, (α·)α∈K, | · |M ) , where (M, +, (α·)α∈K, | · |M ) is
a normed linear space, is called an inner-product space or a pre-Hilbert space. A Hilbert
space is a complete pre-Hilbert space. If K = R then we speak more specifically of a real inner-
product space, a real pre-Hilbert space or a real Hilbert space, respectively. If K = C then
we speak of a complex inner-product space, a complex pre-Hilbert space or a complex
Hilbert space, respectively.

Note that every complex inner-product space (M, +, (α·)α∈C, | · |M ) with inner product 〈 · | · 〉M
is also a real inner product space by limiting the scalar multiplication to elements in R, i.e.
(M, +, (α·)α∈R, | · |M ) with inner product Re 〈 · | · 〉M .

Conversely every real inner product space gives rise to a complex inner product space by a process
known as complexification. For a real inner product space X we consider the inner product space
X ⊕ X (the direct sum), which is the set X × X with component-wise linear structure and the
inner product

〈(x, y) | (u, v)〉X⊕X := 〈x|u〉X + 〈y|v〉X .

Via

X → X ⊕ {0} ⊆ X ⊕X

x 7→ (x, 0) ≡

 x

0

 ≡ x⊕ 0

X is isometrically embedded into X ⊕X. By extending the linear structure of X ⊕X by letting

(α+ iβ) ·

 x

y

 :=

 α −β

β α

 x

y

 , α, β ∈ R,

we introduce in X ⊕X a complex linear structure. The mapping

X ⊕X → (X ⊕X)⊕ (X ⊕X) x

y

 7→

 x

y

 −y

x

 ≡

 x −y

y x
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is a bijection, indeed, chosing the induced component-wise linear structure and inner product, an
isometry. The resulting inner product space

 x −y

y x

 |x, y ∈ H


is called the complexification (X ⊕X)C of X. One usually introduces the notation x −y

y x

 =

 x 0

0 x

+

 0 −y

y 0

 =: x+ iy

and speaks of x as the real part and y as the imaginary part of x + iy. The inner product of
(X ⊕X)C can be guessed from the binomial formula

〈x+ iy|u+ iv〉(X⊕X)C
= 〈x|u〉H⊕H + 〈y|v〉H⊕H + i

(
〈x|v〉H⊕H − 〈y|u〉H⊕H

)
and all needed properties can be shown (exercise!).

Note that this has nothing to do with the issue of x and y being “real” in some sense. Indeed, the
complex numbers are a complex Hilbert space with inner product

(x, y) 7→ xy.

They may, however, also be considered as a – then two-dimensional – real Hilbert space CR with
inner product

(x, y) 7→ Re (xy) .

Its complexification3

(CR ⊕ CR)C
is then four-dimensional, with complex numbers as real and imaginary part.

The parallelogram equality yields the following remarkable consequence.

Proposition 10. Let ((M, +, (α·)α∈K) , | · |M ) be a pre-Hilbert space or a Hilbert space and K a
convex subset of H, i.e.∧

x, y∈K

x+ [0, 1] · (y − x) := {x+ t · (y − x) |t ∈ [0, 1]} ∈ K,

then for any x ∈M and any sequence f := (fn)n∈N in K such that

(1.1.6) |x− fn|M → |x−K|M := inf {|x− y|M |y ∈ K } ,

3The space (CR ⊕ CR)C =


 x −y

y x

 is via

 x −y

y x

 7→

 x −y

y x


unitarily equivalent to the (real) space of quaternions.

Taking a complex inner product space X then X ⊕X equipped with the quaternionic multiplication α −β

β α

 x

y


would lead to a “quaternification” of X. If X has an additive involution x 7→ x, which is compatibel with conjugation
in the sense that

αx = αx,

then X ⊕X can carry a quaternionic structure by identifying X ⊕X with
 x −y

y x

 |x, y ∈ H

 .
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the sequence f is also a Cauchy sequence.

Remark 11. That the distance |x−K|M between x and K can be approximated by a sequence
f of elements in K is clear by the definition of an infimum.

Proof. Let f be such an extremal sequence in K, i.e. we have (1.1.6). Then by the parallel-
ogram equation, the convexity of K and the extremal property of |x−K|M we have

|fn − x|2M + |fm − x|2M = 2

(∣∣∣∣12 · (fn + fm)− x

∣∣∣∣2
M

+

∣∣∣∣12 · (fn − fm)

∣∣∣∣2
M

)
,

≥ 2

(
|x−K|2M +

∣∣∣∣12 · (fn − fm)

∣∣∣∣2
M

)
,

or
1

2
|fn − fm|2M ≤

(
|fn − x|2M − |x−K|2M

)
+
(
|fm − x|2M − |x−K|2M

)
−→ 0 as n,m→ ∞.

�

For Hilbert spaces we now get

Corollary 12. Let ((M, +, (α·)α∈K) , | · |M ) be a Hilbert space and K a convex subset of M.
Then there is an element fmin ∈ K̄ such that

(1.1.7) |x− fmin|M = |x−K|M .

Such an fmin is uniquely determined.

Proof. An extremal sequence f is a Cauchy sequence and has therefore - by completeness
and definition of closure - a limit fmin := lim f ∈ K̄. Continuity yields (1.1.7) from (1.1.6) by
taking limits. Let now gmin be another element with |x− gmin|M = |x−K|M , then applying the
parallelogram equality as in the proof of the previous proposition we get

|fmin − x|2M + |gmin − x|2M = 2

(∣∣∣∣12 · (fmin + gmin)− x

∣∣∣∣2
M

+

∣∣∣∣12 · (fmin − gmin)

∣∣∣∣2
M

)
,

≥ 2

(
|x−K|2M +

∣∣∣∣12 · (fmin − gmin)

∣∣∣∣2
M

)
,

and so

2 |x−K|2M = |fmin − x|2M + |gmin − x|2M ,

≥ 2 |x−K|2M +
1

2
|fmin − gmin|2M ,

which in turn implies the desired uniqueness. �

Proposition 13. The completion4 of a pre-Hilbert space is a Hilbert space.

Proof. The properties of the inner product carries over to the completion. �

Definition 14. Let H := ((M, +, (α·)α∈K) , | · |M ) be a real or complex inner-product space,
then two elements x, y ∈M are called orthogonal if

〈x|y〉H = 0.

In this case we write x ⊥ y. If x ⊥ y for all y ∈ N ⊆M we write x ⊥ N. Moreover, we define the
so-called ortho-complement as

N⊥ := {x ∈M |x ⊥ N } .

4The completion of a metric space M is the smallest complete space containing M . This completion can always

be constructed, see Appendix A.
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Remark 15. In the real case
〈x|y〉H = 0.

is equivalent to

(1.1.8) |x+ y|2M = |x|2M + |y|2M .
If H is a complex inner-product space, then for two elements x, y ∈ M to be orthogonal is
equivalent to

(1.1.9) |x+ y|2M = |x|2M + |y|2M = |ix+ y|2M .
Note that equation (1.1.8) can be interpreted as Pythagoras’ theorem with equations (1.1.9) as
the complex variant.

Example 16. Let either K = R or K = C. Denote the characteristic function of a set N by χN ,
i.e.

χN (t) :=

 1 for t ∈ N

0 for t /∈ N
.

Then consider the characteristic functions χI ∈ KR, for I any bounded interval in R, and the
generated linear space

S(R,K) := LinK {χI | I ⊂ R bounded interval}
which, since S(R,K) ⊂ KR, inherits its linear structure from K by letting

(α · x+ y)(t) := αx(t) + y(t) for all t ∈ R, x, y ∈ KR, α ∈ K.
With

〈x|y〉L2(R,K) :=

∫
t∈R

x(t)∗y(t) dt for x, y ∈ S(R,K),

we have a inner product on the space of step-functions S(R,K), if we identify step functions s1,
s2 if their difference s1 − s2 satisfies∫

R
|s1 (t)− s2 (t)|2 dt = 0.

The completion of the resulting pre-Hilbert space X is a Hilbert space denoted by L2(R,K). The
Lebesgue integration theory shows that the elements of L2(R,K) can be identified with equivalence
classes of (real- or complex-valued) measurable, square integrable functions with respect to
almost everywhere equality as equivalence relation. We abbreviate

L2(R) := L2(R,C).

Example 17. Let either K = R or K = C. Then consider the characteristic functions χI ∈ KRn+1

for I = I0 × · · · × In with Ik bounded intervals in R, k = 0, . . . n, and the generated linear space

S(Rn+1,K) := LinK
{
χI | I = I0 × · · · × In ⊂ Rn+1, Ik bounded intervals, k = 0, . . . , n

}
which, since S(Rn,K) ⊂ KRn+1

, inherits its linear structure from K by letting

(α · x+ y)(t) := αx(t) + y(t) for all t ∈ Rn+1, x, y ∈ KRn+1

, α ∈ K.
With

〈x|y〉L2(Rn+1,K) :=

∫
t∈Rn+1

x(t)∗y(t) dt for x, y ∈ S(Rn+1,K),

we have an inner product on the space of step-functions S(Rn+1,K), if we identify step functions
s1, s2 if their difference s1 − s2 satisfies∫

Rn+1

|s1 (x)− s2 (x)|2 dx = 0.

The completion of the resulting pre-Hilbert space X is a Hilbert space denoted by L2(Rn+1,K).
Again we note that the Lebesgue integration theory shows that elements of L2(Rn+1,K) can be
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identified with equivalence classes of (real- or complex-valued) measurable, square integrable
functions with respect to almost everywhere equality as equivalence relation. We use the
abbreviation

L2(Rn+1) := L2(Rn+1,C).
Even without measure theory we can get a more managable access to L2(Rn+1). Let C̊∞(Rn+1) be
the set of infinitely often differentiable function ϕ defined on Rn+1 with ϕ = 0 outside of a bounded
closed subset. The smallest such set outside of which ϕ = 0 is called the support of ϕ and denoted
by supp ϕ. One says the elements of C̊∞(Rn+1) have compact support. The set C̊∞(Rn+1) is a

linear space if interpreted as a linear space of functions. By identifying ϕ ∈ C̊∞(Rn+1) with the
equivalence class of Cauchy sequences approximating ϕ with respect to | · |L2(Rn+1) we obtain an

embedding of C̊∞(Rn+1) in L2(Rn+1).

Example 18. Let M be a set and either K = R or K = C. Then consider the characteristic
functions χ{t}, t ∈M, and

X := LinK
{
χ{t} | t ∈M,

}
with the induced linear structure of KM . With

〈x|y〉`2 :=
∑
t∈M

x(t) y(t) for x, y ∈ X

we have an inner product on X. The completion of the resulting pre-Hilbert space X is a Hilbert
space denoted by `2(M,K). The complex Hilbert space `2(M,C) will be denoted by `2(M).

Proposition 19. Every linear subspace V ⊆ W of a pre-Hilbert space W is a pre-Hilbert space
(with | · |V = (| · |W )

∣∣
V
). If V is closed and W is a Hilbert space then V is also a Hilbert space.

Let A be an arbitrary subset of W then A⊥ is a closed linear subspace. If W is a Hilbert space
then A⊥ is also a Hilbert space. In any case, we have

(1.1.10) A⊥ = (LinKA)
⊥ = LinKA

⊥
.

Leaving the proof of this proposition as an exercise we conclude this section and turn our attention
to Hilbert spaces.

1.2. Hilbert Spaces

1.2.1. Fundamental Results. A central result of Hilbert space theory is the so-called pro-
jection theorem. The following is a first variant.

Theorem 20. (Projection Theorem 1) Let H be a real or complex Hilbert space and C a closed
subspace of H. Then for any x ∈ H there is a unique y ∈ C (called the orthogonal projection
of x on C) such that

(1.2.1) |x− y|H = |x− C|H .
This element y ∈ C is characterized by

x− y ⊥ C.

Proof. The unique existence of a y := ymin ∈ C of minimal distance is already known. We
need to show the characterization in terms of orthogonality. It also suffices to discuss the complex
case. From the extremal properties of |x− C|H we have

(1.2.2)
∧
z∈C

|x− y|2H = |x− C|2H ≤ |x− y − z|2H .

From |x− y|2H ≤ |x− y − z|2H we get

0 ≤ |z|2H − 2 Re 〈x− y|z〉H .
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Let now z = ε · (ω · u) where ε ∈ R, ω ∈ C, |ω| = 1, u ∈ C, then we see that the quadratic
polynomial function in the real variable ε

ε 7→ ε2|u|2H − 2 ε Re 〈x− y |ω · u〉H
can only be non-negative if

Re 〈x− y |ω · u〉H = 0

Choosing ω = ı and ω = 1 shows that

〈x− y |u〉H = 0,

where u ∈ C was arbitrary. Thus, we have

(1.2.3) x− y ⊥ C.

Conversely, let y ∈ C be such that (1.2.3) holds. By reverting the above reasoning we obtain again
(1.2.2) from which the claim (1.2.1) is obvious. �

Definition 21. A set o ⊆ H is called an orthonormal set, if

∧
u,v∈o

〈u | v〉H =

 1 for u = v

0 for u 6= v
.

If the cardinality #o is finite, countable (i.e. #o = #N) or non-countable, then o is called a finite,
countable or non-countable orthonormal set, respectively. An orthonormal set is called complete
if the linear span LinK o := {u ∈ H |u (finite) linear combination of o} is dense in H, i.e.

H = LinK o

and K is the field of scalars of H. In the latter case o is also known as a Hilbert space basis.

Example 22. Let M be a set and either K = R or K = C. The Hilbert space `2(M,K) :=(
LinK

{
χ{t} | t ∈M,

}
, f 7→

√∑
t∈M |f (t)|2

)
defined as the completion of the pre-Hilbert space(

LinK
{
χ{t} | t ∈M,

}
, f 7→

√∑
t∈M |f (t)|2

)
has

{
χ{t}

∣∣ t ∈M
}
as complete orthonormal set.

Remark 23. If a finite family (ui)i=1,...,n, n ∈ N, of linearly independent elements of a real
or complex Hilbert space H with scalar field K is given, then the projection theorem yields an
orthonormal family (vi)i=1,...,n in the following way: Letting v1 := 1

|u1|H · u1, pick the normalized

element vk+1 ∈ LinK {ui|i = 1, . . . , k+1} orthogonal to the linear subspace LinK {ui|i = 1, . . . , k}
satisfying 〈uk+1|vk+1〉H > 0. That vk+1 is indeed uniquely determined can be seen in the following
way. Let wk+1 ∈ LinK {ui|i = 1, . . . , k + 1} ∩ LinK {ui|i = 1, . . . , k}⊥ be normalized then vk+1 =
α ·wk+1 for some α ∈ C with |α| = 1. We have 〈uk+1|vk+1〉H = α 〈uk+1|wk+1〉H and making this
positive indeed determines α uniquely. By this iterative construction we get

LinK {ui|i = 1, . . . , k} = LinK {vi|i = 1, . . . , k} for all k ∈ N

and {vi|i = 1, . . . , n} an orthonormal set. The procedure, known as E.Schmidt orthonormal-
ization, is recursive and extends in the obvious way to countable families of linearly independent
elements of H.

Theorem 24. Let H be a real or complex Hilbert space. Then there is an orthonormal set o such
that

H = LinK o

holds.

Definition 25. A Hilbert space H is called finite-dimensional if it has a finite complete or-
thonormal set. A Hilbert space H is called separable if it has a countable complete orthonormal
set.
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Remark 26. The cardinality #o of a complete orthonormal set o in a Hilbert space H is an
invariant for H.

As a consequence of the last theorem we have that apparently any element f of a Hilbert space
H can be approximated by a (finite) linear combination of a complete orthonormal set o to any
degree of accuracy.

For any fixed number of elements of o used for such an approximation there is indeed a best
approximation. The usefulness of orthonormal sets lies to a good deal in the simplicity of finding
this best approximation.

Theorem 27. Let H be a real or complex Hilbert space with scalar field K and o a complete
orthonormal set in H. Then we have for any finite subset ofin ⊆ o that∣∣∣∣∣∣x−

∑
u∈ofin

〈u|x〉 · u

∣∣∣∣∣∣
H

=
∣∣x− LinK ofin

∣∣
H
.

Proof. Since ofin is finite we have LinK ofin = LinK ofin. That a best approximation in
LinK(ofin) exists follows therefore from the projection theorem. Let z =

∑
u∈ofin

αu · u be this

best approximation, then we must have

x−
∑

u∈ofin

αu · u ⊥ ofin.

or for all v ∈ ofin 〈
v

∣∣∣∣∣∣x−
∑

u∈ofin

αu · u

〉
H

= 〈v|x〉H − αv = 0.

�

Lemma 28. Let H be a Hilbert space and o a complete orthonormal set. For any x ∈ H there is
an at most countable orthonormal set o(x) ⊆ o such that

x ∈ LinK o(x).

Proof. Since

x ∈ LinK o

for a complete orthonormal set o, we have that x can be approximated by (finite) linear combi-
nations of o. Let o1/(n+1) ⊆ o, n ∈ N, be a finite orthonormal set in the Hilbert space H such
that ∣∣x− LinK o1/(n+1)

∣∣
H
<

1

n+ 1
.

Clearly, Bn :=
∪n

k=0 o1/(k+1) ⊆ o and so Bn is (as a subset of an orthonormal set) an orthonormal
set. We certainly have also

|x− LinKBn|H <
1

n+ 1
.

Since any of the Bn is finite, either o = Bn for some n ∈ N or the orthonormal system ox :=∪∞
k=0 o1/(k+1) ⊆ o is countable – as a union of finite sets – and we have

|x− LinK ox|H = 0

and so as desired

x ∈ LinK ox.

�
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Lemma 29. (Bessel’s inequality and Parseval’s equality) Let H be a Hilbert space. For any finite
orthonormal set ofin we have

(1.2.4)

∣∣∣∣∣∣
∑

u∈ofin

〈u|x〉H · u

∣∣∣∣∣∣
2

H

=
∑

u∈ofin

|〈u|x〉H |2 ≤ |x|2H

for all x ∈ H. Let oN be a countable orthonormal set and (ui)i∈N an enumeration of oN then

(1.2.5)

∣∣∣∣∣
∞∑
i=0

〈ui|x〉H · ui

∣∣∣∣∣
2

H

=
∞∑
i=0

|〈ui|x〉H |2 ≤ |x|2H .

If o is a complete orthonormal set, then for any x ∈ H there is a finite or countable orthonormal
system ox (enumerated as (vi)i∈N) such that∣∣∣∣∣∑

i

〈vi|x〉H · vi

∣∣∣∣∣
2

H

=
∑
i

|〈vi|x〉H |2 = |x|2H .

Proof. We have by orthonormality of ofinthat

(1.2.6)

0 ≤
∣∣∣x−

∑
u∈ofin

〈u|x〉H · u
∣∣∣2
H
,

= |x|2H − 2Re
〈∑

u∈ofin
〈u|x〉H · u

∣∣∣x〉
H
+
∣∣∣∑u∈ofin

〈u|x〉H · u
∣∣∣2
H
,

= |x|2H −
∑

u∈ofin
|〈u|x〉H |2 ,

and ∣∣∣∣∣∣
∑

u∈ofin

〈u|x〉H · u

∣∣∣∣∣∣
2

H

=
∑

u∈ofin

|〈u|x〉H |2 .

This proves (1.2.4). From (1.2.4) follows

(1.2.7)

∣∣∣∣∣
m∑
i=n

〈ui|x〉H · ui

∣∣∣∣∣
2

H

=
m∑
i=n

|〈ui|x〉H |2 ≤ |x|2H

for allm,n ∈ N,m ≥ n. Thus, we have from the convergence of the numerical series
∑∞

i=0 |〈ui|x〉H |2
that (

∑n
i=0 〈ui|x〉H · ui)n∈N is a Cauchy sequence. by completeness the existence of

lim
n→∞

n∑
i=0

〈ui|x〉H · ui =:
∞∑
i=0

〈ui|x〉H · ui

follows. From (1.2.7) now follows (1.2.5) with n = 0 and letting m → ∞. Finally, let o be a
complete orthonormal set and ox and Bn, n ∈ N, as constructed in the proof of the previous
lemma. Let (vi)i be an enumeration of ox such that∧

n∈N

∨
N∈N

Bn = LinK{vi | i = 1, . . . , N},

(K the underlying scalar field,) then according to Theorem 27 and by Lemma 28 we have∣∣∣∣∣x−
∑
u∈Bn

〈u|x〉H · u

∣∣∣∣∣
H

=
∣∣x− LinKBn

∣∣
H

→ 0 as n→ ∞.

Letting n→ ∞ we get ∣∣∣∣∣x−
∑
i

〈vi|x〉H · vi

∣∣∣∣∣
H

=
∣∣x− LinK ox

∣∣
H

= 0,

where the sum is finite if H is finite dimensional or countable if H is infinite dimensional. �
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Remark 30. The result is apparently independent of the enumeration since the limiting element
x =

∑
i 〈vi|x〉H · vi is always the same. Moreover, since x is orthogonal to all u ∈ o \ ox, we may

write

x =
∑
u∈o

〈u|x〉H · u,

realizing that at most countably many of the coefficient 〈u|x〉H , u ∈ o, are nonzero.

Theorem 31. (Fischer-Riesz theorem 1) Let H be an infinite dimensional, real or complex Hilbert
space with scalar field K. Then an orthonormal set o is complete if and only if

(1.2.8)
∧
x∈H

∑
u∈o

|〈u|x〉H |2 = |x|2H .

Moreover, for any sequence (αi)i∈N ∈ KN with
∑∞

i=0 |αi|2 <∞ we have

x :=

∞∑
i=0

αi · ui ∈ H

and

αi = 〈ui|x〉H , i = 0, 1, 2, . . . ,

for any enumeration (ui)i∈N of a countable orthonormal set oN. In any case, we have

(1.2.9)

∣∣∣∣∣x−
∑
u∈o

〈u|x〉H · u

∣∣∣∣∣
2

H

= |x|2H −
∑
u∈o

|〈u|x〉H |2 .

Proof. Equality (1.2.9) follows from (1.2.6) with ofin = Bn and letting n → ∞. If o is a
complete orthonormal set then by the previous lemma we have (1.2.8). Conversely, if (1.2.8) holds,
then with (1.2.9) we obviously have

x ∈ LinK o.

Since x ∈ H was arbitrary we have completeness, i.e.

H = LinK o.

Finally, let (αi)i∈N ∈ KN with
∑∞

i=0 |αi|2 < ∞ and (vi)i∈N an enumeration of a countable or-
thonormal set oN. Observe that by orthonormality∣∣∣∣∣

m∑
i=n

αi · vi

∣∣∣∣∣
2

H

=

m∑
i=n

|αi|2 ,

we have the existence of

x :=
∞∑
i=0

αi · ui ∈ H.

By continuity we have 〈
uj

∣∣∣∣∣
n∑

i=0

αi · ui

〉
→ αj as n→ ∞.

and 〈
uj

∣∣∣∣∣
n∑

i=0

αi · ui

〉
→ 〈uj |x〉H as n→ ∞.

By uniqueness of limit we obtain indeed

αi = 〈ui|x〉H , i ∈ N.

�
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A one-to-one and onto, norm-preserving, linear mapping between two Hilbert spaces is called a
unitary mapping. In this case the two Hilbert spaces are called unitarily equivalent.With
this notion we can reformulate our last result conveniently. Indeed,

{
χ{t} | t ∈M,

}
is a complete

orthonormal set in `2(M,K). The cardinality of this orthonormal set coincides with #M .

Now, Theorem 31 can be reformulated in the following way.

Corollary 32. (Fischer-Riesz theorem 2) Let H be a real or complex Hilbert space with scalar
field K. Then an orthonormal set o is complete if and only if the mapping

H −→ `2(o,K)

x 7−→ (〈u|x〉H)
u∈o

is unitary.

Remark 33. If #o = n ∈ N then `2(o,K) can be replaced by `2(n,K) ≡ Kn, n := {0, . . . , n− 1},
by introducing an enumeration. Likewise, if #o = #N then `2(o,K) can be replaced by `2(N,K)
(or `2(Z,K) or `2(Zn,K), n ∈ N, depending on preferences and/or convenience).

Example 34. Let either K = R or K = C. The Hilbert space L2(R,K) has by construction the
set S of step functions as a dense set. The following set h of step functions (the so-called Haar
basis5) is a complete orthonormal set:

h := {φn,m|n,m ∈ Z}

with

φn,m(t) := 2n/2Φ(2nt−m)

where

Φ := 2χ[0,1/2[ − χ[0,1[.

Indeed, we find

〈φn,m |φn,m〉L2(R,K) =
∫
t∈R 2n |Φ(2nt−m)|2 dt,

=
∫
t∈R |Φ(t)|2 dt,

=
∫
t∈R

∣∣χ[0,1[(t)
∣∣2 dt,

= 1,

and by a similar simplification we only need to show that 〈φ0,0 |φn,m〉L2(R,K) = 0 for n ∈ N and m ∈
Z not both equal to zero. First we find

〈φ0,0 |φn,m〉L2(R,K) =

∫
t∈R

2n/2Φ(t)Φ(2nt−m) dt.

Since Φ ≡ 0 outside of [0, 1[, the integrand is equal to zero if t /∈ [0, 1[ or 2nt − m /∈ [0, 1[. So
assume t ∈ [0, 1[ and 2nt−m ∈ [0, 1[, i.e.

(1.2.10) max(0, 2−nm) ≤ t < min(1, 2−n(m+ 1)).

For −m ∈ N this describes the empty set. For m ∈ N the inequality (1.2.10) simplifies to

2−nm ≤ t < min(1, 2−n(m+ 1)).

If 2−n(m+ 1) ≥ 1 then 2−nm must be less than 1 and so

(1.2.11) m < 2n ≤ m+ 1.

This implies (excluding the case m = n = 0) that in this case m = 2n − 1 and n ∈ N, i.e.

(1.2.12)
1

2
≤ 1− 2−n ≤ t < 1 for n ∈ N and m = 2n − 1.

5The Haar basis is the earliest known example of what became much later known as “wavelets”.
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In this case we have (since Φ(t) = −1 on [1/2, 1[)

(1.2.13)

〈φ0,0 |φn,m〉L2(R,K) = −
∫
t∈[1−2−n, 1[

2n/2Φ(2nt− 2n + 1) dt,

= −
∫
t∈[0, 1[

2−n/2Φ(t) dt,

= 0.

If 2−n(m+ 1) < 1 then (1.2.10) turns into

2−nm ≤ t < 2−n(m+ 1).

Since [2−nm, 2−n(m+ 1)[ ⊆
[
0, 2−1

[
or [2−nm, 2−n(m+ 1)[ ⊆

[
2−1, 1

[
we have

Φ(t) = ±1 on
[
2−nm, 2−n(m+ 1)

[
and we get similar to (1.2.13)

(1.2.14)

〈φ0,0 |φn,m〉L2(R,K) = ±
∫
t∈[2−nm, 2−n(m+1)[

2n/2 Φ(2nt−m) dt,

= ±
∫
t∈[0, 1[

2−n/2Φ(t) dt,

= 0.

Thus, orthonormality of h is shown. To see completeness we first note that sums of characteristic
functions of the form χ[2−nm, 2−n(m+1)[ are sufficient to approximate a characteristic function of

an arbitrary interval I. This is due to the density of {2−nm |n ∈ N ∧ m ∈ Z} in R. By rescaling
and translation it becomes clear that it suffices to approximate just χ[0, 1[. The latter, however,
can be seen explicitly by noting that ∑

n∈N

2−(n+1)/2φ−n,0

actually represents χ[0, 1[. According to (1.2.9), for this it is enough to see that

∑
n∈N

2−n−1 = 1.

The Fischer-Riesz variant 32 (together with remark 33) now yields the unitarity of the mapping

IL2(R,K) : L
2(R,K) −→ `2(Z2,K),

x 7−→
(
〈φn,m|x〉L2(R,K)

)
n,m∈Z

.

In particular, we found

IL2(R,K)(χ[0,1[) = (γn,m)n,m∈Z

with

γn,m :=

 2−(n+1)/2 for n ∈ N and m = 0

0 otherwise
.

The rather remarkable consequence of Corollary 32 stating the unitary equivalence of any Hilbert
space with an `2−type space seems to say that everything is known about the structure of Hilbert
spaces. This is indeed the case, but as a matter of convenience it may be quite inadvisable to
replace a particular Hilbert spaceH by its unitarily equivalent `2−space, since e.g. certain elements
of H may have rather complicated representations in the `2 − space. The characteristic function
χ[0,1[ of the previous example and its representation (γn,m)n,m∈Z may serve as a first indication.

Depending on circumstances it may also be of interest to choose a particular orthonormal set
rather than just any. We will become more aware of how little is said by the structure result of
the Fischer-Riesz theorem as we investigate linear mappings between Hilbert spaces.
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Example 35. The functions χ]−1/2,+1/2[ exp(2πin ·), n ∈ Z, form a complete orthonormal set in
the closed subspace

L2 (]− 1/2,+1/2[) :=

f ∈ S(R,C)

∣∣∣∣∣∣
∨

C⊆]−1/2,+1/2[ closed

f = 0 on R \ C

 .

Orthonormality can be seen by direct calculation:〈
χ]−1/2,+1/2[ exp(2πim ·)|χ]−1/2,+1/2[ exp(2πin ·)

〉
L2(]−1/2,+1/2[)

=

=
∫
R χ]−1/2,+1/2[(t) exp(−2πimt) χ]−1/2,+1/2[(t) exp(2πin t) dt,

=
∫ 1/2

−1/2
exp(2πi (n−m) t) dt,

=


exp(πi (n−m))−exp(−πi (n−m))

2πi (n−m) = 0 for m 6= n

1 for m = n
.

The completeness of the orthonormal set can be shown. In particular, we have

f =
∑
k∈Z

〈
χ

]−1/2,+1/2[
exp(2πi kn ·)

∣∣ f〉
L2(]−1/2,+1/2[)

χ
]−1/2,+1/2[

exp(2πi k ·),

as the Fourier expansion of f ∈ L2(]− 1/2,+1/2[). The coefficients〈
χ

]−1/2,+1/2[
exp(2πi kn ·)

∣∣ f〉
L2(]−1/2,+1/2[)

=

= 〈exp(2πi k ·)| f〉L2(]−1/2,+1/2[) ,

= 〈exp(2πi k ·)| f〉L2(R) ,

are the so-called Fourier coefficients of f.

Example 36. Let us consider the well-known Gauss distribution function γ ∈ L2(R) given by
γ(x) = exp(−x2/2), x ∈ R. Letting formally D := 1√

2
(m− ∂) , we shall see that {Γk | k ∈ N},

Γk := 1
|Dkγ|L2(R)

Dkγ, is an orthonormal set. We first recognize that it is a set of (normalized)

linearly independent elements in L2(R). Infact, Dkγ is of the form Qk γ, where Qk is a polynomial6

of degree k with leading coefficient 2k/2. This is true for k = 0 and by the product rule we see

Dk+1γ = D (Qkγ) =
1√
2
(Q′

k γ + 2mQk γ)

from which the claim follows by induction for all k ∈ N. Letting formally D∗ := 1√
2
(∂ +m) we

find

(1.2.15) D∗γ = 0

and

(1.2.16) D∗D −DD∗ = 1.

Moreover, we calculate by repeated integration by parts that

(1.2.17)
〈
Dkγ | Djγ

〉
L2(R) =

〈
γ | D∗kDjγ

〉
L2(R)

for k, j ∈ N. Let now k ∈ N be given, then we want to show that

D∗kDjγ = 0 for all j < k, j ∈ N.

6The polynomial Qk is up to normalization the k− th Hermite polynomial. Frequently it is assumed that the
leading coefficient should be +1 in which case the k − th Hermite polynomial would be 1

2k/2 Qk , k ∈ N.
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That the result holds for j = 0 is obvious from (1.2.15). Let now j < k and assume the result
already holds for smaller j. We find

D∗kDjγ = D∗(k−1)DD∗D(j−1)γ+

+D∗(k−1)D(j−1)γ,

= D∗(k−1)DD∗D(j−1)γ,

= D∗(k−2)D∗DD∗D(j−1)γ

= D∗(k−2)DD∗2D(j−1)γ+

+D∗(k−1)D(j−1)γ,

= D∗(k−2)DD∗2D(j−1)γ.

By iterating this step we get

D∗kDjγ = DD∗kD(j−1)γ

and since D∗kD(j−1)γ = 0 by induction assumption the claimed result follows. With (1.2.17) the
orthogonality of the set

{
Dkγ

∣∣ k ∈ N
}
follows. An additional normalization yields that {Γk| k ∈ N}

is an orthonormal set. This orthonormal set is also complete.

Theorem 37. (Projection Theorem 2) Let H be a real or complex Hilbert space and C a closed
subspace of H. Then we have

(1.2.18) H = C ⊕ C⊥

in the sense of unitary equivalence.

Proof. Clearly, C and C⊥ are Hilbert spaces and so is (by definition) C ⊕C⊥ we only need
to establish the unitary equivalence with H. Let x ∈ H be given. According to Theorem 20 there
is precisely one z ∈ C such that |x− z|H = |x− C|H . Then in particular

(1.2.19)
PC : H −→ H

x 7−→ ∈ {u ∈ C | |x− u|H = |x− C|H}

is a well-defined mapping. Since also from Theorem 20 we know that x−PC(x) ∈ C⊥ and PC(x) ∈
C, we have a resulting mapping

UC : H −→ C ⊕ C⊥

x 7−→ (PC(x), x− PC(x))
.

To see that UC is a linear mapping it suffices to show that PC is linear. Consider now v :=
α · PC(x) + PC(y) ∈ C, for α ∈ K, x, y ∈ H. We shall show that v is best approximation of
α ·x+y, then by uniqueness PC(α ·x+y) = v = α ·PC(x)+PC(y) follows. According to Theorem
20 for this we only need to see that

α · x+ y − v ∈ C⊥.

This, however, is clear since

x− PC(x) ∈ C⊥ and y − PC(y) ∈ C⊥

and C⊥ is a linear space. Thus we have that PC and so UC is linear. The linear mapping UC is
also norm-preserving:

|UC(x)|C⊕C⊥ =
√

|PC(x)|2H + |x− PC(x)|2H = |x|H for all x ∈ H.

The latter equality follows by noting that in particular (x − PC(x)) ⊥ PC(x). That UC is one-
to-one follows directly from norm-preservation (and linearity). To see that UC is also onto let
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(u, v) ∈ C ⊕ C⊥. Define x := u + v then x − u = v ∈ C⊥ and by uniqueness we have u =
PC(x) and v = x− PC(x), i.e. UC(x) = (u, v) - as needed. �

Remark 38. The linear mapping PC introduced in (1.2.19) is called the orthogonal projector
associated with C. Writing 1 for the identity mapping, we see that

PC [H] = C,

(1− PC) [H] = C⊥,

and by uniqueness of the best approximation

PC ◦ PC = PC .

The unitary equivalence expressed in (1.2.18) can be used to identify both sides in which case
we may interpret (1.2.18) as what is known as an orthogonal decomposition of H. Indeed,
from the proof we have that every x ∈ H can be written in a unique way as x = u + v with
u ∈ C and v ∈ C⊥.

In general an orthogonal projector is defined in terms of the properties noted in remark 38.

Definition 39. Let H be a Hilbert space. Then a linear mapping P : H → H satisfying

P ◦ P = P

is called projector onto P [H] . A projector is called an orthogonal projector if in addition

P [H] ⊥ (1− P ) [H] .

Together with PC constructed above also (1− PC) is an orthogonal projector (namely onto C⊥).
Indeed,

(1− PC) ◦ (1− PC) = 1 ◦ 1− PC ◦ PC = 1− PC = PC⊥ .

We note the following important consequence of the projection Theorem 37.

Lemma 40. Let H be a Hilbert space with scalar field K and M ⊆ H a subset. Then

LinKM =M⊥⊥.

Moreover, if N ⊆M then

M⊥ ⊕ (M⊥⊥ ∩N⊥) = N⊥.

Proof. According to Theorem 37 we have

H = LinKM ⊕ LinKM
⊥

and

(1.2.20) H =M⊥ ⊕M⊥⊥.

We note that with (1.2.3) we have

(1.2.21) H = LinKM ⊕M⊥.

A careful comparison of these two decompositions shows the desired equality. �
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1.2.2. Constructions of Hilbert Spaces. We have already seen that the process of com-
pletion is of central interest in constructing Hilbert spaces, since mostly we have only simple
description of a semi- or pre-Hilbert space as a starting point. Another way to obtain Hilbert
spaces is to consider closed subspaces of given ones, e.g. M⊥ for M a subset. More interesting
are processes which create new Hilbert spaces out of other Hilbert spaces.

For sake of simplicity we shall henceforth assume that the underlying scalar field K = C, since
the real case is usually easy to obtain by the same argument allowing only real scalars instead
of complex ones. In other words, we shall assume all our Hilbert spaces to be complex Hilbert
spaces.

There are three main constructions which we shall encounter more closely: first we re-consider the
direct sum ⊕ more closely, then the construction of Hilbert spaces based on dualisation.

Definition 41. Let HS denote the class of all real or complex Hilbert spaces with scalar field K
defined by HS := {H|H Hilbert space with scalar field K} and let H·, i.e. x 7→ Hx, be a mapping

in HSM , M a set. The Cartesian product ×
x∈M

Hx of H· becomes a linear space by defining the

component-wise linear structure

(α · v + w)(t) = α · v(t) + w(t) ∈ Ht for all t ∈M, α ∈ K, v, w ∈ ×
x∈M

Hx.

Let W be the subspace generated by all w ∈ ×
x∈M

Hx such that w(t) = 0 ∈ Ht for all t ∈ M but

one. Then W equipped with the inner product

(1.2.22) 〈v|w〉⊕ :=
∑
t∈M

〈v(t) |w(t)〉Ht
for all v, w ∈ LinKW

is a pre-Hilbert space. Its completion is called the direct sum of H·, denoted by⊕
x∈M

Hx .

If M = {0, . . . , n}, n ∈ N, we also write

H0 ⊕ · · · ⊕Hn

for the direct sum of (H0, . . . , Hn). The elements (xi)i=0,...,n ≡ (x0, . . . , xn) of such a finite direct
sum will occasionally also be denoted by x0 ⊕ · · · ⊕ xn or as a column matrix

x0
...

xn

 .

The linearity of the structure is easily checked. Note also that the sum in (1.2.23) is indeed a finite
sum, since except for finitely many terms the inner products are zero. If M is a finite set then the
pre-Hilbert space constructed here is already complete. The simplicity of the construction of such
a direct sum is also reflected in the simplicity to obtain an orthonormal set in

⊕
x∈M Hx from

orthonormal sets in the spaces Ht, t ∈M. Indeed, if ot is a (complete) orthonormal set in Hilbert
space Ht, t ∈M, then the set of all ω ∈ ×

x∈M
ox with ω(t) = 0 for all but one t ∈M is a complete

orthonormal set in
⊕

x∈M Hx.

Cn considered as the Hilbert space `2(n,C) is a direct sum of n copies of C (as Hilbert space
`2(1,C)):

Cn =
⊕

t=0,...,n−1

C.

More generally, we see that by construction e.g.

`2(M) =
⊕
t∈M

C, M an arbitrary set.
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Let (H0, . . . ,Hn) be a finite family of Hilbert spaces with common scalar fieldK. ThenH0×· · ·×Hn

with the component-wise linear structure and

equipped with the inner product

(1.2.23) 〈v|w〉⊕ :=

n∑
t=0

〈vt |wt〉Ht
for all v = (v0, . . . , vn), w = (w0, . . . , wn) ∈ H0 × · · · ×Hn

is a Hilbert space.

It remains to show that H0 × · · · ×Hn as the described pre-Hilbert space is already complete. By
definition of the inner product we have

|(v0, . . . , vn)|⊕ =
√
|v0|2H0

+ · · · |vn|2Hn
for all vj ∈ Hj , j = 0, . . . , n.

So let (wj)j be a Cauchy sequence in H0 × · · · ×Hn, i.e. wj = (wj0, . . . , wjn) ∈ H0 × · · · ×Hn,
then (wjk)j is a Cauchy sequence in Hk, k = 0, . . . , n. By completeness of Hk we have w∞k :=
limj→∞ wjk ∈ Hk, k = 0, . . . , n, and wj → (w∞0, . . . , w∞n) as j → ∞.

Next we discuss another way to construct a new Hilbert space denoted by H ′ as the so-called dual
of a given Hilbert space H. For this construction, let first

H ′ :=
{
f ∈ CH

∣∣ f linear ∧ f Lipschitz continuous
}
.

Since any mapping into the numbers is called a functional, the elements of H ′ are referred to as
continuous, linear functionals. On H ′ we do not use the linear structure induced by C, we
rather define the following modified linear structure:

(1.2.24) (αf + g)(t) := αf(t) + g(t) for all α ∈ C, f, g ∈ H ′, t ∈ H.

Thus, H ′ becomes a linear space.

Theorem 42. (Riesz representation theorem) Let H be a complex Hilbert space. For any f ∈ H ′

there is a unique w ∈ H such that

f(x) = 〈w|x〉H for all x ∈ H.

Proof. If f ≡ 0 then w ∈ H must also be the zero element of H. Otherwise, we choose

w = f(x0) · x0

for a normalized x0 ∈ ([{0}] f)⊥. Here [{0}] f := {x ∈ H | f (x) = 0} denotes the null space or
kernel of f . Uniqueness is clear since a difference of two such representers would have to be
orthogonal to H. �

Definition 43. Let H be a complex Hilbert space. The mapping

RH : H ′ −→ H

f 7−→ ∈
({
w ∈ H

∣∣∧
x∈H f(x) = 〈w|x〉H

})
is called Riesz operator or Riesz mapping.

The Riesz mapping enjoys the following properties:

Lemma 44. Let H be a complex Hilbert space. The Riesz mapping RH : H ′ → H is a linear
mapping and norm-preserving in the sense that7

(1.2.25) |RHf |H = |f |Lip for all f ∈ H ′.

7Here | · |Lip denotes the best, i.e. the smallest Lipschitz constant.
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Proof. The linearity follows straightforwardly from the definition of RH an the properties
of the inner product

〈RH(α f + g) | y〉H = (αf + g)(y),

= αf(y) + g(y),

= α 〈RHf | y〉H + 〈RHg | y〉H ,

= 〈α ·RHf +RHg | y〉H ,

for all f, g ∈ H ′, y ∈ H and α ∈ C.

Moreover, by the Cauchy-Schwarz inequality we have for all y ∈ H

(1.2.26) |f(y)| = |〈RHf | y〉H | ≤ |RHf |H |y|H
and so with the linearity of f

|f |Lip ≤ |RHf |H .

Since for y = RHf equality occurs in (1.2.26), we see that |RHf |H is also the best possible
constant, i.e. (1.2.25) holds. �

From (1.2.25) we also learn that |·|Lip actually is a pre-Hilbert space norm, since the left-hand

side is clearly a pre-Hilbert space norm. Thus, we found that H ′ equipped with this inner product
is a pre-Hilbert space.

Lemma 45. Let H be a complex Hilbert space. The Riesz mapping RH : H ′ → H is onto.

Proof. Let y ∈ H be arbitrary. The linear functional fy : H → C, x 7→ 〈y |x〉H , is clearly
linear and again by the Cauchy-Schwarz inequality also Lipschitz continuous. Indeed, as in the
proof of the previous lemma we have

|〈y | ·〉H |
Lip

= |y|H .

Thus, we have fy ∈ H ′. Moreover, by definition

fy(x) = 〈y |x〉H = 〈RHfy |x〉H for all x ∈ H

and therefore

(1.2.27) RHfy = y.

�

As a consequence we have

Theorem 46. Let H be a complex Hilbert space. Then H ′ is also a Hilbert space (the so-called
dual space to H) and the Riesz mapping RH : H ′ → H is unitary.

Proof. Given our previous results we only need to show completeness of H ′. So, let (fn)n
be a Cauchy sequence in H ′. Then, since RH is norm-preserving, we also have that (RHfn)n is a
Cauchy sequence in H. By the completeness of H we have

y := lim
n→∞

RHfn ∈ H.

According to (1.2.27) we RHfy = y for fy : H → C, x 7→ 〈y |x〉H . Thus, we find (again by
norm-preservation) that from RHfn → y as n→ ∞ we obtain

fn → fy as n→ ∞.

Since RH is norm-preserving it is automatically one-to-one and by the above indeed a unitary
mapping with respect to the inner product

(f, g) 7→ 〈RHf |RHg〉H .

�



36 1. HILBERT SPACES

In the following we shall always make use of the implied possibility to identify H with (H ′)
′
. This

implies in particular that x ∈ H may always be interpreted as a continuous linear functional on
H ′, so that

x (f) = f (x)

for all x ∈ H and f ∈ H ′. Note that

x (α · f) = αx (f)

= (α · f) (x)

= αf (x)

= α f (x)

= f (α · x)
= (α · x) (f)

for all α ∈ K.
In some instances it may also be useful to even identify H with H ′. We shall come to this later.

A final construction principle for new Hilbert spaces we shall explore is the so-called tensor product
of Hilbert spaces. It can be rooted on the concept of multi-linear forms on Hilbert spaces. Let
(Hi)i=0,...,n−1 be a family of n (complex) Hilbert spaces. A mapping µ : H0 × · · · ×Hn−1 −→ C
is called continuous n−linear form on H0 × · · · × Hn−1 if y 7→ µ(· · · , xi−1, y, xi+1, . . .) ∈ H ′

i for
xk ∈ Hk for k = 0, . . . , n − 1, k 6= i. The implied linear structure for such n−linear forms f, g is
given by ∧

α∈C, x∈H0×···×Hn−1

(α f + g)(x) := α f(x) + g(x).

The set of special continuous n−linear forms x0 ⊗ · · · ⊗ xn−1 on H0 × · · · ×Hn−1 defined by

x0 ⊗ · · · ⊗ xn−1(u0, . . . , un−1) := 〈x0|u0〉H0
· · · 〈xn−1|un−1〉Hn−1

generate the linear space

W⊗ ((Hi)i=0,...,n−1) := LinC {x0 ⊗ · · · ⊗ xn−1|xi ∈ Hi, i = 0, . . . , n− 1}.

Defining

(1.2.28) 〈x0 ⊗ · · · ⊗ xn−1 |u0 ⊗ · · · ⊗ un−1〉H0⊗···⊗Hn−1
:= 〈x0|u0〉H0

· · · 〈xn−1|un−1〉Hn−1

for all xi, ui ∈ Hi, i = 0, . . . , n − 1, we obtain a candidate for an inner product for W⊗ by
sesqui-linear extension. Since the values may depend on the representation, this process may
a-priori merely create a sesqui-linear relation, i.e. a relation, which is linear w.r.t. the sec-
ond component and conjugate linear w.r.t. the first component. From the properties we shall
demonstrate it follows, however, that we have actually defined a sesqui-linear functional on
W⊗ ((Hi)i=0,...,n−1). Since sesqui-linearity is assumed by construction, we only need to confirm
symmetry, non-negativity and definiteness. Consider arbitrary linear combinations

∑
i αi x0,i ⊗

· · · ⊗ xn−1,i and
∑

j βj u0,j ⊗ · · · ⊗ un−1,j then using sesqui-linearity we obtain〈∑
i αi x0,i ⊗ · · · ⊗ xn−1,i

∣∣∣∑j βj u0,j ⊗ · · · ⊗ un−1,j

〉
H0⊗···⊗Hn−1

=

=
∑

i

∑
j α

∗
i βj 〈x0,i ⊗ · · · ⊗ xn−1,i |u0,j ⊗ · · · ⊗ un−1,j〉H0⊗···⊗Hn−1

.

Using (1.2.28) this yields

(1.2.29)

〈∑
i αi x0,i ⊗ · · · ⊗ xn−1,i

∣∣∣∑j βj u0,j ⊗ · · · ⊗ un−1,j

〉
H0⊗···⊗Hn−1

=

=
∑

i

∑
j αiβj 〈x0,i |u0,j〉H0

· · · 〈xn−1,i |un−1,j〉Hn−1
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From the latter symmetry follows. Indeed,〈∑
i αi x0,i ⊗ · · · ⊗ xn−1,i

∣∣∣∑j βj u0,j ⊗ · · · ⊗ un−1,j

〉
H0⊗···⊗Hn−1

=

=
∑

i

∑
j αi βj 〈u0,j |x0,i〉H0

· · · 〈un−1.j |xn−1,i〉Hn−1
,

=
〈∑

j βj u0,j ⊗ · · · ⊗ un−1,j |
∑

i αi x0,i ⊗ · · · ⊗ xn−1,i

〉
H0⊗···⊗Hn−1

.

From (1.2.29) we also get

(1.2.30)

〈∑
i αi x0,i ⊗ · · · ⊗ xn−1,i

∣∣∣∑j αj x0,j ⊗ · · · ⊗ xn−1,j

〉
H0⊗···⊗Hn−1

=

=
∑

i

∑
j αiαj 〈x0,i |x0,j〉H0

· · · 〈xn−1,i |xn−1,j〉Hn−1
.

Let (A
(k)
ij )i,j be a non-negative root of the (non-negative and selfadjoint) Gramian

(
〈xk,i |xk,j〉Hk

)
i,j
,

k = 0, . . . , n− 1, then we obtain from (1.2.30)〈∑
i αi x0,i ⊗ · · · ⊗ xn−1,i

∣∣∣∑j αj x0,j ⊗ · · · ⊗ xn−1,j

〉
H0⊗···⊗Hn−1

=

=
∑

i

∑
j

∑
s0

· · ·
∑

sn
αiαj A

(0)
is0
A

(0)
s0j

· · ·A(n−1)
isn−1

A
(n−1)
sn−1j

,

=
∑

s0
· · ·
∑

sn−1

(∑
i αiA

(0)
s0i

· · ·A(n−1)
sn−1i

)∗ (∑
j αj A

(0)
s0j

· · ·A(n−1)
sn−1j

)
.

The last term is, however, the square of the norm of w in `2(Nn), where

ws0···sn−1 :=
∑
i

αiA
(0)
s0i

· · ·A(n−1)
sn−1i

for s = (s0, . . . , sn−1) ∈ Nn, and so〈∑
i

αi x0,i ⊗ · · · ⊗ xn−1,i

∣∣∣∣∣∣
∑
j

αj x0,j ⊗ · · · ⊗ xn−1,j

〉
H0⊗···⊗Hn−1

≥ 0.

Next, we want to show definiteness of the semi-inner product 〈 · | · 〉H0⊗···⊗Hn−1
. So let∣∣∣∣∣∑

i

αi x0,i ⊗ · · · ⊗ xn−1,i

∣∣∣∣∣
H0⊗···⊗Hn−1

= 0,

then from the Cauchy Schwarz inequality follows that〈∑
i

αi x0,i ⊗ · · · ⊗ xn−1,i | u0 ⊗ · · · ⊗ un−1

〉
H0⊗···⊗Hn−1

= 0,

for all ui ∈ Hi, i = 0, . . . , n− 1. This, however, is by definition

0 =
∑
i

αi 〈x0,i|u0〉H0
· · · 〈xn−1,i|un−1〉Hn−1

=

(∑
i

αi x0,i ⊗ · · · ⊗ xn−1,i

)
(u0, . . . , un−1)

for all ui ∈ Hi, i = 0, . . . , n− 1. In other words the n−linear form∑
i

αi x0,i ⊗ · · · ⊗ xn−1,i = 0.
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From the Cauchy-Schwarz inequality we may finally conclude independence of the chosen repre-
sentation. Indeed, if

∑
i αi x0,i ⊗ · · · ⊗ xn−1,i =

∑
j βi y0,i ⊗ · · · ⊗ yn−1,i then〈∑

i

αi x0,i ⊗ · · · ⊗ xn−1,i | u0 ⊗ · · · ⊗ un−1

〉
H0⊗···⊗Hn−1

+

−

〈∑
j

βi y0,i ⊗ · · · ⊗ yn−1,i | u0 ⊗ · · · ⊗ un−1

〉
H0⊗···⊗Hn−1

=

=

(∑
i

αi x0,i ⊗ · · · ⊗ xn−1,i

)
(u0, · · · , un−1)−

∑
j

βi y0,i ⊗ · · · ⊗ yn−1,i

 (u0, · · · , un−1) ,

= 0.

With this we can now define the tensor product of Hilbert spaces.

Definition 47. Let (Hi)i=0,...,n−1 be a family of n (complex) Hilbert spaces. The completion of
the pre-Hilbert spaceW⊗((Hi)i=0,...,n−1) := LinC {x0⊗· · ·⊗xn−1|xi ∈ Hi, i = 0, . . . , n−1} with
respect to the norm | · |H0⊗···⊗Hn−1 is called the tensor product of (Hi)i=0,...,n−1 and denoted
by
⊗

i=0,...,n−1Hi or by H0 ⊗ · · · ⊗ Hn−1. Let Vi be a subspace of Hi, i = 0, . . . , n − 1. The

pre-Hilbert space W⊗((Vi)i=0,...,n−1) is called the algebraic tensor product of (Vi)i=0,...,n−1

and denoted by
a⊗

i=0,...,n−1Vi or V0
a
⊗ · · ·

a
⊗ Vn−1.

The completion of a normed linear or pre-Hilbert space of real- or complex-valued functions is
often referred to as a function Banach space or a function Hilbert space, respectively.

Example 48. `2(Zn) =
⊗

k=0,...,n−1 `2(Z)

Recalling that the elements of Vi := `2(Z) are complex number sequences, we realize that with
Mi = Z we encounter an instance of the last proposition. The correspondence(

zi0 · · · zin−1

)
(i0,...,in−1)∈Zn

7→ (zi0)i0∈Z ⊗ · · · ⊗ (zin−1)in−1∈Z

extends to a linear isometry I. Since the elements generating `2(Zn) (according to its definition)
have product form

χ{(i0,...,in−1)}(j0, . . . , jn−1) = χ{i0}(j0) · · · χ{in−1}(jn−1)

=
〈
χ{i0}|χ{j0}

〉
`2(Z) · · ·

〈
χ{in−1}|χ{jn−1}

〉
`2(Z)

=
(
χ{i0} ⊗ · · · ⊗ χ{in−1}

) (
χ{j0}, . . . , χ{jn−1}

)
for (i0, . . . , in−1), (j0, . . . , jn−1) ∈ Zn, we see that I extends indeed to a unitary mapping Ī from
`2(Zn) onto

⊗
k=1,...,n `2(Z).

Example 49. L2(Rn) =
⊗

k=0,...,n−1 L2(R)

This result follows by the same arguments as the previous example. For this we first need to
notice that it is sufficient to use characteristic functions χI0×···×In−1with Ik = [ak, bk[, ak <
bk, k = 0, . . . , n− 1, in order to generate L2(Rn), since∣∣χI0×···×In−1

− χJ0×···×Jn−1

∣∣
L2(Rn)

= 0

for Jk = ]ak, bk[ , Jk = ]ak, bk] or Jk = [ak, bk] , k = 0, . . . , n−1. The linear span of these restricted
characteristic functions is however a function space. Moreover, we have

χI0×···×In−1(t0, . . . , tn−1) = χI0(t0) · · · χIn−1(tn−1) for (t0, . . . , tn−1) ∈ Rn,
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from which the claim follows in the same way as for the previous example by observing that〈
χI0×···×In−1 |χJ0×···×Jn−1

〉
L2(Rn)

= 〈χI0 |χJ0〉L2(R) · · ·
〈
χIn−1 |χJn−1

〉
L2(R)

=
(
χI0 ⊗ · · · ⊗ χIn−1

) (
χJ0 , . . . , χJn−1

)
.

Example 50. Similar to the previous examples it can be seen that in general the completion
L2(R, H) of H−valued step functions is just L2(R)⊗H for every Hilbert space H.

We also have the following useful density result:

Lemma 51. Let (Hi)i=0,...,n−1 be a family of n (complex) Hilbert spaces and (Si)i=0,...,n−1 a
corresponding family of respective subsets. If Vi := LinCSi is dense in Hi for i = 0, . . . , n − 1,
then

V0
a
⊗ · · ·

a
⊗ Vn−1 = LinC{x0 ⊗ · · · ⊗ xn−1 |xi ∈ Si for i = 0, . . . , n− 1}

is dense in H0 ⊗ · · · ⊗Hn−1.

Proof. It suffices to approximate decomposable elements, i.e. elements of the form x0 ⊗
· · · ⊗ xn−1 ∈ H0 ⊗ · · · ⊗ Hn−1. Let now vi := (vi,j)j be a sequence approximating xi ∈ Hi,
i = 0, . . . , n− 1. Then we can estimate

|x0 ⊗ · · · ⊗ xn−1 − v0,j ⊗ · · · ⊗ vn−1,j |H0⊗···⊗Hn−1
≤

≤
∑n−1

k=0 |v0.,j ⊗ · · · ⊗ v0.k−1j ⊗ (xk − vk,,j)⊗ xk+1 ⊗ · · · ⊗ xn−1|H0⊗···⊗Hn−1
,

≤
∑n−1

k=0(|v0,j | · · · |v0,k−1| |xk − vk,,j |Hk
|xk+1|Hk+1

· · · |xn−1|Hn−1
).

Since the last term is a finite sum composed of norms with bounded factors and one factor tending
to zero, the right-hand side goes to zero. Thus we have

v0,j ⊗ · · · ⊗ vn−1,j → x0 ⊗ · · · ⊗ xn−1 as j → ∞.

�

Based on this lemma we can now address the issue of generating orthonormal sets in tensor
products from the knowledge of orthonormal sets in the “factors”.

Proposition 52. Let (Hi)i=0,...,n−1 be a family of n (complex) Hilbert spaces and (oi)i=0,...,n−1

a corresponding family of respective orthonormal sets. Then

[o0]⊗ · · · ⊗ [on−1] :=
{
x0 ⊗ · · · ⊗ xn−1

∣∣xi ∈ oi for i = 0, . . . , n− 1
}

is an orthonormal set in H0 ⊗ · · · ⊗Hn−1. Moreover, if oi is complete in Hi for i = 0, . . . , n− 1,
then [o0]⊗ · · · ⊗ [on−1] is a complete orthonormal set in H0 ⊗ · · · ⊗Hn−1.

Proof. Let x0 ⊗ · · · ⊗ xn−1, y0 ⊗ · · · ⊗ yn−1 ∈ o0 ⊗ · · · ⊗ on−1 then〈
x0 ⊗ · · · ⊗ xn−1

∣∣y0 ⊗ · · · ⊗ yn−1

〉
= 〈x0|y0〉H0

· · · 〈xn−1|yn−1〉Hn−1

=

 1 if x0 = y0, · · · , xn−1 = yn−1

0 otherwise
,

which shows that indeed [o0]⊗· · · ⊗ [on−1] is an orthonormal set in H0⊗· · ·⊗Hn−1. Recalling that
for an orthonormal set ok to be complete means that Vk := LinC ok is dense in Hk, k = 0, . . . n−1,
the rest of the proposition follows from the previous lemma. �
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Since closed linear operators between Hilbert spaces are also just closed linear subspaces of Hilbert
spaces, it would be natural to define the tensor product of linear operators as tensor products of
these subspaces. As for the direct sum there is, however, a more useful (algebraic) concept of a
tensor product for linear operators Ak ⊆ H0k⊕H1k , k = 0, . . . , n−1, defined as the linear relation
given by

(1.2.31) (A0

.
a
⊗ · · ·

.
a
⊗An−1)(x0 ⊗ · · · ⊗ xn−1) := A0x0 ⊗ · · · ⊗An−1xn−1

for all xk ∈ D(Ak), k = 0, . . . , n−1. The overset ’ · ’ is again used as a reminder of an ’image-wise’
algebraic tensor product8. That (1.2.31) defines indeed a linear operator

(A0

.
a
⊗ · · ·

.
a
⊗An−1) : D(A0)

a
⊗ · · ·

a
⊗D(An−1) ⊆ H00 ⊗ · · · ⊗H0(n−1) → H10 ⊗ · · · ⊗H1(n−1)

and not just a linear relation is not obvious and needs a careful consideration. We must assure that
different representations of an element do not lead to different ’images’. To show right-uniqueness

let (0, w) ∈ A0

.
a
⊗· · ·

.
a
⊗An−1, i.e. w =

∑
i αiA0x0,i⊗· · ·⊗An−1xn−1,i and

∑
i αi x0,i⊗· · ·⊗xn−1,i =

0. The latter is the same as

0 =
∑
i

αi 〈x0,i|v0〉H00
· · · 〈xn,i|vn〉H0(n−1)

for all vk ∈ H1k , k = 0, . . . , n− 1. If (xk,i)i is linearly independent for k = 0, . . . , n − 1, then all
coefficients αi must be zero. In this case w = 0. Let now (yk,j)j be a maximal linearly independent
subfamily of (xk,i)i then

xk,i =
∑
j

ak,ij yk,j

for suitable coefficients ak,ij . Then∑
i

αi x0,i ⊗ · · · ⊗ xn−1,i =
∑
i

∑
j0

· · ·
∑
jn−1

αi a0,ij0 · · · an−1,ijn y0,j0 ⊗ · · · ⊗ yn−1,jn−1 = 0

and due to linear independence ∑
i

αi a0,ij0 · · · an−1,ijn−1 = 0

for all multi-indices (j0, . . . , jn−1) appearing in the sum. Trivially this yields∑
i

∑
j0

· · ·
∑
jn−1

αi a0,ij0 · · · an−1,ijn−1 A0y0,j0 ⊗ · · · ⊗An−1yn−1,jn−1 = 0

and by the linearity of the operators (Ak)k=0,...,n−1

0 =
∑
i

αiA0

∑
j0

a0,ij0 y0,j0 ⊗ · · · ⊗An−1

∑
jn−1

an−1,ijn−1yn−1,jn−1

=
∑
i

αiA0x0,i ⊗ · · · ⊗An−1xn−1,i = w.

Thus right-uniqueness of A0

.
a
⊗ · · ·

.
a
⊗An−1 is shown.

If A0

.
a
⊗ · · ·

.
a
⊗An−1 is a closable, linear operator then we define

A0

.
⊗ · · ·

.
⊗An−1 = A0

.
a
⊗ · · ·

.
a
⊗An−1 .

As for the direct sums of operators we have

A

.
a
⊗B

.
a
⊗ C = (A

.
a
⊗B)

.
a
⊗ C = A

.
a
⊗ (B

.
a
⊗ C)

8This is the natural idea for an image-wise algebraic tensor product of linear operators, since a construction

analogous to the direct sum case, i.e. x 7→ Ax⊗Bx, would not yield a linear operator.
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and in the closable case

A
.
⊗B

.
⊗ C = (A

.
⊗B)

.
⊗ C = A

.
⊗ (B

.
⊗ C),

so that again we may focus our attention on the case of two factors with the general case being
included by ’bracketing’. We shall investigate tensor products of operators more closely later.





CHAPTER 2

Linear Operators

2.1. Linear Operators and Relations

We already mentioned the construction of Hilbert spaces as closed subspaces of Hilbert spaces.

Definition 53. Let H0 ⊕H1 be a direct sum of two Hilbert spaces, i.e. H0 ⊕H1 is the Hilbert
space given by the set H0 ×H1 equipped with the component-wise linear structure and the norm

(x, y) 7→
√
|x|2H0

+ |y|2H1
.

A subset A of H0 ⊕H1 defines a relation between H0 and H1 or a correspondence (A,H0 ×H1).
If additionally A is also right-unique we obtain a function A j H0 × H1 or a mapping A :
D (A) ⊆ H0 → H1. If A is a linear subspace then A is also called a linear relation or linear
correspondence, respectively. If A is a linear subspace and a right-unique relation, then A is
called a linear mapping or linear operator from H0 to H1. For linear mappings A it is common
to use the simplified multiplicative notation

Ax := A(x) for x ∈ D(A).

The linear operator as defined here is of course nothing but a linear mapping in the usual sense.

Lemma 54. A linear relation A ⊆ H0⊕H1, Hj , i = 0, 1, Hilbert spaces, is a linear operator in the
sense of definition 53 if and only if A : D(A) ⊆ H0 → H1 is a linear mapping in the usual sense.

Proof. The only thing to check is that linearity of a mapping is indeed the same as linearity
of the subspace A. This becomes clear by observing that

A(α · x+ y) = α ·Ax+Ay

is the same as saying

α · (x,Ax) + (y,Ay) = (α · x+ y, α ·Ax+Ay) ∈ A.

It should be noted that α· as an operator in a Hilbert space H is also a linear operator in this
sense. With little risk of confusion we will therefore also in many instances simplify notation by
letting

αx := α · x for all α ∈ K, x ∈ H,

where K denotes the scalar field of H. �
Remark 55. The restriction of the norm in H0⊕H1 to A is also known as the graph norm | · |A:∧

(x,y)∈A

√
|x|2H0

+ |y|2H1
= |(x, y)|A.

In particular in the case where A is a mapping the domain of A becomes an inner product space
with norm ∧

(x,y)∈A

|x|D(A) :=
√

|x|2H0
+ |A(x)|2H1

= |(x, y)|A.

The norm | · |D(A) is then also referred to as the graph norm associated with the mapping A. If
A is closed then A is a Hilbert space (as a closed subspace of H0 ⊕H1). With the graph norm the
domain D(A) of a closed linear mapping A is also a Hilbert space, which by definition is unitarily

43
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equivalent to A. To establish a Hilbert space (as the completion of D(A) or) as the domain D(A)
of some (closable1 or) closed linear mapping A, is one of the standard procedures for constructing
Hilbert spaces. Any dense subset of D(A) is known as a core of A. In this sense, if A is closable
then D(A) is naturally a core for Ā.

Example 56. To illustrate let us consider

grad
∣∣
C̊∞(Ω)

: C̊∞(Ω) ⊆ L2(Ω) −→
⊕

k=1,...,n L
2(Ω)

ϕ 7−→ gradϕ = (∂iϕ)i=1,...,n

.

Here Ω ⊆ Rn is an open set, C̊∞(Ω) is the set of infinitely often differentiable function ϕ defined
on Rn with compact support in Ω, i.e. ϕ = 0 outside of a bounded closed subset of Ω. (note that
this means in particular ϕ = 0 in a neighborhood of the boundary ∂Ω) and L2(Ω) is defined as a

subspace of L2(Rn) generated by the closure of C̊∞(Ω) ⊆ C̊∞(Rn), (for the imbedding of C̊∞(Rn)
in L2(Rn) see example 37). ∂i denotes the partial derivative operation with respect to the i−th
variable. In the above notation we have for the vector analytical operation ’gradient’ established
as a particular Hilbert space operator

grad
∣∣
C̊∞(Ω)

⊆ L2(Ω)⊕
⊕

k=1,...,n

L2(Ω).

Denoting

˚grad := grad
∣∣
C̊∞(Ω)

the question arises: Is ˚grad a linear operator? This is the same as asking: Is the linear oper-

ator grad
∣∣
C̊∞(Ω)

closable? To answer this question let (x, y(i)) ∈ ˚grad then there is a sequence

((x
(i)
k , y

(i)
k ))k in grad

∣∣
C̊∞(Ω)

with

(x
(i)
k , y

(i)
k )k → (x, y(i)) as k → ∞.

By linearity we have (0, w) := (0, y(1) − y(2)) ∈ ˚grad and

(uk, graduk) := (x
(1)
k − x

(2)
k , y

(1)
k − y

(2)
k )k → (0, w) as k → ∞.

If we can show that w = (w(1), . . . , w(n)) ∈
⊕

k=1,...,n L
2(Ω) vanishes, then ˚grad is a closed linear

operator. By integration by parts we have (since uk ∈ C̊∞(Ω))
(2.1.1) ∧

Φ(i)∈C̊∞(Ω), i=1,...,n

〈
(Φ(1), . . .Φ(n))|graduk

〉⊕
k=1,...,n L2(Ω)

+
〈
div (Φ(1), . . .Φ(n))|uk

〉
L2(Ω)

= 0

with div (Φ(1), . . .Φ(n)) :=
∑

i=1,...,n ∂iΦ
(i), the vector analytical divergence. Letting k → ∞ in

(2.1.1) we get∧
Φ(i)∈C̊∞(Ω), i=1,...,n

〈
(Φ(1), . . .Φ(n))|(w(1), . . . , w(n))

〉⊕
k=1,...,n L2(Ω)

=

n∑
i=1

〈
Φ(i)|w(i)

〉
L2(Ω)

= 0.

Since C̊∞(Ω) is dense in L2(Ω), we get that
∑n

i=1

〈
w(i)|w(i)

〉
L2(Ω)

= 0 and so w = 0.

Thus, the domain D( ˚grad) of the closed, linear operator ˚grad equipped with the graph norm

| · | ˚grad is a Hilbert space. This Hilbert space (known as the Sobolev space H̊1(Ω) is used to

generalize differentiation and the boundary condition of ’vanishing at the boundary’ (the so-called
homogeneous Dirichlet boundary condition) to arbitrary open sets Ω.

1Recall that a mapping A is called a closable mapping if A is still a mapping, i.e. right-unique.



2.1. LINEAR OPERATORS AND RELATIONS 45

In the terminology of definition 53 linear mappings A : D(A) ⊆ H0 → H1 are just particular
pre-Hilbert subspaces of H0 ⊕H1. By the projection theorem we have

H0 ⊕H1 = A⊕A⊥

for any closed linear relation A. A closed linear relation closely related to A⊥ is of particular
interest.

Definition 57. Let A be a relation in H0 ⊕H1. Then

A∗ := −
(
A⊥)−1

will be called the adjoint relation, −A∗ =
(
A⊥)−1

is called the skew-adjoint relation. If A∗

is a linear mapping, it is called the adjoint operator and −A∗ the skew-adjoint operator.

Remark 58. Thus, we have (u, v) ∈ A∗ if and only if∧
(x,y)∈A

〈x|v〉H0
= 〈y|u〉H1

.

The reason for defining this peculiar looking combination of operations lies in the property that
this way

(2.1.2) 〈x|v〉H0
= 〈y|u〉H1

for all (x, y) ∈ A and (u, v) ∈ A∗. In this form the ortho-complement is closer to the construction
of adjoint operators (see later). Indeed, if A is right-unique we have that a u ∈ H1 is in [H0]A

∗ if
and only if there is a v ∈ H0 such that∧

x∈D(A)

〈x|v〉H0
= 〈A (x) |u〉H1

.

Moreover, if A and A∗ are right-unique we have∧
x∈D(A), u∈D(A∗)

〈x|A∗u〉H0
= 〈A (x) |u〉H1

and a u ∈ H1 is in D (A∗) = [H0]A
∗ if and only if there is a v ∈ H0 such that∧

x∈D(A)

〈x|v〉H0
= 〈A (x) |u〉H1

.

This v ∈ H0 is of course nothing but A∗u.

Lemma 59. Let A be a relation in H0 ⊕H1. Then
2

(2.1.3)

(
A−1

)⊥
=

(
A⊥)−1

,(
−A⊥)−1

= −
(
A⊥)−1

,

(−A)⊥ = −A⊥,

−A−1 = −
[
(−A)−1

]
.

In the latter case we have, if

− [A] = A

then

−A−1 = (−A)−1
.

2Note the difference between −A = {(x, y) | (x,−y) ∈ A} and − [A] = {(x, y) | (−x.− y) ∈ A}. The latter
notation follows our general convention according to which for a function f we have

f [W ] = {f (x) |x ∈ W ∩D (f)} .
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Furthermore,

A∗ = −
(
A−1

)⊥
= −

(
A⊥)−1

=
(
−A−1

)⊥
=
(
−A⊥)−1

=
(
(−A)−1

)⊥
=
(
(−A)⊥

)−1

.

Proof. The equations follow by easy but tedious calculations. We shall only give an exem-
plary proof of the third equality, the others being similar and left as excercises for the inclined

reader. So let (x, y) ∈ (−A)⊥ , i.e. ∧
(u,v)∈1⊕(−1) A

〈(x, y)|(u, v)〉H0⊕H1
= 0

or ∧
(u,−v)∈A

〈(x, y)|(u, v)〉H0⊕H1
= 〈x|u〉H0

+ 〈±y| ± v〉H1
= 〈(x,−y)|(u,−v)〉H0⊕H1

= 0.

Thus, we have ∧
(u,v)∈A

〈(x,−y)|(u, v)〉H0⊕H1
= 0

or
(x,−y) ∈ A⊥

and so
(x, y) ∈ −A⊥.

Since the implications can be reversed, we have shown the last equality. �

As a consequence we obtain the follow result directly from Theorem 40.

Theorem 60. Let H0 ⊕H1 be a direct sum of two (complex) Hilbert spaces and A ⊆ H0 ⊕H1 a
relation. Then

LinCA = A∗∗.

Proof. According to (2.1.3) and by definition of the adjoint relation we have

A∗∗ = −
((

−
(
A⊥)−1

)⊥)−1

,

= −
(
−
((
A⊥⊥)−1

)−1
)
,

= LinCA.

Here we have used Theorem 40 together with the facts that double negation cancels, double
inversion cancels. �

Example 61. Noting that

T 7→ 1

2

(
T + T>)

T 7→ 1

2

(
T − T>)

are projectors in
(
L2 (Ω)

)3×3
=
⊕

s=1,2,3

(⊕
k=1,2,3 L

2 (Ω)
)
denoted by sym and skew, we define

L2
sym (Ω) := sym

[(
L2 (Ω)

)3×3
]
.

We have
sym skew = skew sym = 0, sym = 1− skew .

Consider now ˚Grad defined as the closure of

Grad
∣∣
C̊∞(Ω)

:
(
C̊∞ (Ω)

)3
⊆
(
L2 (Ω)

)3 →L2
sym (Ω)

v 7→ Gradv :=
1

2

(
d⊗ v + (d⊗ v)

>
)
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where d⊗v denotes the Jacobian of v : Ω ⊆ R3 → C3. That Grad
∣∣
C̊∞(Ω)

is closable follows similar

as for the usual gradient via Gauss’ theorem

〈Gradv| T 〉L2(Ω) + 〈v| divT 〉L2(Ω) =

∫
Ω

trace
(
(Gradv (x))

∗
T (x)

)
dx+

∫
Ω

v (x)
∗
div T (x) dx

=
1

2

∑
k,s

∫
Ω

∂kv
(s) (x)

∗
T k
s (x) dx+

+
1

2

∑
k,s

∫
Ω

∂sv
(k) (x)

∗
T k
s (x) dx+

+
∑
k,s

∫
Ω

v(s) (x)
∗
∂k T

k
s (x) dx(2.1.4)

=
∑
k,s

∫
Ω

∂sv
(k) (x) T k

s (x) dx+
∑
k,s

∫
Ω

v(s) (x)
∗
∂k T

k
s (x) dx

=
∑
k,s

∫
Ω

∂k
(
vs (x)

∗
Tks (x)

)
dx

= 0,

where Tks = Tsk ∈ C̊∞
(
R3
)
, s, k ∈ {1, 2, 3}.

Similarly, we can define D̊iv as the closure of

Div
∣∣
C̊∞(Ω)

: sym

[(
C̊∞ (Ω)

)3×3
]
⊆ L2

sym (Ω) →
(
L2 (Ω)

)3
T 7→ Div T :=

(
3∑

k=1

∂kTsk

)
s=1,2,3

.

With this we can now define a generalized Grad and Div by letting – in accordance with the
integration by parts formula (2.1.4)–

Div := −
(
Grad

∣∣
C̊∞(Ω)

)∗
,

Grad := −
(
Div

∣∣
C̊∞(Ω)

)∗
.

We read off

D̊iv ⊆ Div ,

˚Grad ⊆ Grad .

Consequently, we have by definition

〈Grad v|T 〉L2(Ω) + 〈v|Div T 〉L2(Ω) = 0

for all v ∈ D
(

˚Grad
)
, T ∈ D (Div) or for all v ∈ D (Grad), T ∈ D

(
D̊iv

)
in generalization of the

above integration by parts formula (2.1.4).

From the projection theorem follows:

Theorem 62. (Projection Theorem 3) Let H0⊕H1 be a direct sum of two (complex) Hilbert spaces
and A ⊆ H0 ⊕H1 a closed, linear relation. Then we have the orthogonal decompositions

H0 = [{0}]A⊕A∗ [H1] and H1 = [{0}]A∗ ⊕A [H0].

Proof. Let

y ⊥ A [H0] .
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Then ∧
(u,v)∈A

0 = 〈y|v〉H1
= 〈(0, y)|(u, v)〉H0⊕H1

or

(0, y) ∈ A⊥.

The latter is equivalent

(0, y) ∈ (A∗)
−1
,

i.e.

y ∈ (A∗)
−1

[{0}] = [{0}]A∗.

Since the implications can be reversed, the second decomposition is shown to be valid. The first
decomposition result follows from the second by replacing A by A∗ and using Theorem 60. �

Remark 63. The name ’Projection Theorem 3’ is given for the importance of this result in the
applications we have in mind. With A = PC as the orthogonal projector defined in (1.2.19) and
H = H0 = H1 we recover from Theorem 62 the earlier Theorem 37. It can be shown that PC = P ∗

C

and N(PC) ≡ P−1
C [{0}] = [{0}]PC = R(1− PC) ≡ (1− PC) [H] .

Example 64. This variant of the projection theorem contains the core of the linear solution
theory. Indeed, if A is a densely defined, closed linear mapping with closed range then

Au = f

is solvable for all f ⊥ [{0}]A∗ = N (A∗). If we look for solutions in A∗ [H1] = ([{0}]A)⊥ then the
solution is unique.

Remark 65. We can find the best approximation of f in the closed subspace A [H0] by finding
u ∈ D (A) with

Au− f ⊥ A [H0] ,

i.e.

(2.1.5) 〈Au|Av〉H1
− 〈f |Av〉H1

= 0

for all v ∈ D (A). Note that for f ∈ D (A∗) this equivalent to solving the associated so-called
Euler equation

(2.1.6) A∗Au = A∗f.

If we happen to know that Â := A∩
(
A∗ [H1]⊕A [H0]

)
⊆ A∗ [H1]⊕A [H0] has a bounded inverse,

then we see from

〈u|u〉H1
=
〈
Â−1Au|Â−1Au

〉
H1

≤
∥∥∥Â−1

∥∥∥2 〈Au|Au〉H1

that

|Au|H1
≤
√
|u|2H0

+ |Au|2H1
≤
√

1 +
∥∥∥Â−1

∥∥∥2 |Au|H1

for all u ∈ D (A). Thus,

(u, v) 7→ 〈Au|Av〉H1

is an inner product for D (A)∩A∗ [H1] and finding the best approximation as a solution for (2.1.5)
is achieved by simply applying the Riesz representation theorem to the continuous linear functional

v 7→ 〈f |Av〉H1
.

This is a common idea of finding a best approximation or solving equation (2.1.6) via (2.1.5)
known as the variational method.
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2.2. Spectrum and Resolvent Set

In many connotations the old linear algebra question arises: Given a linear operator A, for which
λ ∈ C can one always solve the equation

(2.2.1) (λ−A)u = f

for u with given data f? The not so deep first answer is of course: If all such data f are in the
range of (λ − A)! The triviality of this answer may irritate enough to bring us to the deeper
question: When is a problem reasonably solvable? A little more subtle pondering would probably
lead us to add to the first response, that we would be quite happy to find solutions satisfying the
equation not exactly, but to any prescribed degree of accuracy. For this, however, we would want
to have some control over errors so that an approximate solution is not too far away from other
solutions solving the equation more accurately. Such control would certainly also require to have
not more than one solution, since otherwise we have a manifold of solutions with any degree of
deviation. This brings us to the three celebrated requirements for being “reasonably solvable” due
to Hadamard:

I uniqueness of solution,
I existence of solution (at least for a dense set of given data),
I locally uniformly continuous dependence of solution on the given data.

Transcribing these requirements to the initial question of classifying λ ∈ C, we are led to define
the resolvent set %(A). The set %(A) contains all such λ ∈ C for which equation (2.2.1) can always
reasonably be (re)solved. In order to define the resolvent set we need some more concepts, which
we introduce here in sufficient generality to make them useful for later discussions.

Definition 66. Let B ⊆ H0 ⊕H1 be a linear operator, H0, H1 (complex) Hilbert spaces. Then
B is called a densely defined linear operator if D(B) is dense in H0. B is called a continuous
linear operator (or bounded linear operator), if

(2.2.2)
∧

x∈D(A)

|Bx|H1 ≤ C |x|H0

for some constant C ∈ R>0. The best constant in (2.2.2) is referred to as the operator norm of
B and is denoted by |B|H0→H1 or simply by ||B||. A linear operator B which is not continuous is
called unbounded, linear operator.

Remark 67. We comment here once again that for linear operators continuity in the topological
sense actually implies Lipschitz continuity (due to the uniform boundedness principle), but for
sake of keeping matters elementary we will not pursue this further.

We note that for a linear operator B : D(B) ⊆ H0 → H1 we have B(u − v) = Bu − Bv and
therefore

||B|| = |B|Lip.

In particular, we realize that for continuous linear operators the Lipschitz semi-norm is indeed
a norm, viz. the operator norm. The set L(H0,H1) of bounded linear operators defined on H0

equipped with the linear structure

(α ·A+B)(x) = α ·Ax+Bx for all α ∈ C, A, B ∈ L(H0,H1), x ∈ H0,

becomes a normed linear space with | · |L(H0,H1) := | · |H0→H1 as norm.

Since the composition A ◦B, usually also written in the multiplicative form AB, of an element in
B ∈ L(H0,H1) with A ∈ L(H1,H2) is in L(H0, H2) (H2 another Hilbert space), it is worth noting
that composition is a continuous operation between L(H1,H2)×L(H0,H1) and L(H0, H2) in the
sense that

|ABx|H2 ≤ |A|L(H1,H2) |Bx|H1 ≤ |A|L(H1,H2) |B|L(H0,H1) |x|H0 for all x ∈ H0.
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In other words, the bi-linear mapping ◦ : L(H1,H2) × L(H0,H1) −→ L(H0,H2) is continuous.
Here bi-linearity means

(αA+ C) ◦ (βB +D) = αβ A ◦B + αA ◦D + β C ◦B + C ◦D
and we have indeed

(2.2.3) |A ◦B|L(H0,H2) ≤ |A|L(H1,H2) |B|L(H0,H1)

for all α ∈ C, A, C ∈ L(H1,H2) and B, D ∈ L(H0, H1). Moreover, we have for all such normed
linear spaces L(H0,H1) :

Proposition 68. The normed linear space L(H0,H1) of continuous linear operators defined on
H0 and with range in H1 is a Banach space.

Proof. We have to show completeness. So, let (Ak)k be a Cauchy sequence in L(H0,H1).
Then

|Anx−Amx|H1 = |(An −Am)x|H1 ≤ |An −Am|H0→H1 |x|H0 .

Thus, (Anx)n is a Cauchy sequence in H1 for every x ∈ H0. Therefore, limn→∞Anx ∈ H1 exists
and we define

A∞(x) := lim
n→∞

Anx for all x ∈ H0.

That A∞ is a linear operator defined on H0 follows from the continuity of the linear operations:

A∞(α · x+ y) := limn→∞An(α · x+ y) = limn→∞(α ·Anx+Any) =

= α · limn→∞Anx+ limn→∞Any = α ·A∞(x) +A∞(y).

It remains to show that A∞ is also bounded. But this follows since Cauchy sequences are bounded
and so for all x ∈ H0 we have

|Anx|H1 ≤ sup{|An|H0→H1 | n ∈ N}|x|H0 .

Letting n→ ∞ this yields

|A∞x|H1 ≤ sup{|An|H0→H1 | n ∈ N}|x|H0 .

�

One can show an even stronger result.

Proposition 69. Let (An)n be a sequence in the Banach space L(H0,H1) such that

(2.2.4) lim
n→∞

Anx exists for all x ∈ H0.

Then

A∞ : H0 −→ H1

x 7−→ limn→∞Anx

defines a linear operator A∞ ∈ L(H0,H1).

Remark 70. In contrast to the convergence in the Banach space L(H0,H1), which is also called
uniform convergence or convergence in operator norm, the convergence concept in (2.2.4)
is called strong convergence or point-wise convergence. In this terminology the previous
proposition says that L(H0,H1) is also complete with respect to strong (or point-wise) convergence.
The proof also shows that this is really a Banach space result, since the structural features of a
Hilbert space have not been used at all.

Getting back to the issue of ’reasonable solvability’ we now introduce the resolvent set.

Definition 71. Let A ⊆ H ⊕H be a linear operator, H a (complex) Hilbert space. Then

%(λ) :=
{
λ ∈ C

∣∣(λ−A)−1 is a densely defined, continuous linear operator
}

is called the resolvent set of A.
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As far as controllability of solutions is concerned, we note that∣∣(λ−A)−1u− (λ−A)−1v
∣∣
H

≤
∣∣(λ−A)−1

∣∣
Lip

|u− v|H

holds for all u, v ∈ (λ−A)H and we have∥∥(λ−A)−1
∥∥ =

∣∣(λ−A)−1
∣∣
Lip

.

Clearly all three of Hadamard’s requirements are met for λ ∈ %(A). Writing the resolvent set in
the redundant way as

%(λ) =

λ ∈ C

∣∣∣∣∣∣∣
α(λ):=︷ ︸︸ ︷

(λ−A)−1 is a linear operator∧

∧

β(λ):=︷ ︸︸ ︷
(λ−A)−1 is a densely defined linear operator∧

∧

γ(λ):=︷ ︸︸ ︷
(λ−A)−1 is a densely defined, continuous linear operator

 .

adds no information to the description of %(A), but it may make one of the common classification
of failure to be ’reasonably solvable’ more transparent.

Definition 72. Let A ⊆ H ⊕ H be a linear operator, H a (complex) Hilbert space. Then the
complement of the resolvent set %(A) is called the spectrum σ(A) of A, i.e.

σ(A) := C \ %(A).

The parts of the spectrum are

I the point spectrum

Pσ(A) := {λ ∈ C |¬α(λ)} ,

= {λ ∈ C |(λ−A) is not one− to− one} ,

I the residual spectrum

Rσ(A) := {λ ∈ C |α(λ) ∧ ¬β(λ)} ,

=
{
λ ∈ C

∣∣(λ−A)−1 is a not densely defined, linear operator
}
,

I the continuous spectrum

Cσ(A) := {λ ∈ C |α(λ) ∧ β(λ) ∧ ¬γ(λ)} ,

=
{
λ ∈ C

∣∣(λ−A)−1 is an unbounded, densely defined linear operator
}
.

There are other spectral parts of occasional interest:

I the approximate point spectrum

π(A) :=

λ ∈ C

∣∣∣∣∣∣
∨

(xn)n

|xn|H = 1 ∧ (λ−A)xn → 0 as n→ ∞

 ,

I the compression spectrum

σcomp(A) :=
{
λ ∈ C

∣∣∣(λ−A)H 6= H
}
,

I the discrete spectrum

σd(A) := {λ ∈ Pσ (A) |λ isolated point of σ(A) ∧N(λ−A) finite− dimensional} ,
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I the essential spectrum

σe(A) := Rσ (A) ∪ Cσ (A) ∪
∪{λ ∈ Pσ (A) |λ accumulation point of σ(A) ∨ N(λ−A) infinite− dimensional} .

The following lemma gives a few relations between some parts of the spectrum.

Lemma 73. Let A ⊆ H ⊕H be a linear operator, H a (complex) Hilbert space. Then

(2.2.5) σ(A) = Pσ(A) ∪Rσ(A) ∪ Cσ(A).
The spectral parts Pσ(A), Rσ(A), Cσ(A) are disjoint. Moreover, we have

(2.2.6) Pσ(A) ∪ Cσ(A) ⊆ π(A) ⊆ σ(A).

(2.2.7) Rσ(A) ⊆ σcomp(A) ⊆ Rσ(A) ∪ Pσ(A),

(2.2.8) σd(A) ⊆ Pσ(A),

(2.2.9) σe(A) = σ(A) \ σd(A).

Proof. The equality (2.2.5) following by elementary logic

¬α(λ) ∨ ¬β(λ) ∨ ¬γ(λ) ⇔ ¬α(λ) ∨ (α(λ) ∧ ¬β(λ)) ∨ (α(λ) ∧ β(λ) ∧ ¬γ(λ)).
The disjointness of the union is obvious. Since the condition for being in π(A) contradicts conti-
nuity of (λ−A)−1 we have immediately

Cσ(A) ⊆ π(A) ⊆ σ(A).

If λ ∈ Pσ(A) then there is an element x ∈ D(A), |x|H = 1, with (λ − A)x = 0. The constant
sequence (x)n satisfies the condition defining π(A) and so also

Pσ(A) ⊆ π(A).

Clearly, Rσ(A) ⊆ σcomp(A). Since λ ∈ Cσ(A) contradicts being in σcomp(A) and since σcomp(A) ⊆
σ(A) we have

σcomp(A) ⊆ σ(A) \ Cσ(A) = Rσ(A) ∪ Pσ(A).
That σe(A) = σ(A) \ σd(A) and σd(A) ⊆ Pσ(A) is obvious. �

The resolvent set has the remarkable property of being always an open set, which makes the
spectrum a closed set. Before we are able to prove this, we need to know more about the resolvent
which is the linear operator (λ−A)−1 in case λ ∈ %(A).

Proposition 74. Let A ⊆ H ⊕ H be a linear relation, H a (complex) Hilbert space. Then we
have for all λ ∈ C that3

(2.2.10) (λ−A)−1 = (λ− Ā)−1.

3For relations A,B ⊆ H0 ⊕H1 the relation

αA+B

is defined – in analogy to mappings – right-wise, i.e.

αA+B :=

x⊕ y |
∨

x⊕a∈A, x⊕b∈B

y = αa+ b

 ,

where α is in the underlying field of the Hilbert spaces Hk, k = 0, 1. This way such relations obtain a natural
additive and scalar multiplicative structure. Note. however, that for a linear structure the additive group structure
is usually missing. Indeed, in general

A−A 6= H0 ⊕ {0} ,
where H0 ⊕ {0} is the zero mapping. If

A−A ⊆ H0 ⊕ {0} ,
then we call A right-unique. Even in this case, in general we may have A−A ⊂ H0 ⊕{0}. If A is right-unique and
left-total, then

A−A = H0 ⊕ {0} .
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If A is a linear operator, then we have for all λ ∈ %(A) that (λ− Ā)−1 : H → H is a continuous,
linear operator with∥∥(λ− Ā)−1

∥∥ =
∣∣(λ− Ā)−1

∣∣
H→H

=
∣∣(λ− Ā)−1

∣∣
Lip

=
∣∣(λ−A)−1

∣∣
H→H

=
∣∣(λ−A)−1

∣∣
Lip

=
∥∥(λ−A)−1

∥∥ .
If, moreover, A is closable then we have

%(A) = %(Ā).

Proof. To see (2.2.10) we take (u,w) ∈ (λ−A)−1 and a sequence ((uk, wk))k in (λ− A)−1

converging to (u,w). Since

(2.2.11) (x, y) ∈ (λ−A)−1 ⇔ (y, x) ∈ (λ−A) ⇔ (y, λ · y − x) ∈ A,

we have

(wk, −uk + λ · wk) → (w, −u+ λ · w) as k → ∞
and therefore

(w, −u+ λ · w) ∈ Ā.

Using (2.2.11) once again with Ā replacing A we get

(u,w) ∈ (λ− Ā)−1.

Since the reasoning can be reversed, we obtain (2.2.10). If A is a linear operator, then its re-
solvent (λ − A)−1 is Lipschitz continuous and densely defined for all λ ∈ %(A). Therefore, its

closure (λ−A)−1 exists, is Lipschitz continuous with the same Lipschitz semi-norm and defined

on (λ−A) [H] = H. With (2.2.10) we obtain that also (λ − Ā)−1 has these properties. That
the Lipschitz semi-norm is equal to the operator norm has already been noted. If Ā is a linear
operator then (λ− Ā)−1 is its resolvent. This shows that

%(A) ⊆ %(Ā).

The reverse inclusion also holds. Let λ ∈ %(Ā), then with (2.2.10) we see that (λ − A)−1 is
a continuous linear operator as a restriction of a continuous linear operator. Since (λ − A)−1

is dense in (λ − Ā)−1 we also get D((λ − A)−1) dense in D((λ − Ā)−1) = H. In other words
λ ∈ %(A). �

In case the linear operator A is closed, the resolvents are all defined on the same domain and thus
become comparable. Therefore we will here and later mostly assume that we are in this situation.

Theorem 75. Let A ⊆ H ⊕ H be a closed, linear operator, H a (complex) Hilbert space. Then
we have for all λ, µ ∈ %(A) that the so-called resolvent equation holds

(2.2.12) (λ−A)−1 − (µ−A)−1 = −(λ− µ) (λ−A)−1(µ−A)−1.

The mapping

R(·, A) : %(A) ⊆ C −→ L(H,H)

λ 7−→ (λ−A)−1

is analytic on the open set %(A) of C in the sense that it is complex differentiable. We have for
the complex derivative ∂C of R(·, A)

(2.2.13) ∂nCR(λ,A) = (−1)n n!R(λ,A)n+1 = (−1)n n! (λ−A)−n−1 for all λ ∈ %(A), n ∈ N.

Moreover, we have that the power series representation

(2.2.14) R(λ,A) = R(µ,A)
∞∑

n=0

(µ− λ)nR(µ,A)n

holds in L(H,H) for all λ ∈ %(A) in the open disc BC(µ, 1/ ‖R(µ,A)‖).
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Proof. The resolvent equality follows by a simple calculation:

(2.2.15)

(λ−A)−1 − (µ−A)−1 = (λ−A)−1(1− (λ−A)(µ−A)−1)

= (λ−A)−1((µ−A)− (λ−A)) (µ−A)−1

= (µ− λ) (λ−A)−1(µ−A)−1.

Note that the calculation in (2.2.15) are valid since D(A) = (λ − A)−1 [H] . Next we show that
%(A) is open. We observe that the geometric series (a special instance of a so-called Neumann
series, see corollary below)

N(λ, µ,A) :=
∞∑
k=0

(µ− λ)k (µ−A)−(k+1)

converges in L(H0,H1) if λ ∈ BC

(
µ,
∥∥(µ−A)−1

∥∥−1
)
, µ ∈ %(A). �

Corollary 76. Let Q ∈ L(H,H) with ||Q|| < 1 then

(1−Q)−1 =
∞∑
k=0

Qk in L(H,H).

Proof. The result follows by observing that

S 7→ SQ+ 1

is a contraction mapping in L(H,H) and that the (by the contraction mapping theorem) unique

fixed point Ŝ must satisfy

Ŝ(1−Q) = 1

and so that Ŝ = (1−Q)−1, since it is not hard to see that Q and Ŝ are commuting. Any starting
point yields an iterated sequence converging to this fixed point. Starting with 0 yields the partial
sums of

∑∞
k=0Q

k showing convergence and representation at once. �

2.3. Special Classes of Linear Operators

2.3.1. Densely Defined, Closable and Closed Linear Operators and their Adjoints.
We have already introduced densely defined, linear operators, here we would like to investigate a bit
deeper, what the consequences are of this property. As it turns out this is precisely that property
which warrants the existence of the adjoint operator. In order to get a deeper understanding of
the situation, let us start slightly more general than actually needed.

Lemma 77. Let A ⊆ H0⊕H1 be a linear relation between the complex Hilbert spaces H0, H1. The
adjoint relation A∗ is a linear operator if and only if A−1 [H1] = [H1]A is dense in H0.

Proof. As an ortho-complement A∗ is certainly an - always closed - linear relation. We only
need to show the right-uniqueness for this linear relation. So let (0, w) ∈ A∗. If we can show that
w must be zero if and only if A−1 [H1] is dense in H0, then we are done. We find the following
chain of equivalences

(0, w) ∈ A∗ =
(
−A⊥)−1 ⇔ (w, 0) ∈ A⊥,

⇔
∧

(x,y)∈A 〈x|w〉H0
+ 〈y|0〉H1

= 0,

⇔
∧

x∈[H0]A=A−1[H1]
〈x|w〉H0

= 0.

�

As an immediate corollary we get.
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Corollary 78. Let A ⊆ H0⊕H1 be a linear operator between the complex Hilbert spaces H0, H1.
The adjoint relation A∗ is a linear operator if and only if A is densely defined.

Proof. The conclusion is immediate from the previous lemma, if one notices that D(A) =
A−1 [H1] = [H1]A. �

Using the mapping notation for linear operators we get

Corollary 79. Let A : D(A) ⊆ H0 → H1 be a densely defined, linear operator between the
complex Hilbert spaces H0, H1 and A∗ : D(A∗) ⊆ H1 → H0 its adjoint. Then

D(A∗) =

v ∈ H1

∣∣∣∣∣∣
∨

w∈H0

∧
x∈D(A)

〈Ax|v〉H1
= 〈x|w〉H0


and

A∗v =∈

w ∈ H0

∣∣∣∣∣∣
∧

x∈D(A)

〈Ax|v〉H1
= 〈x|w〉H0

 .

Moreover, we have

(2.3.1)
∧

x∈D(A)

∧
y∈D(A∗)

〈Ax|y〉H1
= 〈x|A∗y〉H0

.

Proof. We find similar to the argument in the proof of Lemma 77 by direct calculation that

(2.3.2)

(v, w) ∈ A∗ =
(
1⊕ (−1)A⊥)−1 ⇔ (w,−v) ∈ A⊥,

⇔
∧

(x,y)∈A 〈x|w〉H0
− 〈y|v〉H1

= 0,

⇔
∧

x∈D(A) 〈x|w〉H0
= 〈Ax|v〉H1

.

The last statement yields the desired characterization of D(A) as well as the description of A∗v.
Inserting that w = A∗v by definition we also get (2.3.1). �

Corollary 80. Let A : D(A) ⊆ H0 → H1 be a densely defined, closed linear operator between
the complex Hilbert spaces H0, H1 and A∗ : D(A∗) ⊆ H1 → H0 its adjoint. Then, we obtain a
continuous linear mapping A� : H ′

1 → H ′
A, the dual mapping, given by

A�w :=
(
x 7→ w (Ax) = 〈RH1w|Ax〉H1

)
for w ∈ H ′

1. By identifying H1 = H ′
1 we obtain

A�v =
(
x 7→ 〈v|Ax〉H1

)
: H1 → H ′

A.

Then by also identifying H0 = H ′
0 we get

D(A∗) = [H0]A
�

and we obtain

A∗v = A�v.

Moreover, we have

(2.3.3)
∧

x∈D(A)

∧
y∈H1

〈Ax|y〉H1
= 〈x|A�y〉H0

and

(2.3.4)
∧

x∈D(A)

∧
y∈D(A∗)

〈Ax|y〉H1
= 〈x|A∗y〉H0

.
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Proof. By definition, for every v ∈ H1 we have

(A�v) (x) = 〈v|Ax〉H1

for all v ∈ H ′
1 = H1 and all x ∈ D (A). This defines the continuous linear operator A� uniquely

and indeed by the given formula. Moreover, HA is densely and continuously embedded into H0

and so is H ′
0 in H ′

A. Thus, we have HA ⊆ H0 = H ′
0 ⊆ H ′

A as a sequence of dense inclusions. For
v ∈ [H0]A

� we have now that
A�v ∈ H ′

0 = H0

and so
〈A�v|x〉H0

= (A�v) (x) = 〈v|Ax〉H1
,

from which we can read off the stated results. �

The last lemma can also be applied to A∗ instead of A.

Lemma 81. Let A ⊆ H0 ⊕H1 be a relation between the complex Hilbert spaces H0, H1. Then the
linear relation LinCA is a closable linear operator if and only if (A∗)

−1
[H0] =

(
A−1

)∗
[H0] =

[H0]A
∗ is dense in H1.

Proof. First we realize that applying Lemma 77 to A∗ we find that A∗∗ is a linear operator
if and only (A∗)

−1
[H0] is dense in H1. The linear relation A∗∗ is however nothing but the linear

relation LinCA which is a linear operator if and only if LinCA is a closable linear operator. �
Proposition 82. Let A ⊆ H0 ⊕ H1 be a densely defined, linear operator between the complex
Hilbert spaces H0, H1. The adjoint operator A∗ is a densely defined, linear operator if and only if
A is a closable linear operator.

Proof. The result is just a special case of the previous lemma. Note thatD(A∗) = A∗−1 [H0] .
�

A characterization of closedness of an operator is given in our next proposition, which we recall
from earlier considerations about constructing Hilbert spaces.

Proposition 83. Let A ⊆ H0×H1 be a linear operator between the complex Hilbert spaces H0, H1.
The operator A is a closed, linear operator if and only if D(A) is a Hilbert space with respect to
the graph norm | · |D(A).

In practical cases it is frequently quite obvious that not only the original operator A but also its
adjoint A∗ is densely defined, so that closability of A follows according to Proposition 82 as a
by-product. A concept relevant in this context is explained in our next definition.

Definition 84. Relations A ⊆ H0×H1, B ⊆ H1×H0 between the complex Hilbert spaces H0, H1

are called formally adjoint if

(2.3.5) A ⊆ B∗.

If

(2.3.6) A ⊆ −B∗

we say that A, B are formally skew-adjoint. In the special case of A = B we speak of formally
selfadjoint relation, if A = −B we say A is formally skew-selfadjoint. If even A = A∗ or A = −A∗

then we say that A is selfadjoint or that A is skew-selfadjoint, respectively.

Remark 85. Note that the terms “formally adjoint” and “formally skew-adjoint” are indeed
symmetric in A and B. Since B∗ is always a closed, linear subspace, inclusion (2.3.5) is equivalent
to

LinCA ⊆ B∗.

The latter is in turn equivalent to
LinCB ⊆ A∗.



2.3. SPECIAL CLASSES OF LINEAR OPERATORS 57

Indeed,

LinCA ⊆ B∗ ⇒ B ⊆ LinCB = B∗∗ ⊆ LinCA
∗
= A∗.

Similarly in the skew-adjoint case. If A,B are closed, linear and formally adjoint then for a closed
linear V satisfying A ⊆ V ⊆ B∗ we also have B ⊆ V ∗ ⊆ A∗. Thus, V,B and V ∗, A are formally
adjoint. Conversely, if V ⊆ B∗ and V ∗ ⊆ A∗, we obtainA ⊆ V and so

A ⊆ V ⊆ B∗.

Note that A and B are formally adjoint if and only if A and −B formally skew-adjoint. Therefore
it suffices to focus on one of the cases, the other being a trivial consequence.

We note an interesting relation between adjoints and closability.

Proposition 86. Let A ⊆ H0 ×H1, B ⊆ H1 ×H0 be two linear operators between the complex
Hilbert spaces H0, H1. Then we have that A and B are formally adjoint if and only if∧

x∈D(A)

∧
v∈D(B)

〈Ax|v〉H1
= 〈x|Bv〉H0

.

If, moreover, both are densely defined then both linear operators are closable.

Proof. For (v, w) to be in A∗ means according to earlier calculations, see (2.3.2),

(2.3.7)
∧

x∈D(A)

〈x|w〉H0
= 〈Ax|v〉H1

.

Since A and B are formally adjoint, we must have B ⊆ A∗. Thus, (2.3.7) implies that for all
(v,Bv) ∈ B ⊆ A∗we have

(2.3.8)
∧

x∈D(A)

〈x|Bv〉H0
= 〈Ax|v〉H1

.

Conversely, comparing (2.3.8) the characterization (2.3.7) we see that (2.3.8) implies that (v,Bv) ∈
A∗. Since v ∈ D(B) was arbitrary, we get indeed

B ⊆ A∗.

If now in addition A and B are densely defined, then A∗ and B∗ are closed linear operators, in
particular right-unique. Consequently, A and B must also be right-unique as subsets of B∗ and
A∗, respectively. �

Example 87. Let us consider once again the vector-analytical operation ’gradient’ as a densely
defined, linear operator

grad
∣∣
C̊∞(Ω)

: C̊∞(Ω) ⊆ L2(Ω) −→
⊕

k=1,...,n L
2(Ω)

ϕ 7−→ gradϕ = (∂iϕ)i=0,...,n−1

,

where Ω ⊆ Rn is an open set, C̊∞(Ω) is the set of infinitely often differentiable function ϕ defined
on Rn with ϕ = 0 outside of a bounded closed subset of Ω. By integration by parts we have that
for u ∈ C̊∞(Ω)∧

Φi∈C̊∞(Ω), i=0,...,n−1

〈(Φ1, . . .Φn)|gradu〉⊕
k=1,...,n L2(Ω) + 〈div (Φ1, . . .Φn)|u〉L2(Ω) = 0

where div (Φ1, . . .Φn) :=
∑

i=0,...,n−1 ∂iΦi, denotes the vector analytical ’divergence’. In our
current terminology this means that the operator

div
∣∣⊕

k=1,...,n C̊∞(Ω)
:
⊕

k=1,...,n C̊∞(Ω) ⊆
⊕

k=1,...,n L
2(Ω) −→ L2(Ω)

φ 7−→ div φ =
∑

k=1,...,n ∂iφi
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and the operator grad
∣∣
C̊∞(Ω)

are formally skew-adjoint linear operators. Moreover, since we found

that C̊∞(Ω) is dense in L2(Ω), we also have that both operators are closable linear operators. This
confirms our earlier finding that

˚grad := grad
∣∣
C̊∞(Ω)

is a closed linear operator and asserts in addition that also

d̊iv := div
∣∣⊕

k=1,...,n C̊∞(Ω)

is also a closed linear operator. Moreover, we have that their adjoints define indeed – as anticipated
earlier – closed linear operators

grad := (−d̊iv)∗, div := (− ˚grad)∗.

By construction we also have

(2.3.9) ˚grad ⊆ grad, d̊iv ⊆ div.

Since all these operators are closed, their domains are complex Hilbert spaces with respect to the
graph norm denoted by

H( ˚grad,Ω) := D( ˚grad),

H(d̊iv,Ω) := D(d̊iv),

H(grad,Ω) := D(grad),

H(div,Ω) := D(div).

As a consequence of (2.3.9) we have the inclusions

H( ˚grad,Ω) ⊆ H(grad,Ω), H(d̊iv,Ω) ⊆ H(div,Ω).

Applying the projection theorem to this closed subspace configurations, we first get

H(grad,Ω) = H( ˚grad,Ω)⊕H( ˚grad,Ω)⊥, H(div,Ω) = H(d̊iv,Ω)⊕H(d̊iv,Ω)⊥.

To conclude this example let us determine the ortho-complements H( ˚grad,Ω)⊥ and H(d̊iv,Ω)⊥.
We first find

Φ ∈ H(d̊iv,Ω)⊥ ⇔
∧

Ψ∈H(d̊iv) 〈Φ|Ψ〉⊕
k=1,...,n L2(Ω) + 〈div Φ|divΨ〉L2(Ω) = 0 .

According to the above characterization of the domain of the adjoint, we get

div Φ ∈ D
(
(d̊iv)∗

)
= D(grad)

and

−grad div Φ = −Φ

or

Φ ∈ N(−grad div + 1).

Since the reasoning can be reversed, we obtain

N(−grad div + 1) = H(d̊iv,Ω)⊥.

Similarly,

N(−div grad + 1) = H( ˚grad,Ω)⊥.

Thus, we have the orthogonal decompositions

H(grad,Ω) = H( ˚grad,Ω)⊕N(−div grad + 1), H(div,Ω) = H(d̊iv,Ω)⊕N(−grad div + 1).
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These decompositions can be employed to give a first access to the discussion of boundary value
problems. Let f ∈ H(grad) be given then the orthogonal projection u of f onto N(−div grad +1)
yields a solution of the equation4

(2.3.10) −div gradu+ u = 0

satisfying additionally the ’boundary condition’

(2.3.11) u− f ∈ H( ˚grad,Ω).

That (2.3.11) is indeed a generalized (inhomogeneous Dirichlet type) boundary condition (gen-
eralizing ’u = f on ∂Ω’) needs some clarification, which we shall, however, postpone. Similarly
accepting a condition of the form

(2.3.12) U − F ∈ H(d̊iv,Ω)

as a generalized inhomogeneous Neumann type boundary condition (generalizing ’n · U = n · F
on ∂Ω’, where n denotes the (exterior) normal assuming it exists), we can interpret the second
orthogonal decomposition as solving the problem

(2.3.13) −grad divU + U = 0

with U subject to the boundary condition (2.3.12). Since U ∈ H(div,Ω) by construction, we
deduce from (2.3.13) that also grad divU ∈ H(div,Ω) and so

−div grad divU + divU = 0.

In other words, we have found a solution ϕ := divU satisfying again equation (2.3.10) and the
boundary condition

gradϕ− F ∈ H(d̊iv,Ω).

Thus we have solved the inhomogeneous Dirichlet and Neumann type boundary value problems
for equation (2.3.10). Following our solution philosophy we should also check for uniqueness and
continuous dependence on the data in both cases. Uniqueness in the Dirichlet case is clear: Since
the difference u of two solutions satisfies the homogeneous Dirichlet type boundary condition

u ∈ H( ˚grad,Ω)

and the equation (2.3.10), i.e.

u ∈ N(−div grad + 1) := [{0}] (−div grad + 1) = H( ˚grad,Ω)⊥,

it follows that u = 0. In the Neumann case we have that the difference ϕ of two solution satisfies

gradϕ ∈ H(d̊iv,Ω)

and (by applying grad to the equation)

−grad div gradϕ+ gradϕ = 0,

i.e.

gradϕ ∈ N(−grad div + 1) = H(d̊iv,Ω)⊥.

Therefore, we first find gradϕ = 0 and then, since

ϕ = div gradϕ,

that ϕ = 0. The continuous dependence of the solution u in the Dirichlet case follows from the
projection theorem

|u|H(grad,Ω) ≤
√
|u|2H(grad) + |f − u|2H(grad) = |f |H(grad).

4Solutions for vanishing boundary data of

−div ˚gradu+ u = g

or

−d̊iv gradu+ u = g

have already been discussed earlier
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In the Neumann case we argue that

−d̊iv (gradϕ− F ) + ϕ = divF,

and so after multiplying by ϕ in the sense of the L2(Ω) we get

−
〈
ϕ|d̊iv (gradϕ− F )

〉
L2(Ω)

+ 〈ϕ|ϕ〉L2(Ω) = 〈ϕ|divF 〉L2(Ω) .

Since ϕ ∈ D(d̊iv
∗
) = D(grad) this yields

〈gradϕ| gradϕ− F 〉⊕
k=1,...,n L2(Ω) + 〈ϕ|ϕ〉L2(Ω) = 〈ϕ|divF 〉L2(Ω)

or

〈gradϕ| gradϕ〉⊕
k=1,...,n L2(Ω) + 〈ϕ|ϕ〉L2(Ω) = 〈ϕ|divF 〉L2(Ω) + 〈gradϕ|F 〉⊕

k=1,...,n L2(Ω) .

Finally, noting that (divF, F ) ∈ L2(Ω)⊕
⊕

k=1,...,n L
2(Ω) and using the Cauchy-Schwarz inequal-

ity in L2(Ω)⊕
⊕

k=1,...,n L
2(Ω), we get

|ϕ|2H(grad,Ω) ≤ |ϕ|H(grad,Ω) |F |H(div,Ω)

or

|ϕ|H(grad,Ω) ≤ |F |H(div,Ω).

2.3.2. Continuous, Linear Operators. Various instances of continuous, linear operators
we have also already encountered. To illuminate the special qualities of this operator class we
consider them now in slightly more detail in particular in conjunction with the concepts studied
in the previous subsection. By continuous extension clearly a densely defined, continuous linear
operator extends to a continuous linear operator defined on the whole space (with the same
operator norm, i.e. Lipschitz (semi-) norm. We have already used these ideas in the discussion
of the resolvent operator. The adjoint of a densely defined, continuous, linear operator is also a
continuous, linear operator defined on the whole space. Let us collect these fundamental findings
in our next proposition. Since continuous linear mappings, also map bounded sets to bounded
sets they are also known as bounded, linear mappings, although, such a mapping is only bounded
in our earlier sense, if it is the constant linear mapping 0!

Proposition 88. Let A ⊆ H0 × H1, be a continuous, linear operator between complex Hilbert
spaces H0, H1. Then A is always closable. If the closure Ā is defined on H0 then A must be
densely defined. If A is densely defined, then

Ā ∈ L(H0,H1), A
∗ ∈ L(H1,H0).

Proof. Since A is continuous, it is also Lipschitz continuous and therefore closable. If A is
densely defined, then Ā is defined on all of H0 and is Lipschitz continuous with the same Lipschitz
(semi-) norm, i.e. the operator norm. If Ā is defined on H0 then for (x, y) ∈ Ā there is a sequence
((xn, yn))n in A with

xn → x as n→ ∞ and yn → y as n→ ∞.

Since x ∈ H0 can be arbitrary, we thus have always a sequence in D(A) approximating an ar-
bitray x ∈ H0. In other words, A is densely defined. To investigate A∗ we use the convenient
characterization of Proposition 79. For fixed y ∈ H1 consider the linear functional

〈
y|Ā·

〉
H1

given

by

H0 → C

x 7→
〈
y|Āx

〉
H1

.

This functional is also continuous (by the Cauchy-Schwarz inequality)∣∣∣〈y ∣∣Āx〉
H1

∣∣∣ ≤ |y|H1 |Āx|H1 ≤ |y|H1 ||Ā|| |x|H0 = |y|H1 ||A|| |x|H0
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for all x ∈ H0, y ∈ H1. Thus, we have
〈
y|Ā·

〉
H1

∈ H ′
0 and applying the corresponding Riesz

mapping RH0 we also obtain∧
x∈H0

〈
y
∣∣Āx〉

H1
=
〈
RH0

〈
y|Ā·

〉
H1

∣∣∣x〉
H0

.

In other words,

y ∈ D(Ā∗) = D(A∗) and A∗y = RH0

〈
y
∣∣Ā·〉

H1
.

Since y ∈ H1 was arbitrary, we see that D(A∗) = H1. Moreover,

|A∗y|H0
=
∣∣∣RH0

〈
y|Ā·

〉
H1

∣∣∣
H0

=
∣∣∣〈y|Ā·〉H1

∣∣∣
H′

0

≤ |y|H1 ||A||

for all y ∈ H1. This estimate shows that A∗ ∈ L(H1, H0) and ‖A∗‖ ≤ ‖A‖ . Exchanging the role
of Ā and A∗, we also find

∥∥Ā∥∥ = ‖A∗∗‖ ≤ ‖A∗‖ . �

We note the following useful results about the interaction between continuous, linear operators
with possibly discontinuous, linear operators with regards to taking adjoints.

Lemma 89. Let B ∈ L(H0,H1) and let A ⊆ H0 ⊕H1 be a closed, densely defined, linear operator
between complex Hilbert spaces H0 and H1. Then

(A+B)∗ = A∗ +B∗.

Proof. Since for all x ∈ D(A∗) ⊆ D(B∗) = H1 and all y ∈ D(A) ⊆ D(B) = H0 we have

〈(A+B)y|x〉H1
= 〈Ay |x 〉H1

+ 〈By |x 〉H1
= 〈y |(A∗ +B∗)x 〉H0

,

it follows that

A∗ +B∗ ⊆ (A+B)∗.

For x ∈ D ((A+B)∗) we have∧
y∈D(A)

〈(A+B)y|x〉H23
= 〈y |(A+B)∗x 〉H0

.

Since B is continuous,∧
y∈D(BA)

〈(A+B)y|x〉H1
= 〈Ay |x 〉H1

+ 〈y |B∗x 〉H1
= 〈y |(A+B)∗x 〉H0

and we see that x ∈ D(A∗) and A∗x = (A+B)∗x−B∗x. �

Lemma 90. Let B ∈ L(H1,H2), C ∈ L(H0,H0) be operators between complex Hilbert spaces
H1 and H2 and H0 and H0, respectively, and let A ⊆ H0 ⊕H1 be a closed, densely defined, linear
operator between complex Hilbert spaces H0 and H1. Then

(BA)∗ = A∗B∗, (AC)∗ = C∗A∗.

Proof. Since for all x ∈ D(A∗B∗) and all y ∈ D(BA) we have

〈BAy|x〉H2
= 〈Ay |B∗x 〉H1

= 〈y |A∗B∗x 〉H0
,

it follows that

A∗B∗ ⊆ (BA)∗.

For x ∈ D ((BA)∗) we have ∧
y∈D(BA)

〈BAy|x〉H2
= 〈y |(BA)∗x 〉H0

.

Since B is continuous, ∧
y∈D(BA)

〈Ay|B∗x〉H2
= 〈y |(BA)∗x 〉H0
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and we see that B∗x ∈ D(A∗) and A∗B∗x = (BA)∗x. Applying our findings we also obtain
(C∗A∗)∗ = A∗∗ C∗∗ = AC. Taking adjoints this yields

(AC)∗ = (C∗A∗)∗∗ = C∗A∗.

�

A rather special case of boundedness which is of particular interest here is the case of a unitary
operator U : H0 → H1.

Proposition 91. Let U ∈ L(H0,H1) be a unitary operator between complex Hilbert spaces H0, H1.
If the spaces H0, H1 are not equal to {0} then

||U || = 1.

Moreover,

U−1 = U∗

and if H := H0 = H1 we have

σ(U) ⊆ ∂BC(0, 1).

Proof. That

||U || = 1

is obvious from the isometric property of U :

|Ux|H1
= |x|H0

for all x ∈ H0.

From this we also find by polarization

〈Ux|Uy〉H1
= 〈x|y〉H0

for all x, y ∈ H0.

We read off

U∗U = 1 on H0

and applying U to this equality and noting that U is assumed to be onto we also get

U U∗ = 1 on H1.

In other words,

U−1 = U∗.

In regards to the spectral properties we have from the spectral theorem (variant 3) using H :=
H0 = H1 and

|(U − λ)x|H ≥ ||Ux|H − |λ| |x|H | = |1− |λ|| |x|H
|(U∗ − λ)x|H ≥ ||U∗x|H − |λ| |x|H | = |1− |λ|| |x|H

for all x ∈ H, that

BC(0, 1) ∪ (C \BC(0, 1)) ⊆ % (U) ∩ % (U∗)

and so indeed

(2.3.14) σ(U) ⊆ ∂BC(0, 1), σ(U
∗) ⊆ ∂BC(0, 1).

�

Example 92. We consider the so-called Fourier transform F̃ as a particular example for a unitary
mapping. Let ϕ ∈ C̊∞(R) then there is some N ∈ N such that ϕ = 0 outside of the interval
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] − 2N−1,+2N−1[. Then the rescaled function ϕN := σ
2N
ϕ is in L2(] − 1/2,+1/2[), σc ϕ :=√

|c|ϕ(c·), c ∈ R \ {0}5.The Fourier coefficients of ϕN are

ϕ̂N (k) := 〈exp(2πi k·)|ϕN 〉L2(R)

=

∫
R
exp(−2πi kx) ϕN (x) dx

= 2−N/2

∫
R
exp(−2πi k 2−Ny) ϕ(y) dy

=: 2−N/2 ϕ̂(k 2−N ).

According to what we said about the Fourier series
(
ϕ̂(k 2−N )

)
k∈Z conserves all the information

to reconstruct ϕ. Since fractions of the form k
2N

are dense in R, we are led to consider the so-called

Fourier transform ϕ 7→ F̃ϕ for arbitrary ϕ ∈ C̊∞(R), where
(
F̃ϕ
)
(x) :=

∫
R exp(−2πix y)ϕ(y) dy.

We also see that F̃ϕ ∈ L2(R), since ϕ has compact support, and

(2.3.15)

∫
R
∣∣∫

R exp(−2πix y) ϕ(y) dy
∣∣2 dx =

∫
R

1
1+x2

∣∣∫
R (D − i) exp(−2πix y) ϕ(y) dy

∣∣2 dx,
=

∫
R

1
1+x2

∣∣∫
R exp(−2πix y) (D + i)ϕ(y) dy

∣∣2 dx,
≤

∫
R

1
1+x2

∣∣∫
R |(D + i)ϕ(y)| dy

∣∣2 dx,
≤

∫
R

1
1+x2

∫
R

1
1+y2 dy

∫
R (1 + y2) |(D + i)ϕ(y)|2 dy dx

= π2
∫
R (1 + y2) |(D + i)ϕ(y)|2 dy = |(m− i)(D − i)ϕ|2L2(R) ,

where m symbolizes multiplication by the argument, i.e. (mϕ)(x) := xϕ(x) for x ∈ R, and D

abbreviates 1
2πi∂. This suggests to establish the Fourier transform F̃ as the closure of the mapping

C̊∞(R) ⊆ L2(R) → L2(R)

ϕ 7→ F̃ϕ
.

That this is well-defined will follow by showing that the Fourier transform is an isometry. The
Fischer-Riesz theorem shows that for all sufficiently large N ∈ N

∞∑
k=−∞

2−N
∣∣∣F̃ϕ(k 2−N )

∣∣∣2 =

∫
R
|ϕ(y)|2 dy.

We define

WN (x) :=


...∣∣∣F̃ϕ(k 2−N )

∣∣∣2 for x ∈ [k 2−N , (k + 1) 2−N [, k ∈ Z
...

and apparently obtain a non-negative step functionWN with countably many steps approximating∣∣∣F̃ϕ(·)∣∣∣2 point-wise as N → ∞ and we have∫
R
WN (x) dx =

∫
R
|ϕ(y)|2 dy

for all sufficiently large N ∈ N. Now by Fatou’s lemma
∣∣∣F̃ϕ(·)∣∣∣2 is integrable and

∫
R

∣∣∣F̃ϕ(x)∣∣∣2 dx ≤
∫
R
|ϕ(y)|2 dy.

5Note that the rescaling operation σc is defined in such a way to make it a unitary mapping in L2(R). Indeed,∫
R |(σcϕ)(x)|2dx =

∫
R |ϕ(c x)|2|c| dx =

∫
R |ϕ(x)|2 dx
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Moreover, similar to (2.3.15) we have∣∣∣F̃ϕ(x)∣∣∣ = ∣∣∫
R exp(−2πix y) ϕ(y) dy

∣∣ ,
= 1√

1+x2

∣∣∫
R (D − i) exp(−2πix y) ϕ(y) dy

∣∣ ,
= 1√

1+x2

∣∣∫
R exp(−2πix y) (D − i)ϕ(y) dy

∣∣ ,
≤ 1√

1+x2

∫
R |(D − i)ϕ(y)| dy,

≤ π1/2 1√
1+x2

√∫
R (1 + y2) |(D − i)ϕ(y)|2 dy =

= π1/2 1√
1+x2

|(m− i)(D − i)ϕ|L2(R) ,

and so also∣∣∣∂F̃ϕ(x)∣∣∣ = ∣∣∂ ∫R exp(−2πix y) ϕ(y) dy
∣∣ ,

= 2π
∣∣∫

R exp(−2πix y) y ϕ(y) dy
∣∣ ,

≤ 2π3/2 1√
1+x2

|(m− i)(D − i)(mϕ)|L2(R) ,

≤ 2π3/2 1√
1+x2

(∣∣(m− i)2(D − i)ϕ
∣∣
L2(R) + |(m− i)ϕ|L2(R) + |(m− i)(D − i)ϕ|L2(R)

)
.

With this and observing that

|
(
F̃ϕ
)
(x)−

(
F̃ϕ
)
(y)| ≤ sup

{
|∂F̃ϕ(t)|

∣∣t ∈ [k 2−N , (k + 1) 2−N [
}
2−N

for all x, y ∈ [k 2−N , (k + 1) 2−N [, we get

|
(
F̃ϕ
)
(y)| ≤ |

(
F̃ϕ
)
(x)|+ C

1√
1 + k2

22N

2−N

for all x, y ∈ [k 2−N , (k + 1) 2−N [. This proves that

WN (x) ≤ 2 |
(
F̃ϕ
)
(x)|2 + UN (x)

with

UN (x) := 2C2


...

1
22N+k2 for x ∈ [k 2−N , (k + 1) 2−N [, k ∈ Z
...

.

Since ∫
R
UN (x) dx = 2C2 2−N

∑
k∈Z

1

22N + k2
≤ 2C2 2−N

∑
k∈Z

1

k2
,

we have (by so-called dominated convergence) that even∫
R

∣∣∣(F̃ϕ) (x)∣∣∣2 dx =

∫
R
|ϕ(y)|2 dy.

Since ϕ ∈ C̊∞(R) was arbitrary, this proves that F̃
∣∣
C̊∞(R) is an isometry and extends by continuity

to its closure F̃6. Let us calculate its adjoint F̃∗. The adjoint operator F̃∗ must satisfy

(2.3.16)
〈
F̃ϕ |ψ

〉
L2(R)

=
〈
ϕ | F̃∗ψ

〉
L2(R)

6It should be noted that this way F̃ϕ is defined even if ϕ /∈ L1(R) and so the integral defining the Fourier

transform originally does not make sense.
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where it suffices to consider ϕ, ψ ∈ C̊∞(R). We calculate using Fubini’s theorem〈
F̃ϕ |ψ

〉
L2(R)

=
∫
R
∫
R exp(2πix y) ϕ(y)

∗dy ψ(x) dx,

=
∫
R
∫
R exp(2πix y) ϕ(y)

∗ψ(x) dx dy,

=
∫
R ϕ(y)

∗ ∫
R exp(2πix y) ψ(x) dx dy,

which shows that

(F̃∗ψ)(y) =

∫
R
exp(2πix y) ψ(x) dx

for all ψ ∈ C̊∞(R). We observe that F̃∗ is just the Fourier transform rescaled by (−1). Indeed, we
find (by simple substitution)

(2.3.17) F̃∗ = σ−1F̃ = F̃ σ−1

(first in C̊∞(R) then by continuity in L2(R)). Recalling that scaling is an isometry (indeed unitary)

we see that F̃∗ is isometric as a composition of to isometries. Moreover, we have applying (2.3.16)

with ψ = F̃ϕ
〈ϕ |ϕ〉L2(R) =

〈
F̃ϕ | F̃ϕ

〉
L2(R)

=
〈
ϕ | F̃∗F̃ϕ

〉
L2(R)

for all ϕ ∈ L2(R). By polarization we find

〈ϕ |ψ〉L2(R) =
〈
ϕ | F̃∗F̃ψ

〉
L2(R)

for all ϕ, ψ ∈ L2(R) and so

F̃∗F̃ = 1L2(R).

With (2.3.17) we see also

F̃F̃∗ = F̃ σ−1 F̃ = F̃∗F̃ = 1L2(R).

This finally confirms that F̃ is also onto and so unitary. The adjoint Fourier transform F̃∗ is

therefore its inverse F̃−1. According to the above result we must have σ(F̃) ⊆ ∂BC(0, 1). Indeed,
the spectrum will turn out to be

(2.3.18) σ(F̃) = Pσ(F̃) = {+1,+i − 1,−i}.

To find the spectrum we shall explicitely construct the eigensolutions of F̃ .

Recall the Gauss distribution function γ ∈ L2(R) given by γ(x) = exp(−πx2), x ∈ R. We shall see

that it is an eigensolution of F̃ associated with the eigenvalue +1. The function

γ̂(x) :=

∫
R
exp(−2πix y) γ(y) dy

is well-defined and in L2(R) by the estimate (2.3.15) applied to γ. We need to show that γ = γ̂.
We calculate ∂γ(x) = −2π x γ (x) and with an integration by parts

∂γ̂(x) = −2πi
∫
R exp(−2πix y) y γ(y) dy,

= ı
∫
R exp(−2πix y) ∂γ(y) dy,

= −2πx
∫
R exp(−2πix y) γ(y) dy,

= −2πx γ̂(x).

Thus, γ, γ̂ satisfy the same homogeneous ordinary differential equation. Moreover, we find γ(0) =
1 and

(2.3.19) γ̂(0) =

∫
R
γ(y) dy = 1.
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By the classical uniqueness of solutions for initial value problems for linear ordinary differential
equations we therefore must have γ = γ̂. (Equation (2.3.19) can be shown by applying the residuum
calculus). Letting7 D := −i

√
π (D + im) with D := 1

2πi∂ we find

(2.3.20) F̃Dγ = (−i)DF̃γ = (−i)Dγ.
Indeed, ∫

R exp(−2πix y)Dϕ(y) dy = −i
√
π
∫
R exp(−2πix y)Dϕ(y) dy+

+
√
π
∫
R exp(−2πix y) y ϕ(y) dy,

= −i
√
π x

∫
R exp(−2πix y)ϕ(y) dy+

−i
√
πD

∫
R exp(−2πix y)ϕ(y) dy,

= −iD ϕ̂(x)

for all ϕ ∈ C1(R) with sufficient decay at infinity and thus certainly for the function γ. From
(2.3.20) we now see that −i belongs to the point spectrum of F and Dγ is an eigensolution
associated with this eigensolution. By induction we see

F̃ Dkγ = (−i)k Dkγ

for all k ∈ N. Thus, {(−i)k | k = 0, 1, 2, 3} ⊆ Pσ(F). We shall see shortly that {Γk | k ∈ N},
Γk := 1

|Dkγ|L2(R)
Dkγ, is a complete orthonormal set. Assuming this for now we would indeed

confirm that (2.3.18) holds. In this case, it can be seen that the operator

φ 7→
∑
k∈N

1

(−i)k − λ
〈Γk |φ〉L2(R) Γk

is a well-defined bounded operator in L2(R) for every λ /∈ {1,−i −1, i} and is indeed the resolvent

(F̃ −λ)−1. Recall that {Γk| k ∈ N} is already an orthonormal set. We need to show completeness.
So, let f ⊥ Γk for all k ∈ N, then noting that Γk = Qk γ, where Qk is a polynomial of degree k,
we see that

(2.3.21) f ⊥ mk γ for all k ∈ N.

We also note γ f ∈ L1(R) ∩ L2(R) and exp(2πix ·) γ ∈ L2(R) and so

(2.3.22) F (x) := (F̃γf)(x) =
∫
R
exp(−2πix y) γ(y) f(y) dy = 〈exp(2πix ·) γ | f〉L2(R) .

From the integral representation we see that F is well-defined even for x ∈ C, since exp(2πix ·)γ ∈
L2(R) for all x ∈ C. Moreover, we realize that F is analytic. We calculate the Taylor coefficients
by observing that

(∂kF )(x) = (−2πi)k
∫
R
exp(−2πix y) yk γ(y) f(y) dy = (−2πi)k

〈
exp(2πix ·)mk γ | f

〉
L2(R) .

Consequently, by (2.3.21)

1

k!
(∂kF )(0) = (−2πi)k

〈
mk γ | f

〉
L2(R) = 0

7Due to the usage of different manuscripts the operator D defined earlier is different from the one defined here.
The connection is via unitary equivalence (see later):

σ√
2π

1
√
2
(m− ∂) σ∗√

2π
= −i

√
π (D + im) .

The unitary re-scaling operation σα with α ∈ R \ {0} is given by

(σαϕ) (x) =
√

|α| ϕ (αx)

for x ∈ R and ϕ ∈ C̊∞ (R). Note that

σ∗
α = σα−1 .
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for all k ∈ N. For an analytic function this means that F = 0. Applying the inverse Fourier
transform to (2.3.22) we now get γf = 0 and so f = 0. This finally shows the completeness of
the orthonormal set {Γk | k ∈ N} and thus completes the proof of (2.3.18). Moreover, the Fourier
transform can be represented by

F̃ϕ =
∑
k∈N

(−i)k 〈Γk | f〉L2(R) Γk.

It is sometimes more appropriate to use a re-scaled version F of the Fourier transform F̃ given by

F := L0 := σ∗√
2π

F̃ σ√2π,

a particular instance of the so-called Fourier-Laplace transform, which is a family of unitary
transforms Lν := F exp (−νm), ν ∈ R, where

(exp (−νm)ϕ) (x) := exp (−νx)ϕ (x)

for x ∈ R and ϕ ∈ C̊∞ (R).

To make this unitary we introduce the exponential weight function t 7→ exp (−ν t), ν ∈ R, and
consider the weighted L2-space Hν,0 generated by completion of C̊∞ (R) with respect to the inner
product 〈 · | · 〉ν,0

(ϕ,ψ) 7→
∫
R
ϕ (t)

∗
ψ (t) exp (−2νt) dt.

The associated norm will be denoted by | · |ν,0. The multiplication operator

C̊∞ (R) ⊆ Hν,0 → C̊∞ (R) ⊆ H0,0 = L2 (R)
ϕ 7→ exp (−νm)ϕ

clearly has a unitary extension, which we shall denote by exp (−νm), where the m serves as a
reminder for ’multiplication’.

Its inverse will be denoted by exp (νm).

2.3.3. Hermitean, Skew-Hermitean, Symmetric, Skew-Symmetric, Selfadjoint and
Skew-Selfadjoint Operators. Already from linear algebra we recall that this operator class is
of particular interest. In the unbounded case matters become, however, slightly more intricate.

Definition 93. Let A ⊆ H ⊕ H be linear operator in complex Hilbert space H. We call A a
formally selfadjoint operator or Hermitean if A is contained in the adjoint relation

A ⊆ A∗.

We call A a formally skew-selfadjoint operator or skew-Hermitean if A is contained in the
negative adjoint relation

A ⊆ −A∗ =
(
A⊥)−1

.

If, moreover, A∗ is an operator, i.e. if A is densely defined, then we call A symmetric. If even

A = A∗,

then we call A selfadjoint. A symmetric operator A is called essentially selfadjoint if Ā is
selfadjoint, i.e. if

Ā = A∗.

Frequently densely defined operators are of interest for which

A ⊆ −A∗

holds. Such operators are called anti-symmetric or skew-symmetric. If

A = −A∗
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then A is called skew-selfadjoint. A skew-symmetric operator A is called essentially skew-
selfadjoint if Ā is skew-selfadjoint, i.e. if

Ā = −A∗.

Remark 94. Note that A is formally selfadjoint if and only if A is formally adjoint to itself. Since
for a (skew-)symmetric operator A we see that A∗ must also be a densely defined, linear operator,
we also realize that every (skew-)symmetric operator is closable.

Lemma 95. Let A ⊆ H ⊕H be linear operator in complex Hilbert space H. Then A is Hermitean
if and only if

(2.3.23)
∧

x,y∈D(A)

〈Ax|y〉H = 〈x|Ay〉H .

Condition (2.3.23) implies8

(2.3.24) w(A) :=

λ ∈ C|
∨

x∈SH(0,1)=
·
BH(0,1)

λ = 〈x|Ax〉H

 ⊆ R.

The operator A is symmetric if and only if A is Hermitean and densely defined. The operator A
is selfadjoint if and only if A is symmetric and D(A∗) ⊆ D(A).

Proof. For A to satisfy A ⊆ A∗ means∧
x∈D(A)(x,Ax) ∈ A∗ ⇔

∧
x∈D(A)(Ax,−x) ∈ A⊥,

⇔
∧

x∈D(A)

∧
y∈D(A) 〈y|Ax〉H + 〈Ay| − x〉H = 0,

⇔
∧

x,y∈D(A) 〈Ax|y〉H = 〈x|Ay〉H .

Condition (2.3.23) implies as a special case

〈Ax|x〉H = 〈x|Ax〉H = 〈Ax|x〉H for all x ∈ D(A).

This proves that (2.3.24) holds.

The characterization of A being symmetric is by definition. In the symmetric case we also read
off that

(2.3.25) D(A) ⊆ D(A∗).

For a selfadjoint operator A we have even D(A) = D(A∗) which implies of course D(A∗) ⊆ D(A).
Conversely, from D(A∗) ⊆ D(A) and (2.3.25) we get D(A∗) = D(A). Since A ⊆ A∗, but D(A∗) =
D(A), we must have

A = A∗.

�

For the spectral allocation we find with C± := [R]± i [R>0]:

Proposition 96. Let A ⊆ H ⊕ H be a closed, symmetric operator in complex Hilbert space H.
Then

Pσ(A) ∪ Cσ(A) ⊆ R.
There are three possibilities:

(1) C \ R ⊆ Rσ(A),
(2) C+ ⊆ Rσ(A) and C− ⊆ %(A), or

C− ⊆ Rσ(A) and C+ ⊆ %(A),
(3) C \ R ⊆ %(A).

In these cases we have correspondingly

8The set w (A) is called the numerical range of an operator A ⊆ H ⊕H.
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(1) σ(A) = C,
(2) σ(A) = C+, or

σ(A) = C−,
(3) σ(A) ⊆ R.

Case 3. characterizes the selfadjointness of A.

Proof. We find with (2.3.24) that C\R ⊆ %(A)∪Rσ(A). Since there are two open, connected
components C± in C \ R, the three cases are indeed the only possibilities. The allocation of the
spectrum follows with the closedness of σ(A) in C. If A is selfadjoint, then the projection theorem
yields

H = N(λ−A)⊕ (λ−A) [H].

Since for λ ∈ C \ R we have N(λ− A) = {0}, it follows that (λ− A)−1 is always densely defined
for such λ. Therefore, we must be in case 3. Conversely, let case 3. hold, then we have

(λ−A) ⊆ (λ−A∗).

We get for λ ∈ C \ R
(λ−A)−1 ⊆ (λ−A∗)−1.

Since, however, (λ− A)−1 is already defined on all of H and
((
λ−A

)−1
)∗

= (λ−A∗)
−1

is also

a mapping, this yields

(2.3.26) (λ−A)−1 = (λ−A∗)−1.

For every closed linear operator B ⊆ H ⊕H with non-empty resolvent set, we have for λ ∈ %(B)
that

D(B) = (λ−B)−1 [H] .

Consequently, (2.3.26) implies

D(A) = D(A∗).

�

The fact that the numerical range of a symmetric operator is real allows for a specific ordering of
such operators.

Definition 97. Let A, B ⊆ H ⊕H be operators in complex Hilbert space H. We define9

A ≤ B :⇔
∧

x∈D(A)∩D(B)

Re 〈x|Ax〉H ≤ Re 〈x|Bx〉H .

If A ≥ 0 then we call A non-negative10. If A ≥ 0 and Ax = 0 ⇒ x = 0 for all x ∈ H then A
is called positive (definite)11. If A ≥ ε for some ε ∈ R>0, then A is called strictly positive
(definite)12.

For Hermitean operators we may omit taking the real part since the numerical range is already
real13.

9This is only an abbreviation since in general it is not a semi-order relation due to domain issues.
10Non-negativity is characterized by Rew (A) ≥ 0.
11Note that for the purposes of these concepts we consider the Hilbert space H as a real Hilbert space.

Frequently non-negativity is only defined for symmetric operators. This is largely unnecessary since for complex
Hilbert spaces and continuous linear operators non-negativity – in the sense of non-negative numerical range –
actually implies symmetry.

12This is characterized by Rew (A) ≥ ε > 0.
13As noted already, one frequently finds positive definiteness only defined for Hermitean operators – a custom,

which we do not follow here.



70 2. LINEAR OPERATORS

Example 98.

(1) Let A ⊆ H0 ⊕H1 be a closed, densely defined linear operator, then

A∗A

is a non-negative selfadjoint operator.
(2) For A as in the previous example we have that 0 −A∗

A 0


is skew-selfadjoint in H0 ⊕H1.

(a) A = grad or A = ˚grad (acoustics),

(b) A = Grad or A = ˚Grad (elasticity),

(c) or A = curl A = ˚curl (Maxwell’s equations).
(3) Let P : H → H be an orthogonal projector. Letting C := P [H] we have the canonical

embedding of C in H given by

ιC : C → H,

x 7→ x.

Then

P = ιCι
∗
C .

Indeed, for x ∈ C we have

〈x|y〉H = 〈ιCx|y〉H = 〈x|ι∗Cy〉C
= 〈ιCx|ιCι∗Cy〉H
= 〈x|ιCι∗Cy〉H .

Py =: z ∈ C is characterized by

〈x|z〉C = 〈ιCx|ιCz〉H = 〈ιCx|y〉H
for all x ∈ C. We read off ι∗Cy = z and so ιCι

∗
Cy = ιCz = z = Py, i.e.

P = ιCι
∗
C .

In particular P is selfadjoint and

ι∗C : H → C,

x 7→ Px.

2.3.4. Normal Operators. Unitary operators in L(H,H) and selfadjoint operators in com-
plex Hilbert space H are together part of a larger class of operators the so-called normal operators.

Definition 99. Let A ⊆ H ⊕ H be a closed, densely defined, linear operator in the complex
Hilbert space H. If

(2.3.27) A∗A = AA∗

then A is called normal.

Note that (2.3.27) is an equality between selfadjoint operators. We first collect some basic prop-
erties of normal operators.

Theorem 100. Let A ⊆ H ⊕ H be a normal operator in complex Hilbert space H. Then A and
A∗ are commuting and A∗, λA and (λ− A), λ ∈ C, are also normal. A is maximal in the sense
that there is no proper extension B of A with B normal. Moreover, we have

D(A) = D(A∗), N(A) = N(A∗) and A [H] = A∗ [H].
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Proof. That A∗ is normal follows directly from the symmetry of condition (2.3.27). From

(λ−A)∗ = (λ−A∗)

we get

(λ−A)(λ−A)∗ = (λ−A) (λ−A∗),

= |λ|2 − λA∗ − λA+AA∗,

= |λ|2 − λA∗ − λA+A∗A ,

= (λ−A∗) (λ−A),

= (λ−A)∗ (λ−A).

This is the normality of (λ − A), λ ∈ C. The normality of λA follows also by a straight-forward
calculation

λA (λA)∗ = |λ|2AA∗ = |λ|2A∗A = (λA)∗(λA).

For A we also see that

(2.3.28) 〈Ax |Ax〉H = 〈x |A∗Ax〉H = 〈x |AA∗x〉H = 〈A∗x |A∗x〉H
for all x ∈ D(A∗A) = D(A A∗). We have that D(A∗A) = D(A A∗) is dense in D(A) and D(A∗)
and we see with (2.3.28) (and the closedness of A and A∗) that D(A) = D(A∗). Let now A ⊆ B
with B normal then B∗ ⊆ A∗ and so D(A) ⊆ D(B) = D(B∗) ⊆ D(A∗) = D(A). This proves that
we must have D(A) = D(B) and consequently

A = B.

The validity of (2.3.28) also implies that N(A) = N(A∗) and consequently

N(A)⊥ = A [H] = A∗ [H] = N(A∗)⊥.

Finally, if A has empty resolvent set then A and A∗ are commuting by definition. If λ ∈ %(A) 6= ∅
then we have from (2.3.27) that

(λ−A)A∗x = A∗(λ−A)x

for all x ∈ D(A∗A) = D(AA∗). Thus, we have with y = (λ−A)x ∈ D(A∗) = D(A)

(λ−A)−1A∗y = A∗(λ−A)−1y.

Since any y ∈ D(A∗) can be represented in this form by x := (λ − A)−1y ∈ D(A∗A) (note
Ax = λ (λ−A)−1y − y ∈ D(A∗) = D(A)!), we have

(λ−A)−1A∗ ⊆ A∗(λ−A)−1,

i.e. A and A∗ commute in the sense of the earlier definition. �

For the spectrum of a normal operator we find

Proposition 101. Let A ⊆ H ⊕H be a normal operator in complex Hilbert space H. Then

Pσ(A)∗ = Pσ(A∗)

and even

N(λ−A) = N(λ−A∗).

Moreover, we have

Rσ(A) = ∅, Cσ(A)∗ = Cσ(A∗).

Proof. By the projection theorem we have

H = N(λ−A)⊕ (λ−A∗) [H] = N(λ−A∗)⊕ (λ−A) [H].

Since (λ−A) is normal by the previous theorem, we get N(λ−A) = N(λ−A∗), thus in particular
Pσ(A)∗ = Pσ(A∗). Since now
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H = N(λ−A)⊕ (λ−A) [H],

we see that Rσ(A) = ∅. Using that generally for normal operators σ(A)∗ = σ(A∗), the last equality
for the continuous spectra follows. �

Definition 102. Let A ⊆ H ⊕H be a normal operator in complex Hilbert space H. Then

Re A := 1
2 (A+A∗),

Im A := 1
2 i (A−A∗),

are called real part and imaginary part of A.

Real and imaginary part of a normal operator are apparently closed symmetric linear operators.
Indeed, they turn out to be selfadjoint.

Proposition 103. Let A ⊆ H ⊕ H be a normal operator in complex Hilbert space H. Then
Re A and Im A are commuting, selfadjoint operators and

(2.3.29) A = Re A+ i Im A.

In particular,

D(A) = D(Re A) ∩D(Im A).

Moreover, we have

(2.3.30) |(Re A+ i Im A)x|2H = |(Re A)x|2H + |(Im A)x|2H
for all x ∈ D(A), and

|A| =
√

(Re A)2 + (Im A)2 = |A∗| .

Example 104. As a unitary operator the Fourier transform F is also normal with real part
Fcos := ReF = 1

2 (F + F∗) as the so-called Fourier cosine transform and with imaginary part

Fsin := − Im F = − 1
2i (F −F∗) as the so-called Fourier sine transform. Being real and imaginary

part of a normal operator, the Fourier cosine and the Fourier sine transform must be selfadjoint
and their spectrum must therefore be real. According to our findings we already know that

Reσ(F) = {+1,−1} ⊆ σ(Fcos), Im σ(F) = {+1,−1} ⊆ σ(Fsin).

The relation between Fcos, Fsin to F yields further insight. We have (with σ−1 as the reflection
at the origin)

(2.3.31)

Fcos = 1
2 (F + F∗),

= 1
2 (1 + σ−1)F ,

= F 1
2 (1 + σ−1),

= 1
2 (1 + σ−1)F∗,

= F∗ 1
2 (1 + σ−1) ;

Fsin = − 1
2i (F − F∗),

= 1
2 (1− σ−1) iF ,

= iF 1
2 (1− σ−1),

It is not hard to see that 1
2 (1+ σ−1),

1
2 (1− σ−1) = 1− 1

2 (1+ σ−1), are the orthogonal projections

onto the (almost everywhere) even and odd functions in L2(R). Therefore we also have 0 ∈ σ(Fcos)
and 0 ∈ σ(Fsin). Moreover, we calculate with (2.3.31)

(2.3.32) FsinFcos = FcosFsin = 0, Fsin Fsin =
1

2
(1− σ−1), FcosFcos =

1

2
(1 + σ−1).
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Thus, we see that Fcos, Fsin are unitary on the subspaces 1
2 (1±σ−1)L

2(R), respectively. Together
with the selfadjointness of Fcos, Fsin we have that

σ(Fcos) = σ(Fsin) = Pσ(Fcos) = Pσ(Fsin) = {0,+1,−1}.

We can identify 1
2 (1± σ−1)L

2(R) with L2(R>0) via the unitary correspondence E± : L2(R>0) →
1
2 (1± σ−1)L

2(R) with

(E±f)(x) :=
1√
2

 f(x) for x ∈ R>0

±f(−x) otherwise
, x ∈ R.

√
2E+f will be refered to as the even extension of f and

√
2E−f as the odd extension of f. Indeed,

we find

|E±ϕ|2L2(R) =
∫
R |(E±ϕ)(x)|2 dx,

= 1
2

∫
R>0

|ϕ(x)|2 dx+ 1
2

∫
R<0

|ϕ(−x)|2 dx,

=
∫
R>0

|ϕ(x)|2 dx = |ϕ|2L2(R>0)
,

for all ϕ ∈ L2(R>0) and so we obtain the unitary mappings

E∗
+ FcosE+ : L2(R>0) → L2(R>0) , E

∗
− FsinE− : L2(R>0) → L2(R>0).

Here is E∗
± = E−1

± the inverse of the unitary mapping E± characterized by

E∗
± :

1

2
(1± σ−1)

[
L2(R)

]
→ L2(R>0), φ 7→

√
2φ
∣∣
R>0

.

For ’nice’ functions, e.g. for elements of C̊∞(R>0) we get the following integral representations

(E∗
+ FcosE+φ)(x) =

√
2

π

∫
R>0

cos(xy)φ(y) dy, (E∗
− FsinE−φ)(x) =

√
2

π

∫
R>0

sin(xy)φ(y) dy

for all φ ∈ C̊∞(R>0). The transforms

E∗
+ FcosE+ : L2(R>0) → L2(R>0) , E

∗
− FsinE− : L2(R>0) → L2(R>0)

are also referred to as Fourier cosine transform and Fourier sine transform, respectively. We shall

use F̃cos and F̃sin to denote these variants on generalized square integrable functions on R>0.

With F we also have that exp(iπ/4)F is unitary. Considering the real and imaginary part of
exp(iπ/4)F leads to an interesting situation. We find

Re (exp(iπ/4)F) =
1√
2
(Fcos + Fsin), Im (exp(iπ/4)F) =

1√
2
(Fcos −Fsin),

and therefore with H± := Fcos ±Fsin

H+ = Re
(√

2 exp(iπ/4)F
)

H− = Im
(√

2 exp(iπ/4)F
)

and

|H±ϕ|2L2(R) = |(Fcos ±Fsin)ϕ|2L2(R) ,

= |Fcosϕ|2L2(R) ± 2Re 〈Fcosϕ |Fsinϕ 〉L2(R) + |Fsinϕ|2L2(R) ,

= |Fcosϕ|2L2(R) + |Fsinϕ|2L2(R) ,

= |Fϕ|2L2(R) = |ϕ|2L2(R)

for ϕ ∈ L2(R). The transforms H± are known as Hartley transforms. They are both unitary,
selfadjoint and real. In particular,

σ(H±) = Pσ(H±) = {+1,−1}
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and

H+H− = H−H+

= FcosFcos −Fsin Fsin

=
1

2
(1 + σ−1)−

1

2
(1− σ−1)

= σ−1,

H+H+ = H−H−

= FcosFcos + Fsin Fsin

=
1

2
(1 + σ−1) +

1

2
(1− σ−1)

= 1.

On C̊∞ (R) we have

(H±ϕ) (ω) =
1√
2π

∫
R
(cos (ωt)± sin (ωt)) ϕ (t) dt

and

(H−ϕ) (ω) = (H+ϕ) (−ω)

for ω ∈ R or

H− = σ−1H+.

2.3.5. Positive-Definite Operators.

2.3.5.1. Hadamard’s requirements – revisited.
We recall Hadamard’s celebrated requirements for well-posedness. The task to establish well-
posedness based on a relation P under consideration consists in finding metric spaces X,Y , such
that P ⊆ X × Y and that in view of finding x for given y satisfying

(x, y) ∈ P

is a “reasonable” problem in the sense that

(1) P left-unique (uniqueness): P−1 is a closable mapping,
(2) P is right-total (existence): P−1 is densely defined,

(3) P
−1

is continuous (continuous dependence on the data): P−1 is locally uniformly
continuous in Y , in the sense that for every point z in Y there is a ball B (z, r), r ∈ ]0,∞[,
such that P−1|B(z,r) = P−1 ∩ (B (z, r)×X) is uniformly continuous.

In short: P
−1

: Y → X is continuous14.

2.3.5.2. Strict Positive-Definiteness as a Key to Well-Posedness.
It is somewhat unfortunate, but well in the spirit of our underlying theme of confusion by jargon,
that “A : D (A) ⊆ H → H positive” is used synonymously to “A : D (A) ⊆ H → H non-negative”
(or to “A : D (A) ⊆ H → H non-negative-definite”). For sake of clarity we shall reserve the
statement “A : D (A) ⊆ H → H non-negative” rather than any of the alternatives for the case

Re 〈x|Ax〉 ≥ 0 for x ∈ D (A) .

14If P is itself a mapping then Hadamard’s requirements can be rephrased as saying: P is injective and onto

with a continuous inverse.
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A : D (A) ⊆ H → H positive definite15:

Re 〈x|Ax〉 > 0 for x ∈ D (A) \ {0} .
A : D (A) ⊆ H → H strictly positive definite16 (also called strictly accretive):

Re 〈x|Ax〉 ≥ c0 〈x|x〉
for some c0 ∈ ]0,∞[ and all x ∈ D(A) or

inf {Re 〈x|Ax〉H |x ∈ D(A) ∩BH (0, 1)} =: c0 > 0.

It is remarkable that the latter constraint is of relevance in just about all the basic well-posedness
results of partial differential equations.

One idea fits all!

Indeed, let A : D (A) ⊆ H → H be a closed and densely defined linear operator satisfying

(2.3.33)
Re 〈x|Ax〉 ≥ c0 〈x|x〉 , Re 〈y|A∗y〉 ≥ c0 〈y|y〉 for some c0 ∈ ]0,∞[

and all x ∈ D(A) , y ∈ D (A∗) .

Then, the problem of finding for any given f ∈ H a solution x ∈ D (A) such that

Ax = f

is well-posed, indeed this is a rather particular case of Hadamard’s requirements.

Theorem 105. Let A : D (A) ⊆ H → H be a closed and densely defined linear operator satisfying
(2.3.33). Then for every given f ∈ H there is a unique solution x ∈ D (A) such that

Ax = f.

Moreover, the solution x depends continuously on the data f via the estimates:

(2.3.34) |x| ≤ 1

c0
|f |H .

Proof. From (2.3.33) we deduce that

|x|2H ≤ 1

c0
Re 〈x|Ax〉 ≤ |x|H |Ax|H

and so

|x|H ≤ 1

c0
|Ax|H

for all x ∈ D (A). This shows that A−1 is a linear mapping and that∣∣A−1f
∣∣
H

≤ 1

c0
|f |H

for all f ∈ A [H]. This proves already the estimate (2.3.34). Moreover, by this very estimate any
Cauchy sequence (fk)k in A [H] results in a Cauchy sequence of solutions (xk)k in H. Due to the
closedness of A we have that x∞ := limk→∞ xk ∈ D (A) and Ax∞ = limk→∞Axk. Consequently

15The added “definite” is needed due to the common confusion about “non-negative” and “positive”. From a
more logical point of view “positive” would be sufficient to properly denote this case.

We mention in passing that a similar confusion occurs with “contractive” and “non-expansive”. A contractive

linear mapping acting in a – say – Hilbert space H would (compare Banach’s contraction mapping theorem) be a
linear mapping U : H → H with operator norm

‖U‖ := sup
{
|Ux|H | x ∈ BH (0, 1)

}
< 1.

In contrast, one calls a linear mapping U : H → H non-expansive if ‖U‖ ≤ 1. The expectation that a so-
called one-parameter contraction semi-group V = (V (t))t∈[0,∞[, which is by the way strictly speaking a monoid

homomorphism (a monoid is a semi-group with identity element), between the monoid ([0,∞[ ,+) and the monoid
(L (H,H) , ◦), would be a family of contractive mappings is foiled by common practice, which says that it is just a
family of non-expansive mappings. Indeed, since by definition of a one-parameter semi-group V (0) is the identity

and so ‖V (0)‖ = 1, there cannot be a one-parameter semi-group of contractions.
16Note that we do not assume – as is frequently done – that A be selfadjoint here.
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A [H] is closed. It remains to see that A [H] is dense in H and so equal to H. This, however,
follows from the orthogonal decomposition

H = A [H]⊕ [{0}]A∗

since A∗shares in particular the property of being injective with A, i.e. [{0}]A∗ = {0}. �

Remark 106. Obviously, there are many possible generalizations, which would get us closer to
the general Hadamard’s requirements. We note in particular that the proof of Theorem 105 would
work likewise if (2.3.33) is replaced by requiring

(2.3.35)
|〈x|Ax〉H | ≥ c0 〈x|x〉H , |〈y|A∗y〉H | ≥ c0 〈y|y〉H for some c0 ∈ ]0,∞[

and all x ∈ D(A) , y ∈ D (A∗) .

This option is occasionally employed in the context of sesqui-linear form methods. For sake of
simplicity we shall, however, not pursue this line of thought.

A typical application of Theorem 105 is given by the solution theory of elliptic partial differential
equations.

We first record a particular case of Theorem 105

Corollary 107. Let A : X → X be a strictly positive definite, continuous, linear operator in the
Hilbert space X. Then for every f ∈ X there is a unique u ∈ X such that

Au = f.

Indeed, solutions depend continuously on the data in the sense that we have a continuous linear
operator A−1 : X → X with

u = A−1f.

Note that since continuous linear operators and continuous sesqui-linear forms are equivalent, the
last corollary is the so-called Lax-Milgram theorem. Indeed,

(u, v) 7→ 〈u|Av〉X
is a continuous sesqui-linear form on X and conversely if β 〈 · | · 〉 is a continuous sesqui-linear form
on X then

β 〈 · |v〉 ∈ X∗

and utilizing the Riesz map RX : X∗ → X we get with the Riesz representation theorem〈
RXβ〈 · |v〉|u

〉
X

= β 〈u|v〉

and so

β 〈u|v〉 =
〈
u|RXβ〈 · |v〉

〉
X
.

Note that

(2.3.36) Av := RXβ〈 · |v〉, v ∈ X,

defines indeed a bounded linear operator on X. Strict positive definiteness for the corresponding
operator A results in the so-called coercivity17 of the sesqui-linear form β:

(2.3.37) Reβ 〈u|u〉 ≥ c 〈u|u〉X
for some c ∈ ]0,∞[ and all u ∈ X. Thus, as an equivalent formulation of the previous corollary
we get the following.

17Following Remark 106 the strict positive definiteness can be weakened slightly to requiring merely∧
u∈X

|β 〈u|u〉| ≥ c 〈u|u〉X

yielding the same well-posedness out-come. This option is frequently utilized in applications.
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Corollary 108. (Lax-Milgram theorem) Let β 〈 · | · 〉 be a continuous, coercive sesqui-linear form
on a Hilbert space X. Then for every f ∈ X∗ there is a unique u ∈ X such that

β 〈u|v〉 = f (v)

for all v ∈ X.

In other words, β generates via (2.3.36) a mapping A : X → X such that for every given g ∈ X
there is a unique u ∈ X such that

β 〈u|v〉 = R∗
Xg (v) = 〈Au|v〉X = 〈g|v〉X

for all v ∈ X and so we have a solution theory for the equation

Au = g.

Keeping in mind the latter approach has been utilized extensively just for elliptic type problems it
may be interesting to note that its generalization in the form of Theorem 105 is – as we shall see
– perfectly sufficient to to solve elliptic, parabolic and hyperbolic systems in a single approach.

2.3.5.3. A note on the Sesqui-Linear Forms Method. Consider a continuous linear bijection
C : H1 → H0 and a continuous linear operator A : H0 → H0 with

Re 〈x|Ax〉0 ≥ c0 〈x|x〉0
for some c0 ∈ ]0,∞[ and all x ∈ H0. With

C� : H0 = H ′
0 → H−1

where ∧
x∈D(C)=H1

〈y|Cx〉0 =: (C�y) (x)

or

C�y := 〈y|C · 〉0 ,
we consider

C�AC : H1 → H−1.

Consider now the uniquely solvable equation

C�ACw = f ∈ H ′
1 =: H−1.

Then this is equivalent to

β 〈v|w〉 = 〈ACv|Cw〉0
= (C�ACv) (w) .

As an application of this observation:

Consider the continuous and dense embedding

ι : H1 → H0

x 7→ x

we obtain

ι−1 : H1 ⊆ H0 → H1

x 7→ x

and (
ι−1
)∗

: D
((
ι−1
)∗) ⊆ H1 → H0

given by

y 7→∈
({
f |
〈
ι−1x|y

〉
H1

= 〈x|f〉H0
for all x ∈ H1

})
.
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We let C̃ :=
∣∣ι−1

∣∣ : H1 ⊆ H0 → H0 and choose for C the mapping

C : H1 → H0,

x 7→ C̃x.

Then the above consideration applies. Moreover, we have

C̃AC̃ = C�AC ∩ (H0 ⊕H0) .

Since C̃AC̃ is closed, invertible (inherited from C�AC) and onto we have by the closed graph
theorem

0 ∈ %
(
C̃AC̃

)
.

Moreover,

(
C̃AC̃

)∗
= C̃A∗C̃.

Indeed, 〈
C̃AC̃u|x

〉
0
= 〈u|f〉0

=
〈
u| (C�A∗C) (C�A∗C)

−1
f
〉
0

=
〈
u|
(
C̃A∗C̃

)
C−1 (A∗)

−1
(C�)

−1
f
〉
0

=
〈(
C̃AC̃

)
u|C−1 (A∗)

−1
(C�)

−1
f
〉
0

for all u ∈ D
(
C̃AC̃

)
, which yields

x = C−1 (A∗)
−1

(C�)
−1
f

and

f =
(
C̃A∗C̃

)
x.

In practice, C̃ comes up via a polar decomposition (see Appendix A)

Z = UC̃

of an operator Z : D (Z) ⊆ H0 → X ( U : Z∗ [X] → Z [H0] unitary) and replacing A : X → X by

U∗AU : Z∗ [X] → Z∗ [X] we have

C̃U∗AUC̃ = Z∗AZ

resulting in a solution theory for the equation

Z∗AZu = f.

Example 109. The paradigmatic application here is C̃ =

√
− div ˚grad + 1, Z =

 ˚grad

1

 :

D
(

˚grad
)
⊆ L2 (Ω) =: H0 →

(
L2 (Ω)

)n ⊕ L2 (Ω) andA 0

0 1

 :
(
L2 (Ω)

)n ⊕ L2 (Ω) →
(
L2 (Ω)

)n ⊕ L2 (Ω) =: X

strictly positive definite18, which leads to the solution theory for(
− div 1

)A 0

0 1

 grad

1

u = − divA gradu+ u = f ∈ H0

18Actually we merely need to require that A : ˚grad → ˚grad is a bi-Lipschitz-continuous bijection (recalling

that ˚grad is a closed subspace of
(
L2 (Ω)

)n ⊕ L2 (Ω)).
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with boundary condition

u ∈ D
(

˚grad
)
=: H1.

2.3.6. Congruent, Similar and Equivalent. For comparing relations and operators the
following three concepts are useful.

Definition 110. Consider a linear relation A ⊆ H0 ⊕ H1 and a linear relation B ⊆ X0 ⊕ X1,
Hk, Xk, k ∈ {0, 1}, Hilbert spaces. Then A, B are called equivalent if

A =

U0 0

0 U1

B

for some continuous bijections Uk : Xk → Hk, k ∈ {0, 1}.
If H0 = H1, X0 = X1, we can refine this comparison. If in this case U0 = U1 the relations A, B
are called similar, if however U−1

0 = U∗
1 then they are called congruent. If A, B are similar and

congruent, we call them unitarily similar or unitarily congruent19.

We mostly use this terminology for mappings A, B. Clearly, in this case A, B are equivalent20 if

A = U1BU
−1
0

for some continuous linear bijections Uk : Xk → Hk, k ∈ {0, 1}.
Two mappings A : D (A) ⊆ H0 → H0, B : D (B) ⊆ X0 → X0 are similar21 if

A = U0BU
−1
0

for some continuous linear bijection U0 : X0 → H0.

Two mappings A : D (A) ⊆ H0 → H0, B : D (B) ⊆ X0 → X0 are congruent22 if

A = U1BU
∗
1

for some continuous linear bijection U1 : X0 → H0.

Two mappings A : D (A) ⊆ H0 → H0, B : D (B) ⊆ X0 → X0 are unitarily similar or unitarily
congruent if

A = U1BU
∗
1

for some unitary mapping U1 : X0 → H0.

19What is called “congruent” in geometry usually means “unitarily congruent”.
20The importance of this concept is that equivalence of relations preserves for example well-posedness.
21Similarity preserves spectra.
22Congruence preserves symmetry and skew-symmetry.





Literature on Functional Analysis and Some Applications

[Akhiezer-Glazman 1993] N.I. Akhiezer and I.M. Glazman. Theory of linear operators in Hilbert space. Transl.

from the Russian and with a preface by Merlynd Nestell (Two volumes bound as one).
Repr. of the 1961 and 1963 transl. New York, NY: Dover Publications. xiv, 147, iv, 1993.

[Kato 1995] T. Kato. Perturbation theory for linear operators. Grundlehren der mathematischen Wis-

senschaften. Springer, 1995.
[Pi 1989] R. Picard. Hilbert space approach to some classical transforms. John Wiley, New York,

1989.
[Pi-McGhee 2011] R. Picard and D. McGhee. Partial differential equations. A unified Hilbert space ap-

proach. de Gruyter Expositions in Mathematics 55. Berlin: de Gruyter. xviii, 2011.
[1] M. Reed and B. Simon. Methods of modern mathematical physics I-IV. Academic Press,

1972-79.
[2] F. Riesz, B. Szokefalvi-Nagy, and L. F. Boron. Functional analysis / Frigyes Riesz and

Bela Sz-Nagy ; translated from the 2nd French edition by Leo F. Boron. Blackie, London
:, 1956.
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Part 2

On the Theory of Evolutionary Equations





CHAPTER 1

On the General Structure of Evolutionary Problems

1.1. Introduction

It may come as a surprise that the simple ideas of the last section may also be the key to solving
time-varying problems.

We start by observing that on closer inspection of initial boundary value problems of mathematical
physics, in particular those describing wave propagation phenomena one is inclined to describe
their general form as

∂0V +AU = f on R>0,

V (0+) = Φ,

where A is commonly skew-selfadjoint in a suitable Hilbert space setting. We shall indeed prefer to
consider this problem on the whole real time-line and to by-pass the full construction of associated
Sobolev lattices, see [Pi-McGhee 2011], we shall assume – without loss of generality – that Φ = 0.
This turns our problem into

(1.1.1) ∂0V +AU = f on R.

Following this lead, the abstract evolutionary problem

∂0V +AU = f on R.

is now completed by an additional rule frequently referred to as a “material law”, which for
simplicity we assume to be time-translation invariant and more precisely of the form

(1.1.2) V =M
(
∂−1
0

)
U,

where z 7→ M (z) is bounded-operator-valued and analytic in an open ball BC (r, r) with some
positive radius r centered at r.

1.2. The Time Derivative

It is well-known that 1
i ∂0 can be established as a selfadjoint operator in the space L2 (R) of equiv-

alence classes of square-integrable complex-valued functions on R. The space C̊∞ (R) of smooth
complex-valued functions with compact support is densely embedded in the domain. Indeed, this
case is occasionally used as a simple example for an explicit spectral representation, which here is
provided by the Fourier transform F given as the unitary extension of

C̊∞ (R) ⊆ L2 (R) → L2 (R)
ϕ 7→ ϕ̂

with

ϕ̂ (x) =
1√
2π

∫
R
exp (−ix t) ϕ (t) dt, x ∈ R.

As a spectral representation the Fourier transform makes 1
i ∂0 unitarily congruent to the multipli-

cation by the argument operator m given by (mϕ) (x) = xϕ (x) for x ∈ R and ϕ ∈ C̊∞ (R):
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�
�

�
�

1

i
∂0 = F∗m F .

Recall our earlier introduction of an exponential weight function t 7→ exp (−ν t), ν ∈ R, and the

weighted L2-space Hν,0 generated by completion of C̊∞ (R) with respect to the inner product
〈 · | · 〉ν,0

(ϕ,ψ) 7→
∫
R
ϕ (t)

∗
ψ (t) exp (−2νt) dt.

The associated norm was denoted by | · |ν,0. The multiplication operator

C̊∞ (R) ⊆ Hν,0 → C̊∞ (R) ⊆ H0,0 = L2 (R)
ϕ 7→ exp (−νm)ϕ

with
(exp (−νm)ϕ) (x) = exp (−νx)ϕ (x) , x ∈ R,

clearly has a unitary extension, which we denote by exp (−νm), where the m serves as a reminder
for ’multiplication’. Its inverse will be denoted by exp (νm).

Thus, the operator

1

i
∂ν := exp (νm)

1

i
∂0 exp (−νm)

defines a unitarily congruent operator 1
i ∂ν , which is now selfadjoint in Hν,0.

We shall use the notation ∂0,ν (or simply ∂0 if the parameter ν is clear from the context) for the
normal operator ∂ν + ν, which is justified since indeed

(∂ν + ν)ϕ = ∂0ϕ

for ϕ ∈ C̊∞ (R).
Obviously we have that the spectrum of ∂ν is purely imaginary. In fact, the spectrum σ (∂ν) is
also purely continuous spectrum:�

�
�
�

σ (∂ν) = σc (∂ν) = i [R] .

Thus, in particular for ν ∈ R \ {0} we have the bounded invertibility of ∂0 = ∂ν + ν.

With Lν := F exp (−νm) �
�

�
�

1

i
∂ν = L∗

νm Lν .

1.3. Evolutionary Dynamics and Material Laws

We shall now consider the initially stated evolutionary problem in precise terms. For this we need
to extend the operators ∂0, A to the tensor product spaces Hν,0⊗H by interpreting A as 1Hν,0 ⊗A
with 1Hν,0 : Hν,0 → Hν,0 as the identity operator in Hν,0 and the time derivative ∂0 as ∂0 ⊗ 1H ,
where 1H : H → H denotes the identity operator in H.

In this sense, our aim is to be able to find U ∈ Hν,0 ⊗H such that for a given f ∈ Hν,0 ⊗H we
have
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(1.3.1)
(
∂0M

(
∂−1
0

)
+A

)
U = f.

The operator M
(
∂−1
0

)
will be referred to as the material operator.

Here (M (z))z∈BC(r,r)
is a uniformly bounded, holomorphic family of linear operators in H with

r ≥ 1
2ν . It is �

�
�
�

M
(
∂−1
0

)
:= L∗

ν M

(
1

im+ ν

)
Lν .

To warrant a solution theory we require an additional constraint on such causal materials: There
should be a constant c ∈ R>0 such that�

�

�

�
Re
(〈
U |
(
z−1M (z) +A

)
U
〉
H

)
≥ c 〈U |U〉H ,

c > 0.

(posdef)

for all z ∈ BC (r, r) and U ∈ D (A). If A is skew-selfadjoint this reduces to

Re
(〈
U | z−1M (z)U

〉
H

)
≥ c 〈U |U〉H

for all z ∈ BC (r, r) and U ∈ D (A).

1.4. Solution Theory

Theorem 111. Let (M (z))z∈BC(r,r)
be a holomorphic family of uniformly bounded linear operators

on H, ν ≥ 1
2r , satisfying our definiteness condition (posdef) and A skew-selfadjoint in H, then

we have for every f ∈ Hν,0 ⊗H a unique solution U ∈ Hν,0 ⊗H of the problem(
∂0M

(
∂−1
0

)
+A

)
U = f.

Moreover, the solution depends continuously on the data in Hν,0 ⊗ H and is causal in the sense
that

(1.4.1) χ
]−∞,a]

(m0)
(
∂0M

(
∂−1
0

)
+A

)−1 (
1− χ

]−∞,a]
(m0)

)
= 0

for one a ∈ R (and so for all a ∈ R).

To bye-pass the details of this result (see Appendix B for more details) let us be more specific by
restricting our attention to the simple case

M
(
∂−1
0

)
=M0 + ∂−1

0 M1.

The needed positivity requirement is satisfied if M0 is selfadjoint and with ι0 and ι1 the canonical
embeddings of M0 [H] and [{0}]M0, respectively,

(1.4.2) ν ι∗0M0ι0 + ι∗0 ReM1ι0 ≥ c1

and

Re

 ∂0ι
∗
0M0ι0 + ι∗0M1ι0 ι

∗
0M1ι1

ι∗1M1ι0 ι∗1M1ι1

 =

 νι∗0M0ι0 + ι∗0M1ι0 ι
∗
0 ReM1ι1

ι∗1 ReM1ι0 ι∗1 ReM1ι1

 ≥ c0,
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for some positive constants c1 ≥ c0, which in turn is true when νι∗0M0ι0 + ι∗0M1ι0 0

0 ι∗1 ReM1ι1 − ι∗1 ReM1ι0 (νι
∗
0M0ι0 + ι∗0M1ι0)

−1
ι∗0 ReM1ι1

 ≥ c0.

The latter is the case if

(1.4.3) ι∗1 ReM1ι1 ≥ c0 +
1

c1
‖ι∗0 ReM1ι1‖2 .

A typical situation where this occurs is if ι∗0M0ι0 ≥ ε0 > 0, in which case

ν ι∗0M0ι0 + ι∗0 ReM1ι0 ≥ νε0 − ‖ι∗0 ReM1ι
∗
1‖

and so

ι∗1 ReM1ι1 ≥ c0 +
1

νε0 − ‖ι∗0 ReM1ι1‖
‖ι∗0 ReM1ι1‖2 ,

which is valid for some positive c0 for all sufficiently large ν. Thus, in our simplified situation we
may focus on the case

(1.4.4) ι∗0M0ι0, ι
∗
1 ReM1ι1 strictly positive definite.
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CHAPTER 2

Some Applications

2.1. Visco-Elastic Media

2.1.1. Visco-Elastic Solids. The system of visco-elasticity is formally given as

∂0%+ div % ∂0u = 0

Div T + f = % ∂20u

where u denotes the displacement field, T the stress tensor, % mass density. Here Div T =(∑3
k=1 ∂kTjk

)
j=1,2,3

.

A somewhat simplified linearization leads to considering

∂0%+ %0div ∂0u = 0

div T + f = %0 ∂
2
0u,

where now %0 : L2 (Ω) → L2 (Ω) is assumed to be bounded, selfadjoint and strictly positive definite.

In order to see that also this system leads to one of the above abstract form we need to implement
some re-formulation. With v := ∂0u we first derive from the definition

E := Gradu,

where Gradu := 1
2

(
∂ ⊗ u+ (∂ ⊗ u)

>
)
denotes the symmetric part of the Jacobi matrix ∂ ⊗ u,

another first order dynamic equation

∂0E = Grad v.

Since with the matrix trace operation A 7→ traceA

div u = trace ∂ ⊗ u

= trace Gradu

= trace E ,
we can formally summarize the system in the form

∂0


0

%0 v

E

+


%−1
0 0 trace

0 0 0

0 0 0



%

v

E

+

+


0 0 0

0 0 −Div

0 −Grad 0



%

v

T

 =


0

f

0

 .

The system is completed by linear material relations of various forms.
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The Kelvin-Voigt Model

This class of materials is characterized by a material relation of the form

T = CE +D∂0E ,(2.1.1)

where the elasticity tensor C and the viscosity tensor D are assumed to be modeled as bounded,
selfadjoint, strictly positive definite mappings in a Hilbert space Hsym of L2 (Ω)-valued, selfadjoint
3× 3-matrices, with the inner product induced by the Frobenius norm

(Φ,Ψ) 7→
∫
Ω

trace
(
Φ(x)

∗
Ψ(x)

)
dx .

Noting that the first equation of our system is trivial, once the other equations have been solved,
we may indeed – assuming for example Dirichlet boundary conditions – reduce the system to %0∂0 −Div

−
◦

Grad
(
∂−1
0 C +D

)−1

 v

T

 =

 %0∂0 0

0 0

 v

T

+

+

 0 0

0
(
∂−1
0 C +D

)−1

 v

T

+

+

 0 −Div

−
◦

Grad 0

 v

T

 =

 f

0

 .

This leads to a reduced material law operator

M
(
∂−1
0

)
=

 %0 0

0 0

+

+ ∂−1
0

 0 0

0
(
∂−1
0 C +D

)−1

 .

This is the so-called Kelvin-Voigt model of visco-elasticity. The case C = 0 leads to a system for
a purely viscous behavior (Newton model). On the other hand, if C is strictly positive definite,
then the limit case D = 0 leads to the standard system for elastic solids.

The Maxwell Model

An alternative description of visco-elastic solids is due to Maxwell. The material relation here is
of the form

∂0E = C−1∂0T +D−1T,

where we have re-used the named C,D for the coefficients although they of course have different
meanings here.

We see that in this case

E =
(
C−1 + ∂−1

0 D−1
)
T

and the material law in this case takes on the form

V =

 %0 0

0 C−1 + ∂−1
0 D−1

 v

T

 .
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We see that the Maxwell model leads for C strictly positive definite to a regular material law. The
limit case of vanishing C−1 formally recovers the earlier mentioned Newton model.

The Poynting-Thomson Model (The Linear Standard Model)

The linear standard model or Poynting-Thomson model is based on a generalization of the Maxwell
model involving another coefficient operator R and has the form

∂0E +R E = C−1∂0T +D−1T.

Solving for E yields

E = (∂0 +R)
−1 (

C−1∂0 +D−1
)
T

= (∂0 +R)
−1 (

C−1 (∂0 +R) +D−1 − C−1R
)
T

= C−1T +
(
1 +R ∂−1

0

)−1 (
D−1 − C−1R

)
∂−1
0 T,

leading to a slightly more complex material law.

Even more complex materials such as the Burgers model and suitable models of “type (p, q)”
can be seen to be of the general form . The latter class leads to a material law operator M

(
∂−1
0

)
given as a rational operator-valued function of ∂−1

0 , e. g.

M
(
∂−1
0

)
= Q0

(
∂−1
0

)−1
Q1

(
∂−1
0

)
with Qk (z) =

∑Nk

s=0Rksz
s, where the coefficients Rks are bounded linear operators in Hsym, s =

0, . . . Nk, k = 0, 1, R00 invertible, (or finite products of terms of this form).

Also material laws involving fractional positive powers of ∂−1
0 are utilized in applications. Since

z 7→ zα is analytic in [R>0] + i [R] for every α ∈ R also such material laws are covered by our
abstract approach.

2.1.2. Visco-Elastic Stokes Fluids. Linear visco-elastic fluids are described by a slightly
different material relation, a modified Kelvin-Voigt model, of the form

T = C E +D∂0E − trace∗κ0%

with another coefficient operator κ0 : L2 (Ω) → L2 (Ω) bounded, selfadjoint, strictly positive
definite. Thus,

E = (C +D∂0)
−1
T + (C +D∂0)

−1
trace∗κ0%.

For D strictly positive definite we may re-write the resulting system

%−1
0 ∂0%+ div ∂0u = 0

Div T + f = % ∂20u

T = C E +D∂0E − trace∗κ0%
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in the form (v = ∂0u)
κ0%

−1
0 ∂0 κ0 trace

◦
Grad 0

0 %0∂0 −Div(
∂−1
0 C +D

)−1
trace∗κ0 −

◦
Grad

(
∂−1
0 C +D

)−1



%

v

T

 =

=


0

f

0

 ,

where we have chosen again the Dirichlet boundary condition to illustrate the procedure.

A simple row operation translates this into a more symmetric form


κ0%

−1
0 ∂0 + κ0 trace

(
∂−1
0 C + D

)−1
trace∗κ0 0 κ0 trace

(
∂−1
0 C + D

)−1

0 %0 ∂0 −Div(
∂−1
0 C + D

)−1
trace∗κ0 −

◦
Grad

(
∂−1
0 C + D

)−1




%

v

T

 =

=


0

f

0

 .

M
(
∂−1
0

)
=


κ0%

−1
0 0 0

0 %0 0

0 0 0

+

+∂−1
0


κ0trace

(
∂−1
0 C + D

)−1
trace∗κ0 0 κ0trace

(
∂−1
0 C + D

)−1

0 0 0(
∂−1
0 C + D

)−1
trace∗κ0 0

(
∂−1
0 C + D

)−1

 ,

=


κ0%

−1
0 0 0

0 %0 0

0 0 0

 + ∂−1
0


κ0traceD

−1trace∗κ0 0 κ0traceD
−1

0 0 0

D−1trace∗κ0 0 D−1

+

−∂−2
0


κ0trace

(
∂−1
0 C + D

)−1
C D−1trace∗κ0 0 κ0trace

(
∂−1
0 C + D

)−1
C D−1

0 0 0(
∂−1
0 C + D

)−1
C D−1trace∗κ0 0

(
∂−1
0 C + D

)−1
C D−1

 .

The case of incompressible media, where ∂0% = 0, is a “singular limit case” in so far as even require-
ment (posdef) does not hold anymore. The well-known difficulties in solving the Stokes system,
which are in general not well-posed in an L2 (Ω)-setting, are an indication of how degenerate a
problem may be if it does not satisfy (posdef).

2.2. Thermoelasticity

We consider the following general thermo-elastic system for simplicity in the case of Dirichlet
boundary conditions:

∂0V+


0 Div 0 0

˚Grad 0 0 0

0 0 0 div

0 0 ˚grad 0




v

T

ϑ

Q

 =


f

0

g

0
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with a material law of the form

V = M
(
∂−1
0

)

v

T

ϑ

Q

 .

Here

M
(
∂−1
0

)
=

=


%0 0 0 0

0 C−1 C−1Γ 0

0 Γ∗C−1 w + Γ∗C−1Γ 0

0 0 0 q0 + q2 (α+ β∂0)
−1

 .

We see that 
%0 0 0 0

0 C−1 C−1Γ 0

0 Γ∗C−1 w + Γ∗C−1Γ 0

0 0 0 q0 + q2 (α+ β∂0)
−1


is by symmetric Gauss elimination equivalent to the block diagonal form

%0 0 0 0

0 C−1 0 0

0 0 w 0

0 0 0 q0 + q2 (α+ β∂0)
−1

 .

E.g. the issue of

M0 =


%0 0 0 0

0 C−1 C−1Γ 0

0 Γ∗C−1 w + Γ∗C−1Γ 0

0 0 0 q0


being strictly positive definite hinges on the strict positive-definiteness of %0, C, w, q0.

For q0 = 0 the above system is known as a type 3 thermo-elastic system. With α = 0 we obtain
the special case of thermo-elasticity with second sound, i.e. with the Cattaneo modification of the
heat transport. The so-called type 2 thermo-elastic system results by letting q2 = 0.

We point out that the well-known Biot system, which describes consolidation of a linearly elastic
porous medium, can be reformulated so that up to physical interpretations it has the same form
as the thermo-elastic system (with Cattaneo modification). The coupling operator Γ of thermo-
elasticity is in the poro-elastic case given as Γ = trace∗α, where α is a coupling parameter.
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2.3. Piezo-Electro-Magnetism

Here we have a system of the form

∂0V +A


v

T

E

H

 =


f

0

−J

0

 ,

where a possible choice of boundary conditions would for example lead to the skew-selfadjoint
block operator matrix

A =


0 Div 0 0
◦

Grad 0 0 0

0 0 0 rot

0 0 −
◦
rot 0

 .

This system needs to be completed by suitable material relations. A known coupling mechanism
is initially described in the form

T = C E − dE − q H,

D = d∗E + εE + eH,

B = q∗ E + e∗E + µH.

Initial and final spaces of the additional bounded, linear coefficient operators q and e are clear
from these equation and for sake of brevity we shall not elaborate on this. As has been already
noted in the above, for a proper reformulation we need to solve for E to obtain suitable material
relations. We find

E = C−1T + C−1dE + C−1q H,

D = η∗C−1T +
(
ε+ d∗C−1d

)
E + d∗C−1q H + eH,

B = q∗ C−1T + q∗ C−1dE + q∗C−1q H + e∗E + µH.

Thus, we obtain the material law

V = M (∂0)
−1


v

T

E

H


with

M
(
∂−1
0

)
=


%0 0 0 0

0 C−1 C−1d C−1q

0 d∗C−1
(
ε+ d∗C−1d

)
d∗C−1q + e

0 q∗C−1 q∗C−1d+ e∗ µ+ q∗C−1q

 .
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By block diagonalizing this via symmetric Gaussian elimination we obtain from
%0 0 0 0

0 C−1 C−1d C−1q

0 d∗C−1 ε+ d∗C−1d d∗C−1q + e

0 q∗C−1 q∗C−1d+ e∗ µ+ q∗C−1q


the block diagonal operator matrix

%0 0 0 0

0 C−1 0 0

0 0 ε 0

0 0 0 µ− e∗ε−1e

 .

Thus, the given form of material relations only leads to a regular material law in the above sense
if in addition to the strict positive-definiteness of the selfadjoint bounded operators %0, C, ε and
µ we require

µ ≥ µ0 + e∗ε−1e

for some constant µ0 ∈ R>0.

2.4. Thermo-Piezo-Electro-Magnetism

We shall conclude our example collection by coupling also heat transport effects into to our earlier
simple version of a piezo-electro-magnetic system. We base our consideration on the material
relations suggested by R.D. Mindlin. We are led to the system

∂0V +A



v

T

E

H
√
%0Θϑ

Q


=



f

0

−J

0
√
%0Θ g

0


.

Here A is a skew-selfadjoint operator such as

A =



0 Div 0 0 0 0
◦

Grad 0 0 0 0 0

0 0 0 rot 0 0

0 0 −
◦
rot 0 0 0

0 0 0 0 0 − (%0Θ)
−1/2

div

0 0 0 0 −
◦

grad (%0Θ)
−1/2

0


.

The subtle adjustment of taking
√
%0Θϑ in place of ϑ has been implemented to accommodate the

particular formulation of heat conduction employed in the literature and to maintain symmetry
in the L2 (Ω)-type sense. This, also makes the skew-selfadjointness more evident, then by making
adjustments via a change of inner products.
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The so-called specific heat capacity Θ can also be allowed to be a bounded, selfadjoint, strictly
positive definite mapping in L2 (Ω) commuting with %0. The material relations are initially given
in the form

T = C E − dE − λϑ,

D = d∗E + εE + p ϑ,

B = µH,

m−1Θ−1σ = λ∗E + p∗E + αϑ.

Applying our earlier reasoning, we solve for E and obtain

E = C−1T + C−1dE + C−1λϑ,

D = d∗C−1T +
(
ε+ d∗C−1d

)
E +

(
p+ d∗C−1λ

)
ϑ,

B = µ H,

m−1Θ−1σ = λ∗C−1T +
(
p∗ + λ∗C−1d

)
E +

(
α+ λ∗C−1λ

)
ϑ.

Thus,

V =M
(
∂−1
0

)



v

T

E

H
√
%0Θϑ

Q


,

where M
(
∂−1
0

)
is of the block form 

m00 m01 m02

m∗
01 m11 m12

m∗
02 m

∗
12 m22


with block diagonal selfadjoint operator matrices

m00 =

 %0 0

0 C−1

 , m11 =

(ε+ d∗C−1d
)

0

0 µ

 ,

m22 =

 (%0Θ)
−1/2 (

α+ λ∗C−1λ
)
(%0Θ)

−1/2
0

0 κ−1∂−1
0

 .

Moreover

m01 =

 0 0

C−1d 0

 ,

m02 =

 0 0

C−1λ (%0Θ)
−1/2

0

 ,

m12 =

(p+ d∗C−1λ
)
(%0Θ)

−1/2
0

0 0

 .

If we assume that %0, C, ε, µ, α, κ are all bounded, selfadjoint and strictly positive definite in
suitable L2 (Ω)-type spaces the problem is covered by our general setting.
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APPENDIX A

Metric Spaces

In analysis, topological structure is often provided by a measure of distance, i.e. a metric.

Definition 112. LetM be a non-empty set. A mapping d : M×M −→ R is called a semi-metric
on M if

(1)
∧

x∈M

d(x, x) = 0,

(2) d is symmetric, i.e.
∧

x, y∈M

d(x, y) = d(y, x),

(3) d satisfies the ’triangle inequality’, i.e.∧
x, y, z∈M

d(x, y) ≤ d(x, z) + d(y, z) .

Remark 113. Note that the property ∧
x, y∈M

d(x, y) ≥ 0

actually follows by setting x = y in 3. Moreover, by the triangle inequality, for any x, y, u, v ∈M

d(x, y) ≤ d(x, u) + d(u, v) + d(v, y),

and

d(u, v) ≤ d(u, x) + d(x, y) + d(y, v).

Thus, using symmetry, we obtain the inequality

(A.0.1) |d(x, y)− d(u, v)| ≤ d(x, u) + d(y, v) for all x, y, u, v ∈M.

Definition 114. Let d be a semi-metric on a set M. If in addition d is definite, i.e.∧
x, y∈M

d(x, y) = 0 ⇒ x = y,

then d is called a metric on M .

The topology induced by such a (semi-) metric is based on the concept of an open ball Bd(x, r) :=
{y ∈M | d(x, y) < r} with center x ∈ M and radius r ∈ R>0, where R>0 denotes the set of
positive real numbers. If the metric is clear from the context we shall simply write B(x, r) for this
ball.

A (semi-) metric on a non-empty set M defines a topology (i.e. a set of open sets).

Definition 115. Let M be a non-empty set. The pair (M, d) is called a (semi-) metric space
if d is a (semi-) metric on M . (M, O) is a topological space where the topology is given by

(A.0.2) O :=

A ⊆M |
∧
x∈A

∨
r∈R>0

Bd(x, r) ⊆ A


where d is a (semi-) metric.

The notion of boundedness resides in (semi-) metric spaces.
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Definition 116. Let (M, d) be a (semi-) metric space. A subset A ⊆M is called bounded if its
diameter sup {d(x, y) |x, y ∈ A} is finite. A mapping f : N −→ M defined on a set N is called
bounded if its range f [N ] is bounded.

Continuity of mappings between (semi-) metric spaces can now be given the familiar characteri-
zation:

Proposition 117. Let f : D(f) ⊆ M −→ N be a mapping and (M, dM ) and (N, dN ) (semi-)
metric spaces. Then f is continuous at x ∈ D(f) if and only if∧

ε∈R>0

∨
δ∈R>0

∧
y∈D(f)

dM (x, y) < δ =⇒ dN (f(x), f(y)) < ε.

The mapping f is continuous in U ⊆ D (f) if and only if∧
x∈U

∧
ε∈R>0

∨
δ∈R>0

∧
y∈D(f)

dM (x, y) < δ =⇒ dN (f(x), f(y)) < ε.

The mapping f is called continuous if f is continuous in D (f).

A concept of continuity particular to (semi-) metric spaces is the concept of uniform continuity.

Definition 118. Let f : D(f) ⊆ M −→ N be a mapping and (M, dM ) and (N, dN ) (semi-)
metric spaces. Then f is called uniformly continuous if

∧
ε∈R>0

∨
δ∈R>0

∧
x, y∈D(f)

dM (x, y) < δ =⇒ dN (f(x), f(y)) < ε .

The function f is called locally uniformly continuous if

∧
z∈D(f)

∨
η∈R>0

∧
ε∈R>0

∨
δ∈R>0

∧
x, y∈B(z,η)∩D(f)

dM (x, y) < δ =⇒ dN (f(x), f(y)) < ε.

The function f is called1 M-locally uniformly continuous orCauchy continuous if

∧
z∈M

∨
η∈R>0

∧
ε∈R>0

∨
δ∈R>0

∧
x, y∈B(z,η)∩D(f)

dM (x, y) < δ =⇒ dN (f(x), f(y)) < ε.

A particular and easily characterized example of uniform continuity is given by the so-called
Lipschitz continuity.

Definition 119. Let f : D(f) ⊆ M −→ N be a mapping and (M, dM ) and (N, dN ) (semi-)
metric spaces. Then f is called locally Lipschitz continuous if∧

z∈D(f)

∨
r, δ∈R>0

∧
x,y∈BdM

(z,r)∩D(f)

dN (f(x), f(y)) ≤ δ dM (x, y)

and f is called M-locally Lipschitz continuous if∧
z∈M

∨
r, δ∈R>0

∧
x,y∈BdM

(z,r)∩D(f)

dN (f(x), f(y)) ≤ δ dM (x, y).

If there is a constant δ ∈ R>0 such that

∧
x, y∈D(f)

dN (f(x), f(y)) ≤ δ dM (x, y).

1Note the slight change of topology here from the relative topology of D (f) to the topology of M .
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then f is called (globally) Lipschitz continuous. Any such constant δ is called a Lipschitz
constant. The best Lipschitz constant of a globally Lipschitz continuous f is given by

|f |Lip := inf

δ ∈ R>0

∣∣∣∣∣∣
∧

x, y∈D(f)

dN (f(x), f(y)) ≤ δ dM (x, y)

 .

Finally, if f satisfies

∧
x, y∈D(f)

dN (f(x), f(y)) = dM (x, y),

then f is called a (semi-) isometry.

Extending mappings by closure is fundamental to many of the elementary structural constructions
of functional analysis. A mapping f : D(f) ⊆ M −→ N can be considered as a particular set of
pairs in M ×N , i.e. we identify

f = {(x, y) ∈M ×N | y = f (x)} .
We shall consider M ×N as a metric space with metric

(M ×N)× (M ×N) → R

((x0, y0) , (x1, y1)) 7→
√
dM (x0, x1)

2
+ dN (y0, y1)

2
.

We shall refer to this metric space as the direct sum space

M ⊕N

with metric dM⊕N . Then it is clear what the closure f̄ of f means. A mapping f is called closable
if f is also a mapping. It is important to note that uniformly continuous mappings between metric
spaces are closable. More precisely, we have

Proposition 120. Let (M, dM ) be a (semi-) metric space and (N, dN ) a metric space and let
f : D(f) ⊆ M −→ N be (locally) uniformly continuous. Then f is closable and its closure f̄ is
(locally) uniformly continuous.

Proof. Let x ∈M with (x, y), (x, z) ∈ f̄ . Let (xn)n be a sequence in D (f) converging to x,
such that

f (x2n) → y

f (x2n+1) → z

as n→ ∞. Then, there is a mapping Nx : R>0 → N such that

dM (xn, x) < δ

for n ∈ N≥Nx(δ). By the locally uniform continuity of f we have a mapping δx : R>0 → R>0 such
that

(A.0.3) dN (f (xn) , f (xm)) < ε

for all n,m ∈ N≥Nx(δx(ε)). This shows that (f (xn))n is a Cauchy sequence, which can have at
most one limit and therefore

y = z .

This shows that f is right-unique and so that f is closable.

To see the locally uniform continuity of f̄ , let z ∈M and x ∈ D(f̄) such that dM (x, z) < δx (ε/2) /2
and let analogously u ∈ D(f̄) such that dM (u, z) < δu (ε/2) /2 with a sequence (un)n in D (f)
converging to u, such that

f (xn) → f (x)

f (un) → f (u)
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as n→ ∞. We have

dM (v, z) < δz (ε/2) ∧ dM (w, z) < δz (ε/2) =⇒ dN (f(v), f(w)) < ε/2

for any given ε ∈ R>0 and we see that dM (xn, z) < δz (ε/2) /2 + dM (xn, x) < δz (ε/2) and
dM (un, z) < δz (ε/2) /2 + dM (un, u) < δz (ε/2) and so

dN (f (xn) , f (un)) < ε/3

for all sufficiently large n ∈ N. Consequently, we find

dN (f̄(x), f̄(u)) ≤ dN (f̄ (x) , f (xn)) + dN (f (xn) , f (un)) + dN (f (un) , f̄(u)) < ε

for all sufficiently large n ∈ N. Since ε ∈ R>0 and z ∈ M were arbitrary, this shows the locally
uniform continuity of f . We may e.g. choose δ := δz (ε/2) /2 to have

dN (f̄(x), f̄(u)) < ε

for all x, u ∈ D
(
f
)
with

dM (x, z) , dM (u, z) < δ .

If f is uniformly continuous, then δ is independent of the choice of z ∈M in the above reasoning.
Thus, f̄ is uniformly continuous in this case. �
Definition 121. A metric space (N, dN ) is called complete if every Cauchy sequence in it
converges, i.e. has a limit,

Lemma 122. Let M be a metric spaces and N be a complete metric space. Let f D(f) ⊆M → N be
a locally uniformly continuous mapping, where D(f) is dense in M. Then f̄ is a locally uniformly
continuous mapping with D(f̄) =M .

Proof. The result is clear D(f̄) = D(f) =M . �

Completeness is a fundamental property throughout analysis and so it is comforting to know
that there is a canonical construction of a complete metric space from any semi-metric space
(M, d) . The more usual procedure is to construct the completion of a metric space having first,
if necessary, produced a metric space from a semi-metric space by taking equivalence classes of
metrically indistinguishable elements, but we choose to show that the construction works in one
step directly from a semi-metric space. The first step in this construction is the transition from
points in M to Cauchy sequences in M . Consider the set of Cauchy sequences2 in M , i.e. the set

CS(M) :=
{
f ∈MN∣∣ f Cauchy sequence

}
.

2It is interesting to note that a Cauchy sequence f = (fn)n∈N is characterized as a uniformly continuous
mapping

f : N → M ,

n 7→ fn

where N is considered as a metric space with metric

(x, y) 7→
∣∣∣∣ 1

1 + x
−

1

1 + y

∣∣∣∣ = 1

(1 + x) (1 + y)
|x− y| .

This space is not complete, since (n)n∈N is a Cauchy sequence without limit in N. Its completion in the sense

explained in the following is N ∪ {∞}, where ∞ is the equivalence class of all unbounded sequences in N. This
yields an alternative view on sequences as mappings

f ◦
(

1

·
− 1

)
:

1

1 + [N]
⊂ R → M

1

1 + n
→ fn ,

where 1
1+[N] is a subspace of R as the standard metric space with | · − · | as metric. Note that

N →
1

1 + [N]

n 7→
1

1 + n

is a bijective isometry.
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and define the injective mapping

Φ : M → CS(M), x 7−→ f(x) :=∈

{
f ∈ CS(M)

∣∣∣∣∣ ∧
s∈N

fs = x

}
.

Thus we may identify M with the subset Φ [M ] =
{
f(x) ∈ CS(M) |x ∈M

}
so we may write

M ⊆ CS(M). Defining the equivalence relation∧
f,g∈CS(M)

f ∼ g :⇐⇒ d(f, g) := lim
s→0

d(f(s), g(s)) → 0

and corresponding equivalence classes

[f ] := {g ∈ CS(M) | f ∼ g} ,
we shall see that the following result holds.

Proposition 123. We have that

(A.0.4) d̃([f ] , [g]) := lim
s→0

d(fs, gs)

is a well-defined metric on

M̃ := { [f ]| f ∈ CS(M)} .

Moreover, M is dense in M̃ in the sense that Φ̃ [M ] :=
{[
f(x)

]
∈ M̃ |x ∈M

}
is dense in the

metric space
(
M̃, d̃

)
, and

(
M̃, d̃

)
is complete.

Proof. For [f ] , [g] ∈ M̃, by inequality (A.0.1) and the fact that f, g ∈ CS(M), we have

|d(fm, gm)− d(fn, gn)| ≤ d(fm, fn) + d(gm, gn) → 0 as m, n→ ∞

which shows that (d(fn, gn))n∈Nis a Cauchy sequence in R so that d̃([f ] , [g]) := limn→∞ d(fn, gn)
exists.

Now, let u ∈ [f ] and v ∈ [g]: we need to show that

(A.0.5) d̃([f ] , [g]) = d̃([u] , [v]).

By inequality (A.0.1) we have

|d(fn, gn)− d(un, vn)| ≤ d(fn, un) + d(vn, gn)

from which, since limn→∞ d(fn, un) = limn→∞ d(gn, vn) = 0, the desired equality (A.0.5) follows.

That the well-defined mapping d̃ is a semi-metric follows from the semi-metric properties of d and

the standard limit theorems in R. To see that definiteness holds for d̃ we only need to notice that

d̃([f ] , [g]) = 0 ⇔ lim
n→∞

d(fn, gn) = 0 ⇔ f ∼ g ⇔ [f ] = [g] .

Finally, to see that the metric space
(
M̃, d̃

)
is also complete, we take a Cauchy sequence F = (Fn)n

in M̃ , i.e. Fn ∈ M̃. Let f (n) ∈ CS(M) be such that Fn =
[
f (n)

]
dM

. Again applying (A.0.1) we
see

(A.0.6)

∣∣∣d(f (n)r , f
(m)
u )− d(f

(n)
s , f

(m)
t )

∣∣∣ ≤
≤ d(f

(n)
r , f

(n)
s ) + d(f

(m)
u , f

(m)
t )

The sequence f is a Cauchy sequence if and only if f ◦
(
1
· − 1

)
is uniformly continuous. The sequence f is

convergent if and only if f ◦
(
1
· − 1

)
has a continuous extension to 0. For the latter note that also

N ∪ {∞} →
1

1 + [N]
∪ {0} ,

n 7→
1

1 + n
, n ∈ N ,

∞ 7→ 0

is a bijective isometry.
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Now, we observe that by the fact that f (n) is a Cauchy sequence, there is a mappingN1 : N −→ R>0

such that we have

(A.0.7) d(f (n)r , f
(n)
t ) <

1

n+ 1

for all r, t > N1(n), r, t, n ∈ N. We may assume that N1 is strictly monotone, since otherwise we
may replace N1 by

n 7→ sup
{
N1 (r)

∣∣ r = 0, . . . , n
}
+ n .

From (A.0.6) and (A.0.7) we get

(A.0.8)
∣∣∣d(f (n)r , f (m)

u )− d(f (n)s , f
(m)
t

∣∣∣ < 1

n+ 1
+

1

m+ 1

for r, s > N1(n). u, t > N1(m), n,m ∈ N.

To show completeness, we need to find a f (∞) ∈ CS(M), such that F → F∞ :=
[
f (∞)

]
. This will

be done by a diagonal construction. We obtain that g(n) := f (n) (N1 (n) + ( · )) is also a Cauchy
sequence as a subsequence of f (n). Moreover, according to (A.0.7) we have g(n) ∼ f (n), therefore
Fn =

[
g(n)

]
, for all n ∈ N, as well as (according to (A.0.8))

(A.0.9)
∣∣∣d(g(n)r , g(m)

r )− d(g
(n)
t , g

(m)
t )

∣∣∣ < 1

n+ 1
+

1

m+ 1

for all r, t ∈ N. Going in (A.0.9) to the limit with respect to t yields

(A.0.10)
∣∣∣d(g(n)r , g(m)

r )− d̃(Fn, Fm)
∣∣∣ ≤ 1

n+ 1
+

1

m+ 1

for all r ∈ N. We now define the diagonal sequence f (∞) :=
(
g
(n)
n

)
n∈N

claiming f (∞) to be a

Cauchy sequence. Indeed, by (A.0.7) and (A.0.10) we have

d(g
(n)
n , g

(m)
m ) ≤ d(g

(n)
n , g

(m)
n ) + d(g

(m)
n , g

(m)
m ),

≤ 1
n+1 + 1

m+1 + d̃(Fn, Fm) + 1
m+1 ,

which clearly demonstrates the Cauchy sequence property of f (∞). Moreover, using (A.0.7) and
(A.0.10) we find

d(g(n)m , f (∞)
m ) = d(g(n)m , g(m)

m )

≤ d(g(n)m , g(n)n ) + d(g(n)n , g(m)
m )

< 2

(
1

n+ 1
+

1

m+ 1

)
+ d̃(Fn, Fm)

and so

d̃ (Fn, F∞) ≤ 2

n+ 1
+ lim sup

m→∞
d̃(Fn, Fm) → 0

as n→ ∞, which shows the desired convergence of (Fn)n∈N to F∞ =
[
f (∞)

]
. �

This new metric space
(
M̃, d̃

)
is called the completion of (M, d).

By the above identification we have M ⊆ CS(M). The following proposition clarifies the relation

between M and M̃.

Proposition 124. Let (M, d) be a semi-metric space and
(
M̃, d̃

)
its completion. Define an

equivalence relation ≈ on M by

(A.0.11) x ≈ y : ⇐⇒ d(x, y) = 0.

Then
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(1) the set M≈ := {x≈ |x ∈M } of equivalence classes x≈ := {y ∈M |x ≈ y } becomes a
metric space when equipped with the metric

d≈(x≈, y≈) := d(x, y)(A.0.12)

and

(A.0.13)
∧

x,y∈M

d≈(x≈, y≈) = d̃
([
f(x)

]
,
[
f(y)

])
;

(2) the imbedding

M≈ ↪→ M̃

given by x≈ 7→
[
f(x)

]
for x ∈M is an isometry and hence is uniformly continuous ;

(3) the imbedding is also dense and so we may consider M≈ as a dense subset of M̃ .

Proof. That ≈ defines an equivalence relation on M follows easily from the properties of a
semi-metric. To see that d≈ is well-defined, we only need to recall (A.0.1):

|d(x, y)− d(u, v)| ≤ d(x, u) + d(y, v) for all x, y, u, v ∈M,

so that, if x ≈ u and y ≈ v, it follows easily that d(x, y) = d(u, v) and hence

d≈(x≈, y≈) = d(x, y) = d(u, v) = d≈(u≈, v≈)

which shows that d≈ is a well-defined mapping into the real numbers. Clearly, the semi-metric
properties are inherited from d. Definiteness follows easily from (A.0.12) and (A.0.11). Realizing
that since f, g ∈M are identified with constant sequences, we must have

d(f, g) = d̃([f ] , [g]) for all f, g ∈M,

yields (A.0.13). Statement 2 is just rephrasing (A.0.13). To prove statement 3 we show that for

any [f ] ∈ M̃ we have that the constant sequences f (k) := (fk)n∈N, k ∈ N, satisfy[
f (k)

]
→ [f ] in M̃ as k → ∞.

For this we need to show that lim sup n→∞d(fk, fn) goes to zero as k → ∞. This, however, follows
from the Cauchy convergence of f. �

Remark 125. Since (M, d) is assumed to be merely a semi-metric space the canonical mapping
x 7−→ [x], relating x with its equivalence class [x] is a semi-isometry.

Example 126. Let (M, d) be a metric space. Then we define a new metric d1 given by

(x, y) 7→ sup

{
|d(x, a)− d(y, a)|

(1 + d(x, a))(1 + d(y, a))

∣∣∣∣ a ∈M

}
.

To see that d1 is indeed a metric we first note that only the triangle inequality is in doubt. The
triangle inequality in R yields

(A.0.14)

∣∣∣∣ 1

1 + x
− 1

1 + y

∣∣∣∣ ≤ ∣∣∣∣ 1

1 + x
− 1

1 + z

∣∣∣∣+ ∣∣∣∣ 1

1 + z
− 1

1 + y

∣∣∣∣
for x, y, z ∈ R≥0. Replacing in (A.0.14) x, y, z by d(x, a), d(y, a), d(z, a), respectively, we get

|d(x, a)− d(y, a)|
(1 + d(x, a))(1 + d(y, a))

≤ |d(x, a)− d(z, a)|
(1 + d(x, a))(1 + d(z, a))

+
|d(z, a)− d(y, a)|

(1 + d(z, a))(1 + d(y, a))

for all x, y, z, a ∈ M. Taking the supremum with respect to a ∈ M (first on the right-hand side
then on the left-hand side), we see that d1 satisfies the triangle inequality. Moreover,

d1(x, y) = sup
{

|d(x,a)−d(y,a)|
(1+d(x,a))(1+d(y,a))

∣∣∣ a ∈M
}
,

≤ sup
{

d(x,y)
(1+d(x,a))(1+d(y,a))

∣∣∣ a ∈M
}
,

≤ d(x, y)
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for all x, y ∈M. Thus, a Cauchy sequence with respect to d is also a Cauchy sequence with respect
to d1 . Conversely, a Cauchy sequence with respect to d1, which is bounded with respect to d is
also a Cauchy sequence with respect to d. Indeed,

d1(x, y) ≥
|d(x, a)− d(y, a)|

(1 + d(x, a))(1 + d(y, a))

for all x, y, a ∈M. Choosing a = y we get

d1(x, y) ≥
d(x, y)

(1 + d(x, y))
≥ 1

2
d(x, y)

for all x, y ∈M, with d(x, y) ≤ 1. This proves the above assertion.

There may be, however, Cauchy sequences with respect to d1, which are unbounded with respect
to the metric d. In this case, there is no limit in (M,d) to which such a sequence might converge,
even if (M,d) is assumed to be complete. If (M, d) is complete, then the completion of (M, d1)
contains one additional element, the equivalence class of unbounded sequences3, which we shall
denote by ∞.

We note that the process of completion is compatible with (locally) uniform continuity of mappings.
Next, we are turning our attention to a surprisingly elementary but incredibly useful result.

Theorem 127. (Contraction mapping theorem) Let (M, dM ) be a complete metric space
and F : M −→ M a Lipschitz continuous with best Lipschitz constant |F |Lip < 1, i.e. F is

a contraction in M. Then F has a unique fixed point x̂, i.e. a unique element x̂ ∈ M with
F (x̂) = x̂. Moreover, we have for any x0 ∈M that Fn(x0) → x̂ as n→ ∞ and the following error
estimates hold:

(A.0.15)
∧
n∈N.

dM (Fn(x0), x̂) ≤ |F |nLip dM (x0, x̂),

and

(A.0.16)
∧
n∈N.

dM (Fn(x0), x̂) ≤
|F |nLip

1− |F |Lip

dM (F (x0), x0).

Proof. By assumption we have

(A.0.17) dM (F (x), F (y)) ≤ |F |Lip dM (x, y)

for all x, y ∈M and by taking y = x̂ to be a fixed point of F we get

dM (F (x), x̂) ≤ |F |Lip dM (x, x̂)

from which (A.0.15) follows by induction. If also x is a fixed point, we obtain

dM (x, x̂) ≤ |F |Lip dM (x, x̂)

which implies dM (x, x̂) = 0 and so indeed x = x̂, since |F |Lip < 1. Thus, a fixed point is uniquely
determined.

The rest of the theorem follows by comparison with the geometric series. We first show that
(Fn(x0))n∈N is a Cauchy sequence. By induction we find

dM (Fn+1(x0), F
n(x0)) ≤ |F |nLip dM (F (x0), x0)

for all n ∈ N and then for m ∈ N, m ≥ n,

(A.0.18)
dM (Fn(x0), F

m+1(x0)) ≤
∑m

k=n dM (F k(x0), F
k+1(x0)),

≤
∑m

k=n |F |
k
Lip dM (F (x0), x0).

3If M = ±R≥0 and d := | · − · | and then this equivalence class is usually denoted by ±∞, respectively.
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Since
∑∞

k=0 |F |
k
Lip converges as a geometric series, we have as desired that (Fn(x0))n∈N is a Cauchy

sequence. By assumption (M, dM ) is complete and so ẑ := limn→∞ Fn(x0) exists in M. Letting
m→ ∞ in (A.0.18) we thus obtain

(A.0.19)

dM (Fn(x0), ẑ) ≤
∑∞

k=n |F |
k
Lip dM (F (x0), x0),

= |F |nLip

∑∞
k=0 |F |

k
Lip dM (F (x0), x0),

=
|F |nLip

1−|F |Lip
dM (F (x0), x0),

which is (by renaming) error estimate (A.0.16). It remains to show that ẑ is actually a fixed point
of F. This follows from the continuity of F

F (ẑ) = F ( lim
n→∞

Fn(x0)) = lim
n→∞

Fn+1(x0) = ẑ.

�

A fundamental concept in analysis that is particularly simple to characterize in metric spaces is
compactness.

Definition 128. A subset C of a metric space is called (sequentially) compact if it satisfies
the Bolzano-Weierstrass property, i.e. for every sequence (xs)s∈N in C there is a convergent
subsequence with limit in C.

Finally, we recall that compact sets are also closed and bounded. (we leave the proof of this
implication as an exercise).





APPENDIX B

Polar Decomposition

Definition 1. Let A, B ⊆ H⊕H be Hermitean operators in complex Hilbert space H.We define

A ≤ B :⇔
∧

x∈D(A)∩D(B)

〈x|Ax〉H ≤ 〈x|Bx〉H .

If A ≥ 0 then we call A non-negative. If A ≥ 0 and Ax = 0 ⇒ x = 0 for all x ∈ H then A
is called positive (definite). If A ≥ ε for some ε ∈ R>0, then A is called strictly positive
(definite).

For later use we consider higher powers of selfadjoint operators.

Proposition 2. Let A : D(A) ⊆ H → H a strictly positive selfadjoint operator in H. Then Aj is
selfadjoint for all j ∈ N.

Proof. The result is obviously true for j = 0 and by assumption for j = 1. Consider now
the obviously Hermitean operator Aj+1. Since by induction hypothesis D(Aj) must be dense in
H, we also have A−1D(Aj) dense in A−1H = D(A). Since D(A) is also dense in H, we have
that A−1D(Aj) must be dense in H. But A−1D(Aj) = D(Aj+1), thus Aj+1 is densely defined
and therefore symmetric. Moreover, we have 0 ∈ %(Aj+1), since A−j−1 = (A−1)(j+1) features the
corresponding resolvent. Thus, Aj+1 must be selfadjoint. �

Proposition 3. Let A ⊆ H ⊕ H and B ⊆ H ⊕ H be two commuting selfadjoint operators in
complex Hilbert space H. Then A ≥ 0 and B ≥ 0 implies AB ≥ 0 and BA ≥ 0.

Proof. If C ∈ L(H,H) is selfadjoint, then C2 ≥ 0 for〈
x
∣∣C2x

〉
H

= 〈Cx |Cx 〉 ≥ 0 for all x ∈ H.

For A = 0 the result is trivial, therefore we assume A 6= 0. In a first step, we shall assume
A ∈ L(H,H) and try to express A as a sum of squares. Defining recursively

A0 := ||A||−1A,

An+1 := An −A2
n,

we obtain a sequence (An)n∈N in L(H,H). We claim

(B.20) 0 ≤ An ≤ 1

for all n ∈ N. The proof of this claim will be by induction.

Clearly, A0 ≥ 0. Moreover,

〈x|x〉H − 〈x|A0x〉H = 〈x|x〉H − ||A||−1 〈x|Ax〉H ,

≥ 〈x|x〉H − ||A||−1 ||A|| |x|2H = 0

and so also
A0 ≤ 1.

Assume now (B.20) holds for some n ∈ N. Consider〈
x |A2

n(1−An)x
〉
H

= 〈x|An(1−An)Anx〉H ,

= 〈Anx | (1−An)Anx〉H .

111
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The latter term is non-negative by the induction assumption. Therefore

A2
n(1−An) ≥ 0

and by exchanging the role of An and (1−An) we also have

An(1−An)
2 ≥ 0.

As the sum of two non-negative selfadjoint operators in L(H,H) must be also non-negative, we
have

An+1 = An(1−An)
2 +A2

n(1−An) ≥ 0.

Moreover, since (1−An) and A
2
n are non-negative, we also have

1−An+1 = 1−An +A2
n ≥ 0

and so (B.20) is shown to be true for all n ∈ N. A simple induction now yields that

(B.21)

n∑
k=0

A2
k = A0 −An+1 ≤ A0.

Indeed, for n = 0 we have A2
0 = A0 −A1. Moreover,

n+1∑
k=0

A2
k =

n∑
k=0

A2
k +A2

n+1 = A0 −An+1 +A2
n+1 = A0 −An+2 ≤ A0

so that (B.21) follows for all n ∈ N. From (B.21) we see that

n∑
k=0

〈Akx |Akx 〉H =

n∑
k=0

〈
x
∣∣A2

kx
〉
H

=

〈
x

∣∣∣∣∣
n∑

k=0

A2
k x

〉
H

≤ 〈x |A0x 〉H

for every n ∈ N. From this we conclude that
∞∑
k=0

|Akx|2H ≤ ‖A0‖ |x|2H

and so in particular
Anx→ 0 as n→ ∞.

This finally shows that as desired
n∑

k=0

A2
k x = A0x−An+1x→ A0x as n→ ∞

or
∞∑
k=0

A2
k x = A0x for all x ∈ H.

From this representation of A0 in terms of squares the stated result now follows. Since B commutes
with A, it also commutes with any polynomial of A and so with each An, n ∈ N. Since B ≥ 0 we
have for k = 0, . . . , n, n ∈ N,

(B.22)

〈
x
∣∣∑n

k=0A
2
kBx

〉
H

=
〈
x
∣∣B∑n

k=0A
2
kx
〉
H

=
∑n

k=0

〈
x
∣∣BA2

kx
〉
H

=
∑n

k=0 〈x |AkBAkx 〉H
=
∑n

k=0 〈Akx |BAkx 〉H
≥ 〈Anx |BAnx 〉H ≥ 0

for all x ∈ D(B). By invoking the closedness of B and letting n→ ∞ in (B.22) we get

〈x |ABx 〉H = 〈x |BAx 〉H = ||A|| 〈x |BA0x 〉H ≥ 0

for all x ∈ D(B). Now let A ⊆ H⊕H be a possibly unbounded, non-negative, selfadjoint operator
and ε ∈ R>0. Then A+ ε ≥ ε and so (A+ ε)−1 ∈ L(H,H),

∥∥(A+ ε)−1
∥∥ ≤ ε−1 and (A+ ε)−1 ≥ 0.
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By assumption B commutes with A, i.e. with resolvents of A, e.g. (A + ε)−1. Applying our
previous findings we have〈

x
∣∣B(A+ ε)−1x

〉
H

=
〈
x
∣∣(A+ ε)−1Bx

〉
H

≥ 0 for all x ∈ D(B).

With y = (A+ ε)−1x and observing that By = (A+ ε)−1Bx ∈ D(A) this implies

〈y |(A+ ε)By 〉H = 〈y |B(A+ ε)y 〉H ≥ 0 for all y ∈ (A+ ε)−1D(B) ⊆ D(A) ∩D(B).

We note that every y ∈ D(A) with (A+ ε)y ∈ D(B) can be written as

y = (A+ ε)−1(A+ ε)y

and so

〈y |(A+ ε)By 〉H = 〈y |B(A+ ε)y 〉H ≥ 0 for all y ∈ D(A) with (A+ ε)y ∈ D(B).

Further specializing

〈y |(A+ ε)By 〉H = 〈y |B(A+ ε)y 〉H ≥ 0 for all y ∈ D(A)∩D(B) with Ay ∈ D(B) and By ∈ D(A).

Now letting ε→ 0+ we get

〈y |ABy 〉H = 〈y |BAy 〉H ≥ 0 for all y ∈ D(A) ∩D(B) with Ay ∈ D(B) and By ∈ D(A).

Since both cases are analogous, let us focus on AB. In order to show

AB ≥ 0

we need to establish that for every x ∈ D(B) with Bx ∈ D(A) we can find an approximation
y ∈ D(A)∩D(B) with Ay ∈ D(B) and By ∈ D(A) to every degree of accuracy. Since B commutes
with A we have for η ∈ R>0

yη := (ηA+ 1)−1x ∈ D(A) ∩D(B)

as well as

Ayη := A(ηA+ 1)−1x = η−1(x− yη) ∈ D(B)

and

Byη := (ηA+ 1)−1Bx ∈ D(A).

Letting η → 0+ we find

(ηA+ 1)−1z − z = −η (ηA+ 1)−1Az → 0 as η → 0+

for all z ∈ D(A) and since
∥∥(ηA+ 1)−1

∥∥ ≤ 1 and D(A) dense in H,

(ηA+ 1)−1u− u→ 0 as η → 0+

for all u ∈ H. Therefore,

yη − x = (ηA+ 1)−1x− x→ 0 as η → 0+

and

Byη −Bx = (ηA+ 1)−1Bx−Bx→ 0 as η → 0 + .

This, however, was our claim. �

Now we shall employ our findings in Proposition 3 to obtain a monotone convergence result for
selfadjoint operators.

Theorem 4. Let (An)n∈N be a sequence in L(H,H), H a complex Hilbert space, of commuting
selfadjoint operators and further suppose that (An)n∈N is non-decreasing, i.e.∧

n∈N
An ≤ An+1

and bounded above by a selfadjoint operator B ∈ L(H,H) commuting with all An , n ∈ N, in the
sense that ∧

n∈N

An ≤ B.
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Then A∞ ∈ L(H,H) defined by

A∞x := lim
n→∞

Anx for all x ∈ H,

is a selfadjoint operator and commutes with B and all An, n ∈ N. Moreover, we have

A∞ ≤ B.

Proof. That A∞ is a well-defined bounded, linear operator is clear from Proposition 69 as
soon as it can be shown that limn→∞Anx exists for all x ∈ H. Consider the sequence (Cn)n :=
(B −An)n. Clearly, we have

Cn ≥ Cn+1 ≥ 0

and all Cn commute with each other, n ∈ N . Therefore, we have for n > m by the previous
proposition that

Cn(Cm − Cn) ≥ 0 and (Cm − Cn)Cm ≥ 0

or

(B.23) C2
m ≥ Cn Cm ≥ C2

n.

This shows that
(〈
x
∣∣C2

nx
〉
H

)
n
is a non-increasing sequence of non-negative numbers and therefore

convergent:
c(x) := lim

n→∞

〈
x
∣∣C2

nx
〉
H
.

Moreover, with (B.23) we also have

〈x |Cn Cmx 〉H → c(x) as m,n→ ∞.

We find

|Cnx− Cmx|2H = 〈(Cn − Cm)x |(Cn − Cm)x 〉H ,

=
〈
x
∣∣(Cn − Cm)2x

〉
H
,

=
〈
x
∣∣C2

nx
〉
H
− 〈x |Cn Cmx 〉H − 〈x |Cm Cnx 〉H +

〈
x
∣∣C2

mx
〉
H
,

=
〈
x
∣∣C2

nx
〉
H
− 2 〈x |Cn Cmx 〉H +

〈
x
∣∣C2

mx
〉
H

→ c(x)− 2 c(x) + c(x) = 0 as n,m→ ∞.

By the completeness of H we have that

lim
n→∞

Anx = B − lim
n→∞

Cnx

exists for all x ∈ H. Thus, A∞ is a well-defined, linear operator in L(H,H). It remains to be seen
that A∞ is selfadjoint and bounded above by B. For selfadjointness it suffices to show that A∞ is
Hermitean. But this is obvious, since

〈y |A∞x 〉H = 〈y |limn→∞Anx 〉H = limn→∞ 〈y |Anx 〉H =

= limn→∞ 〈Any | x 〉H = 〈limn→∞Any | x 〉H = 〈A∞y |x 〉H
for all x, y ∈ H. From

AnBx = BAnx

follows by letting n→ ∞ that
A∞Bx = BA∞x

for all x ∈ H. Finally, we have from An ≤ B for all n ∈ N that

〈x |Anx 〉H ≤ 〈x |Bx 〉H
and again letting n→ ∞

〈x |A∞x 〉H ≤ 〈x |Bx 〉H
for all x ∈ H, i.e.

A∞ ≤ B.

�
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There is an interesting mechanism which obtains a selfadjoint operator from every densely defined,
closable operator.

Proposition 5. Let A ⊆ H0⊕H1, be a densely defined, closable, linear operator between complex
Hilbert spaces H0, H1. Then

A∗Ā

is selfadjoint. We have

σ(A∗Ā) ⊆ [0,∞[

and D(A∗Ā) is dense in D(Ā) with respect to the graph norm of Ā.

Proof. First, we see that A∗Ā is Hermitean〈
x
∣∣A∗Āx

〉
H

=
〈
Āx
∣∣Āx〉

H
=
〈
A∗Āx | x

〉
H

for all x ∈ D(A∗Ā).

Moreover,

w(A∗Ā) =
{〈
x
∣∣A∗Āx

〉
H

∣∣x ∈ D(A∗Ā) ∧ |x|H = 1
}
,

=
{〈
Āx
∣∣Āx〉

H

∣∣x ∈ D(A∗Ā) ∧ |x|H = 1
}
,

⊆ [0,∞[.

Next, we notice that A∗Ā+ 1 is onto. Since A is closable, the domain D(Ā) of its closure Ā is a
complex Hilbert space with respect to the graph norm. Solving the equation

(B.24)
(
A∗Ā+ 1

)
u = f

is equivalent to finding u ∈ D(Ā) such that

(B.25)
∧

x∈D(Ā)

〈
Āu
∣∣Āx〉

H
+ 〈u |x 〉H = 〈f |x 〉H .

Indeed, (B.24) implies (B.25) after multiplying (B.24) by x in the sense of the inner product of
H. But also conversely, if u satisfies (B.25) then we read off that Āu must be in D(A∗) and that

A∗Āu = f − u.

A solution u ∈ D(Ā) of (B.25), however, is easily found by noting that 〈f |· 〉H is a bounded, linear
functional on D(Ā) with respect to the graph norm | · |D(Ā) of Ā :

(B.26) |〈f |x 〉H | ≤ |f |H |x|H ≤ |f |H
√

|x|2H + |Āx|2H = |f |H |x|D(Ā) for all x ∈ D(Ā).

An apparently unique solution is provided by

u := (A∗Ā+ 1)−1f = RD(Ā) (〈f |· 〉H) ,

where RD(Ā) is the associated Riesz mapping. Moreover, for this solution u = (A∗Ā + 1)−1f we

find with (B.26) and (B.25) the estimate∣∣(A∗Ā+ 1)−1f
∣∣
D(Ā)

≤ |f |H for all f ∈ H.

Thus, we have −1 ∈ %(A∗Ā). We also have that A∗Ā is densely defined. Let x ∈ D(A∗Ā)⊥, where
the ortho-complement is taken in D(Ā), then∧

y∈D(A∗Ā)

〈
Āy
∣∣Āx〉

H
+ 〈y |x 〉H =

〈
A∗Āy |x

〉
H
+ 〈y |x 〉H = 0.

Since we found that A∗Ā+ 1 is onto, we get∧
y∈H

〈y |x 〉H = 0

and so that x = 0. Thus, D(A∗Ā) is dense in D(Ā) and by assumption D(Ā) dense in H, therefore
A∗Ā densely defined:

|y − f |H ≤ |y − x|H + |x− f |H ≤ |y − x|D(Ā) + |x− f |H for all f ∈ H, x ∈ D(Ā), y ∈ D(A∗Ā).
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Thus, we have found that A∗Ā is symmetric, w(A∗Ā) ⊆ [0,∞[ and −1 ∈ %(A∗Ā). Thus, we have
that A∗Ā is selfadjoint and

σ(A∗Ā) ⊆ [0,∞[.

�
Example 6. We have according to their definition in example 87 (and using the notations from

there) that −
◦
div grad and − div

◦
grad are of the form A∗Ā and therefore selfadjoint (in L2(Ω))

with

σ(− div
◦

grad) ⊆ [0,∞[, σ(−
◦
div grad) ⊆ [0,∞[.

Rephrasing this, we have solved the boundary value problems:

(1) −div grad u − λu = f ∈ L2(Ω), u ∈ H(
◦

grad) (Dirichlet boundary value problem with
homogeneous Dirichlet type boundary condition),

(2) −div grad u − λu = f ∈ L2(Ω), grad u ∈ H(
◦
div) (Neumann boundary value problem

with homogeneous Neumann type boundary condition)

for all λ ∈ %(A), in particular for λ ∈ C \ [0,∞[.

The non-negativity of the operator A∗Ā allows for defining a non-negative root. For this re-
sult we make use of the convergence result of Theorem 4. First we treat the case for a bounded,
non-negative selfadjoint operator.

Lemma 7. Let A ∈ L(H,H) be selfadjoint in complex Hilbert space H and non-negative. Then
there exists a non-negative selfadjoint B ∈ L(H,H) such that

B2 = A.

This operator B commutes with all C ∈ L(H,H), which commute with A.

Proof. If A = 0 we take B = 0. Let now A 6= 0. Since A is bounded, we may consider
w.l.o.g. |A| ≤ 1 otherwise replace A by |A|−1A. If B is a root of the latter then |A|1/2B is a root
of the original A. So let |A| ≤ 1 and define recursively

(B.27)
B0 := 0,

Bn+1 := Bn + 1
2 (A−B2

n)

for n ∈ N. By an elementary induction we see that Bn is a real polynomial in A and therefore
Bn ∈ L(H,H) is selfadjoint and commutes with every C ∈ L(H,H) which commutes with A,
n ∈ N. In particular, all the Bn are commuting with each other, n ∈ N. In order to apply Theorem
4 we show now that (Bn)n is a non-decreasing sequence and bounded above by 1. To demonstrate
that

(B.28) Bn ≤ 1

for all n ∈ N we procede by induction. Clearly, (B.28) is true for n = 0. Now let (B.28) hold for a
particular n ∈ N. The desired induction step follows by observing that

1−Bn+1 = 1−Bn − 1

2
(A−B2

n) =
1

2
(1−Bn)

2 +
1

2
(1−A) ≥ 0.

To demonstrate that (Bn)n is non-decreasing we first notice that trivially

0 = B0 ≤ B1 =
1

2
A.

Now let

(B.29) Bn+1 ≥ Bn

for a particular n ∈ N. Then

Bn+2 −Bn+1 = Bn+1 −Bn − 1

2
(B2

n+1 −B2
n) =

1

2
((1−Bn+1) + (1−Bn)) (Bn+1 −Bn) ≥ 0
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as a product of non-negative operators in L(H,H). This confirms the claimed monotonicity prop-
erty (B.29) for all n ∈ N. According to Theorem 4 we have B as the strong limit of the sequence
(Bn)n. Since

〈x |x 〉H ≥ 〈x |Bnx 〉H ≥ 0

for all x ∈ H, we get (by taking the limit)

〈x |x 〉H ≥ 〈x |Bx 〉H ≥ 0,

i.e. 1 ≥ B ≥ 0. That B commutes with every C ∈ L(H,H) which commutes with A carries over
from the sequence elements to the limit by continuity. That B is the desired square root follows
by noting that letting n→ ∞ in (B.27) yields

B = B +
1

2
(A−B2)

from which

B2 = A

follows. �

We shall now proceed to construct the square root of a strictly positive, unbounded selfadjoint
operator.

Lemma 8. Let A ⊆ H ⊕H be a selfadjoint, strictly positive operator in complex Hilbert space H.
Then there is a selfadjoint, strictly positive B ⊆ H ⊕H such that

B2 = A.

Moreover, D(A) is dense in D(B) considered as a complex Hilbert space with respect to the graph
norm of B. If for ε ∈ R>0 we have that ε2 is a lower bound of A, then B has ε as lower bound.
The operator B commutes with every C ∈ L(H,H), which commutes with A.

Proof. Since A is strictly positive, there is a constant ε ∈ R>0 such that A ≥ ε2, i.e.

(B.30) 〈y |Ay 〉H ≥
〈
y
∣∣ε2 y 〉

H
= ε2 〈y |y 〉H = ε2 |y|2H

for all y ∈ D(A). Since A is selfadjoint, we have therefore

σ(A) ⊆
[
ε2,∞

[
.

In particular, A−1 ∈ L(H,H). By the previous lemma we have a square root, which in anticipation

of a later uniqueness result we denote by
√
A−1, such that

√
A−1 ≥ 0 and

√
A−1

√
A−1 = A−1.

From
√
A−1x = 0 we get

√
A−1

√
A−1x = A−1x = 0 and so (by applying A) x = 0. Thus, we have

a well-defined linear operator B :=
√
A−1

−1
with domain

√
A−1H. Next we would like to show

that

B2 = A.

We have for x ∈ D(A) √
A−1

√
A−1Ax = x ∈ D(B) =

√
A−1H

and

Bx =
√
A−1

−1
x =

√
A−1Ax.

Thus, Bx ∈ D(B)and B2x = Ax. This shows

A ⊆ B2.

Conversely, let x ∈ D(B2) and y := B2x then A−1y =
√
A−1

2
B2x =

√
A−1Bx = x ∈ D(A) and

so B2x = y = Ax, i.e.

B2 ⊆ A.
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Since D(A) = D(B2) ⊆ D(B) ⊆ H, we see that B is densely defined. We know that B−1 is
selfadjoint and bounded, in particular

B−1 = (B−1)∗ = (B∗)
−1
.

Consequently, we also get

B = B∗.

By construction B−1 ≥ 0 and so with x = By for arbitrary y ∈ D(B)〈
x
∣∣B−1x

〉
H

= 〈By |y 〉H ≥ 0.

Thus, we found B ≥ 0. Since A = B∗B = B2, we have D(A) dense in D(B) by Proposition 5.
We have by estimate (B.30) that A − ε2 = B2 − ε2 = (B − ε)(B + ε) ≥ 0. We want to show
that B − ε ≥ 0. For this we notice B + ε ≥ ε > 0 and therefore (B + ε)−1 ∈ L(H,H). Moreover,∥∥(B + ε)−1

∥∥ ≤ ε−1 and (B + ε)−1 ≥ 0. Thus, we obtain a bounded, selfadjoint, non-negative

operator (B + ε)−1 commuting with A− ε2. By Proposition 3 we have

(B − ε) ⊇ (B + ε)−1(A− ε2) ≥ 0

and by the density of D(A) in D(B) we conclude

B ≥ ε.

Lastly, we show the commutativity property. The square root B−1 of A−1 commutes with every
C ∈ L(H,H), which commutes with A−1. However,

C A ⊆ AC

implies

C A−1 = A−1C,

and so

C B−1 = B−1C,

which in turn implies as desired

C B ⊆ BC.

�

Finally we want to remove the constraint of strict positivity.

Theorem 9. Let A ⊆ H ⊕H be a selfadjoint, non-negative operator in complex Hilbert space H.
Then there is a unique, selfadjoint, non-negative B ⊆ H ⊕ H such that B commutes with every
C ∈ L(H,H), which commutes with A and

B2 = A.

Moreover, D(A) is dense in D(B) considered as a complex Hilbert space with respect to the graph
norm of B.

Remark 10. The uniqueness of B motivates us to speak of the square root of A and denote it by
A1/2 or

√
A.

Proof. We shall approximate the operatorA by strictly positive selfadjoint operatorsA+ε2 ≥
ε2, ε ∈ R>0, by letting ε → 0 + . Consider the unique square root Bε :=

√
A+ ε2 ≥ ε, ε ∈ R>0,

and the associated mapping

fy : R>0 → C

ε 7→ 〈y |Bεy 〉H
for y ∈ D(A) fixed. We first note that all square roots Bε ≥ ε, ε ∈ R>0, are commuting on D(B).
Indeed, we find B−1

ε commutes with A + ε2 and so also with A. Thus, all B−1
ε are commuting,

ε ∈ R>0. From

B−1
ε1 B

−1
ε2 = B−1

ε2 B
−1
ε1
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we get

(B.31) B−1
ε1 Bε2 ⊆ Bε2 B

−1
ε1 ,

i.e.

(B.32) B−1
ε1 Bε2x = Bε2 B

−1
ε1 x

for all x ∈ D(Bε2), ε1, ε2 ∈ R>0. Since D(A) = D(A + ε2) is dense in D(Bε) for all ε ∈ R>0, we
get from (B.32) that also

(B.33) Bε1 Bε2y = Bε2 Bε1y

for all y ∈ D(A), ε1, ε2 ∈ R>0. With this we now find for fy

(B.34)

fy(ε1)− fy(ε2) =
〈
y
∣∣∣(√A+ ε21 −

√
A+ ε22

)
y
〉
H
,

=
〈
y
∣∣∣(Bε1 +Bε2)

−1
(Bε1 +Bε2) (Bε1 −Bε2) y

〉
H
,

=
〈
y
∣∣∣(Bε1 +Bε2)

−1 (
B2

ε1 −B2
ε2

)
y
〉
H
,

=
(
ε21 − ε22

) 〈
y
∣∣∣(Bε1 +Bε2)

−1
y
〉
H

Since (Bε1 +Bε2) ≥ ε1 + ε2 we have
∥∥∥(Bε1 +Bε2)

−1
∥∥∥ ≤ 1

ε1+ε2
and so we have

|fy(ε1)− fy(ε2)| ≤ |ε1 − ε2| |y|2H ,

i.e. the Lipschitz continuity of fy. Therefore, fy(0+) exists by continuous extension. Moreover,
we see from (B.34) that fy is non-decreasing. The property (B.31) also yields as in the proof of
Theorem 4

B−1
ε1 (Bε2 −Bε1) ≥ 0, (Bε2 −Bε1)B

−1
ε2 ≥ 0

for all ε1, ε2 ∈ R>0with ε2 ≥ ε1. Thus, we also get with y ∈ D(A) and x := Bε1y ∈ D(Bε2),
z := Bε2y ∈ D(Bε1) (using (B.33)!)

0 ≤
〈
x
∣∣B−1

ε1 (Bε2 −Bε1)x
〉
H

= 〈y |(Bε2 −Bε1)Bε1 y 〉H ,

0 ≤
〈
z
∣∣(Bε2 −Bε1)B

−1
ε2 z

〉
H

= 〈y |Bε1 (Bε2 −Bε1)y 〉H ,

or

〈y |Bε1Bε1 y 〉H ≤ 〈y |(Bε2Bε1 y 〉H ≤ 〈y |Bε2Bε2 y 〉H
for all y ∈ D(A). Further, re-fining the reasoning in the proof of Theorem 4 we get

|Bε1y −Bε2y|2H = 〈(Bε1 −Bε2)y |(Bε1 −Bε2)y 〉H ,

=
〈
y
∣∣(Bε1 −Bε2)

2y
〉
H
,

=
〈
y
∣∣B2

ε1y
〉
H
− 〈y |Bε1 Bε2y 〉H − 〈y |Bε2Bε1y 〉H +

〈
y
∣∣B2

ε2y
〉
H
,

=
〈
y
∣∣B2

ε1y
〉
H
− 2 〈y |Bε1 Bε2y 〉H +

〈
y
∣∣B2

ε2y
〉
H
,

≤ (ε22 − ε21) |y|2H
≤ (ε2 + ε1) |y|2H (ε2 − ε1).

We therefore have with

Cy := lim
ε→0+

Bεy for all y ∈ D(A),

a densely defined linear operator C. Moreover, taking the limit ε1 → 0+ we obtain with ε = ε2

|Bεy − Cy|2H ≤ ε2 |y|2H .

This shows that (C −Bε) ∈ L(H,H), indeed

(B.35)
∥∥∥(C −Bε)

∥∥∥ ≤ ε.
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As in the bounded case it is easily seen that C is non-negative, symmetric and therefore in
particular also closable. Denote the closure of C by B0 then

(B.36) B0 = Bε + (C −Bε).

This shows that D(Bε) = D(B0) is independent of ε ∈ R>0 and (for small values of ε ∈ R>0) that
B0 can be considered as a small perturbation of Bε. Therefore, we find for ε < 1 that

(B0 + 1)−1 =
(
1 + (Bε + 1)−1 (C −Bε)

)−1

(Bε + 1)−1 ∈ L(H,H).

Thus we have −1 ∈ %(B0) and since B0 ≥ 0 it follows that B0 is selfadjoint. We want to show
that this B0 is the desired square root. Let x ∈ D(A) then x ∈ D(B0), Bεx ∈ D(B0) and

BεBεx = Ax+ ε2x.

Since Bεx→ B0x as ε→ 0+we have with (B.36)

B0Bεx = Ax+ ε2x+ (C −Bε)Bεx→ Ax as ε→ 0+

and so B0x ∈ D(B0) and
B0B0x = Ax for all x ∈ D(A).

Having shown that A ⊆ B2
0 , we now see that

A+ 1 ⊆ B2
0 + 1 = (B0 + i)(B0 − i)

or
(A+ 1)−1 ⊆ (B2

0 + 1)−1 = (B0 − i)−1(B0 + i)−1.

Since, however, (A+ 1)−1 ∈ L(H,H), we must have equality, i.e.

(A+ 1)−1 = (B2
0 + 1)−1

or
A+ 1 = B2

0 + 1

and so finally
A = B2

0 .

Thus, we have established existence of a square root of A. That B0 commutes with any C ∈
L(H,H) commuting with A carries over from Bε as ε → 0. We have that C also commutes with
A+ ε2, thus also

CBε ⊆ BεC.

Letting ε→ 0 we get

CB0 ⊆ B0C.

Let now B2 = A with B ≥ 0 selfadjoint and such that it commutes with every C ∈ L(H,H)
commuting with A. We want to show that B = B0. Since B commutes with itself we first have

(B − λ)−1Ax = (B − λ)−1B2x = B2(B − λ)x = A (B − λ)x,

for all x ∈ D(A) and so we see

(B − λ)−1A ⊆ A (B − λ)−1

for λ ∈ C \ R. Since B commutes with A, it also commutes with B0, i.e.

(B − λ)−1B0 ⊆ B0 (B − λ)−1.

In particular, we read off that for z ∈ D(B0) we have x := (B − λ)−1z ∈ D(B0) ∩D(B) and

B0B x = BB0 x

Consider now y := (B −B0)x ∈ D(A) for z ∈ D(A). We calculate

〈y |By 〉H + 〈y |B0y 〉H = 〈y |(B +B0)(B −B0)x 〉H .

However, since B and B0 commute, we find

(B +B0)(B −B0)x = B2x−B2
0x = Ax−Ax = 0.
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From the non-negativity of B and B0 and using the existence part of this proof we get

〈Dy |Dy 〉H = 〈y |By 〉H = 〈y |Cy 〉H = 〈Ey |Ey 〉H = 0

where E2 = C and D2 = B. Thus, we find Dy = Ey = 0 and so

0 = D2y = By, 0 = E2y = B0y.

Consequently, we get

|y|2H = |Bx−B0x|2H = 〈x |(B −B0)(B −B0)x 〉H = 〈x |(B −B0)y 〉H = 0.

We have shown that

(B − λ)−1Bz = B(B − λ)−1z = B0(B − λ)−1z = (B − λ)−1B0z

for all z ∈ D(A). Therefore, also

Bz = B0z for all z ∈ D(A).

Since D(A) is dense in D(B) and in D(B0), we get B = B0. �

Remark 11. As an application consider a compact linear operator A : H0 → H0, then A
∗A = |A|∗

is a non-negative, selfajoint compact operator in H0. The notation L∞(H0, H0) of the normed
linear space of all such compact operators used earlier is motivated by the following observation.
Since A∗A : H0 → H0 is also compact (as a composition of a bounded operator with a compact
one) and since selfadjoint operators have real spectrum, we see that

|Ax|2 = 〈x|A∗Ax〉 ≤ max σ (A∗A) |x|2

with equality holding for elements in the null space of the largest eigenvalue, which must be 0 or
a point in the discrete spectrum. Thus,

|A|L(H0,H0)
=
√

max σ (A∗A) = max
√
σ (A∗A).

Later we shall find that
√
σ (A∗A) = σ

(√
A∗A

)
and so the operator norm of corresponds to

the sup-norm in σ
(√

A∗A
)
, which is usually indicated by the index ∞. This characterization of

L∞(H0,H0) leads the way to other normed spaces of operators denoted by Lp(H0,H0), p ∈ [1,∞[,

(so-called Schatten classes) and given by
{
A ∈ L∞(H0,H0)

∣∣∣ ∑λ∈σ(
√
A∗A) λ

p <∞
}
equipped with

the linear structuure of L(H0, H0) and the norm

A 7→ |A|p :=

 ∑
λ∈σ(

√
A∗A)

λp


1/p

.

Of particular interest is the space L2(H0,H0), which is a Hilbert space. Elements of L2(H0,H0) are
referred to as Hilbert-Schmidt operators. Elements of L1(H0,H0) are called trace class operators.

Being able to define the square root of non-negative, selfadjoint operator gives rise to an interesting
representation result known as polar decomposition. It turns out that an arbitrary closed,
densely defined operator is really quite closely related to a selfadjoint operator.

Theorem 12. Let A ⊆ H0 ⊕ H1 be a closed, densely defined, linear operator between complex
Hilbert spaces H0 and H1. Then there is an isometry U : A∗H1 → H1 from the closed subspace
A∗ [H1] onto A [H0] such that

A = U |A|,

where |A| :=
√
A∗A.
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Proof. We first observe that

〈Ay|Ay〉H1
= 〈y |A∗Ay 〉H0

=
〈
y
∣∣∣√A∗A

√
A∗Ay

〉
H0

= 〈|A| y ||A| y 〉H0

for all y ∈ D(A∗A). Since D(A∗A) is dense in D(A) and in D(|A|), we must have

D(A) = D(|A|)

and ∧
y∈D(A)=D(|A|)

〈Ay|Ay〉H1
= 〈|A| y ||A| y 〉H0

.

In particular, this implies

N (|A|) = N(A) ⊆ D(A) = D(|A|),
and consequently (by the projection theorem)

(B.37) A∗ [H1] = |A| [H0].

From this we have that B := |A|
∣∣
A∗H1

: D(|A|)∩A∗ [H1] ⊆ A∗ [H1] → A∗ [H1] is still non-negative

and Hermitean. Indeed, we shall see that B is one-to-one and selfadjoint in A∗ [H1]. First, let

Bx = 0 then x ∈ N(|A|) and also x ∈ N(|A|)⊥ = A∗ [H1]. This shows that x = 0. Next, we

see that B is densely defined. Since D(|A|) is dense in H0 = N(|A|) ⊕ A∗ [H1], we get from the

continuity of orthogonal projector P onto A∗ [H1] that P [D(|A|)] is dense in P [H0] = A∗ [H1],

but since (1 − P ) [H0] = N(|A|) ⊆ D(|A|) we also have P [D(|A|)] ⊆ D(|A|) ∩ A∗ [H1]. This

confirms that B is densely defined. But B is also closed. Assume xn → x in A∗ [H1] as n → ∞
and B xn = |A|xn → y in A∗ [H1] as n → ∞. Since |A| is closed, it follows that x is not only in

A∗ [H1] but we also have x ∈ D(|A|) and |A|x = Bx = y. That the closed, symmetric operator B
is also selfadjoint follows if we can show that e.g. B + 1 is onto. Since |A| ≥ 0 is selfadjoint, we

have that |A|+ 1 is onto. Let now f ∈ A∗ [H1] be given, then there is x ∈ D(|A|) such that

|A|x+ x = f.

From (B.37) we see that x = f − |A|x ∈ A∗ [H1] = |A| [H0], i.e. x ∈ D(B). This proves that

Bx+ x = f.

We clearly have B−1 : |A| [H0] ⊆ A∗ [H1] → D(B) ⊆ A∗ [H1] and so

(B.38) A = AB−1 |A|.

To conclude the argument we claim that

AB−1 : |A| [H0] ⊆ A∗ [H1] → A [H0]

is a bounded, linear operator with a unitary closure. By (B.38) we see that the range
(
AB−1|A|

)
[D(A)] =

A [D(A)] is dense in A [H0]. Since also |A| [H0] dense in |A| [H0] = A∗ [H1], we only need to show
that AB−1 is norm-preserving. We find with y = |A|x, x ∈ D(A) = D(|A|),〈

AB−1y|AB−1y
〉
H1

= 〈Ax |Ax 〉H1
= 〈|A|x ||A|x 〉H0

= 〈y |y 〉H0
.

Thus, with the isometry U := AB−1 ⊆ H0 ⊕H1 we get from (B.38) as claimed

A = U |A|.

�

Corollary 13. Let A ⊆ H0 ⊕H1 be a closed, densely defined, linear operator between complex
Hilbert spaces H0 and H1. Then there is an isometry U : A∗ [H1] ⊆ H0 → A [H0] ⊆ H1 such that

A = U |A| = |A∗|U, A∗ = |A|U∗ = U∗ |A∗|

on A∗ [H1] and A [H0], respectively.
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Proof. The result follows by applying the polar decomposition also to A∗ and taking adjoints
in the resulting formulas. The result then follows by Lemma 90. That U∗ is the appropriate unitary
mapping for the polar representation associated with A∗ follows by observing that

|A∗| = U |A|U∗.

Indeed, with G := U |A|U∗ we get

G2 = U |A|U∗U |A|U∗ = (U |A|) (|A|U∗) = AA∗.

By the uniqueness of the root operator
G = |A∗| .

Then
A∗ = |A|U∗ = U∗ (U |A|U∗) = U∗ |A∗| .

�





APPENDIX C

General Material Laws

C.1. The Paley-Wiener Theorem

We slightly rephrase the related concepts and results from [Yosida 1974], p. 162-165.

Definition 14. The Hardy-Lebesgue space HL is defined as the subspace

HL :=

f ∈ CR−i R>0

∣∣∣ f analytic ∧
∧

ε∈R>0

f ( · − i ε) ∈ L2 (R) ∧ sup
{
|f ( · − i ε)|0 | ε ∈ R>0

}
< ∞


of CR−i R>0 with the usual image-wise linear structure. HL equipped with

f 7→ sup {|f ( · − i ε)|0 | ε ∈ R>0}

becomes a Banach space for which we use the same name.

We first formulate a converse version of what is called the Paley-Wiener theorem (note that we

consider L2 (R>0) :=
{
f ∈ L2 (R) | χRl<0

f = 0
}
as a subspace of L2 (R)).

Theorem 15. Let g ∈ L2 (R>0) be given, then

f : R− i R>0 → C
z 7→ (L−Im zg) (Re z)

is well-defined and in HL. Moreover, f is a continuous extension of L0g in the sense that

f ( · − i ε)
ε→0+→ L0g

in L2 (R) . In particular, we have∧
η∈R>0

|f ( · − i η)|0 = |exp (−ηm0) g|0 = |g|η,0 ≤ |g|0

and

sup {|f ( · − i ε)|0 | ε ∈ R>0} = sup {|exp (−ηm0) g|0 | η ∈ R>0} = |g|0 .

Corollary 16. The Paley-Wiener mapping

PW : L2 (R>0) → HL
g 7→ (z 7→ (L−Im zg) (Re z))

is an isometry.

This result is complemented by the following characterization of L0

[
L2 (R>0)

]
.

Theorem 17. (Paley-Wiener theorem) Let f ∈ HL, then f ( · − i 0+) exists in L2 (R) in the
sense of L2 (R)-convergence and we have

L∗
0 (f ( · − i 0+)) ∈ L2 (R>0) .

Corollary 18. The Paley-Wiener mapping PW is an isometric bijection between the Hilbert
space L2 (R>0) and the Banach space HL.
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Since the latter result means that HL is a Hilbert space if equipped with the inner product

(f, h) 7→
〈
PW−1 (f)

∣∣ PW−1 (h)
〉
0

we also obtain:

Corollary 19. The Paley-Wiener mapping PW is a unitary mapping between the Hilbert spaces
L2 (R>0) and HL.

The Paley-Wiener theorem has a straight-forward extension to Hilbert space-valued functions via
tensor product extensions. Noting that for any Hilbert space H

L2 (R>0, H) = L2 (R>0)⊗H,

we obtain by continuous extension a unitary mapping

PW ⊗ 1H : L2 (R>0,H) = L2 (R>0)⊗H → HL⊗H

φ⊗ w 7→ (PWφ)⊗ w ,

where 1H : H → H denotes the identity operator in H. Thus, we have another corollary.

Corollary 20. The Paley-Wiener mapping PW⊗ 1H is a unitary mapping between the Hilbert
spaces L2 (R>0,H) and HL⊗H.

Recall that L2 (R>0) ⊗ H can be described as the completion of the algebraic tensor product

C̊∞(R>0) ⊗
a
H, which is the linear space generated by simple H-valued functions of the form

t 7→ ϕ (t) w with ϕ ∈ C̊∞(R>0) and w ∈ H.

C.2. Causality

We first adapt the concept of time support to the Hilbert-space-valued situation. Here we utilize
again the concept of an algebraic tensor product.

Definition 21. Let f be a given linear functional on C̊∞(R) ⊗
a
H, then we say f = 0 in I if

f (φ⊗ w) = 0 for all w ∈ H and φ ∈ C̊∞(R) with suppφ ⊆ I , I open in R. Moreover, we define
what we shall refer to as the time support supp0 f of f as

supp0 f := R \
∪

{I | I open in R ∧ f = 0 in I}.

We are now ready to formulate the corresponding concept of causality (somewhat simplified to
by-pass more intricate matters associated with Sobolev lattices).

Definition 22. Let W : D (W ) ⊆ C
C̊∞(R)⊗

a
H

→ C
C̊∞(R)⊗

a
H

be a mapping from linear functionals
to linear functionals such that

(C.1) inf supp0 f ≤ inf supp0W (f)

for all f ∈ D (W ), then we call W (forward) causal. If

(C.2) sup supp0 f ≥ sup supp0W (f)

for all f ∈ D (W ), then we call W backward causal.

Here we interpret inf supp0 f = ∞ if supp0 f = ∅ and inf supp0 f = −∞ if supp0 f is not bounded
below, so that (C.1) is only restrictive1 if we take f with supp0 f bounded below. Analogously, we
interpret sup supp0 f = −∞ if supp0 f = ∅ and sup supp0 f = ∞ if supp0 f is not bounded above,
so that (C.2) is only restrictive if we take f with supp0 f bounded above. It is in this sense that
the jargon phrase “as long as f is zero, so is W (f)”, a variant of which is used in the wording of
the main result, is made precise.

1Note that W (0) = 0 for any forward or backward causal mapping W .
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Of course, these formal concepts of time support and causality become useful only if associated
with a suitable topology and corresponding continuity concepts.

For our purposes we want to generalize the concept of functions of ∂0 to operator-valued functions
of ∂0 . For this we first need to extend the operators ∂0 to the tensor product spaces Hν,0 ⊗ H
by interpreting ∂0 henceforth as the operator ∂0 ⊗ 1H . It is customary to write again ∂0 for this
extended time-derivative ∂0 ⊗ 1H . Moreover, we need to extend the Fourier-Laplace transform to
Hν,0 ⊗ H. We shall re-utilize the notation Lν and the name Fourier-Laplace transform for the
unique unitary extension of

C̊∞ (R)⊗
a
H ⊆ Hν,0 ⊗H → H0,0 ⊗H

ϕ⊗ w 7→ (Lνϕ)⊗ w

to Hν,0⊗H. With this extended Fourier-Laplace transform we will be able to describe the class of
material laws. Let (M (z))z∈BC(r,r)

be a holomorphic family of uniformly bounded linear operators,

then we define, following [Pi-McGhee 2011], for ν > 1
2r

M
(
∂−1
0

)
:= L∗

νM

(
1

im0 + ν

)
Lν .

Note that for r ∈ R>0

BC (r, r) → iR+ R>1/(2r)

z 7→ z−1

is a bijection.

Theorem 23. Let (M (z))z∈B(r,r)
be a holomorphic family of uniformly bounded linear operators

on H and ν > 1
2r then M

(
∂−1
0

)
: Hν,0 ⊗ H → Hν,0 ⊗ H is forward causal in the sense that

M
(
∂−1
0

)
restricted to C̊∞(R)

a
⊗H considered as a subspace of CC̊∞(R)

a
⊗H by interpreting φ⊗w as

the functional

φ⊗ w : C̊∞(R)
a
⊗H → C

ψ ⊗ v 7→ (φ⊗ w) (ψ ⊗ v) :=

∫
R
φ (t)

∗
ψ (t) dt 〈w|v〉

for every φ, ψ ∈ C̊∞(R), w, v ∈ H, is forward causal according to the above definition.

Proof. For the time-translation τh given as the bounded linear extension of

τh : C̊∞(R)⊗
a
H ⊆ Hν,0 ⊗H → Hν,0 ⊗H

φ⊗ w 7→ (τhφ)⊗ w

with

(τhφ) (t) := φ (t+ h)

for all φ ∈ C̊∞(R), t, h ∈ R, we have

τh = exp (h∂0)

and so the commutator relation

τhM
(
∂−1
0

)
=M

(
∂−1
0

)
τh .

Thus, to test for causality, we may assume without loss of generality that φ ∈ C̊∞(R) has support
supp (φ) with

inf supp (φ) = 0

and due to translation invariance we only need to show that

inf supp0
(
M
(
∂−1
0

)
φ⊗ w

)
≥ 0
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for all w ∈ H. Obviously, φ⊗w ∈ L2 (R>0,H) and so by the converse of the Paley-Wiener theorem
Lνφ⊗ w ∈ HL⊗H. With the assumed holomorphy and uniform boundedness of (M (z))z∈B(r,r)

we obtain

M

(
1

im0 + ν

)
Lνφ⊗ w ∈ HL⊗H.

By the Paley-Wiener theorem we get

L∗
0M

(
1

im0 + ν

)
Lνφ⊗ w ∈ L2 (R>0,H)

or

M
(
∂−1
0

)
φ⊗ w = L∗

ν M

(
1

im0 + ν

)
Lνφ⊗ w = exp (νm0)L∗

0M

(
1

im0 + ν

)
Lνφ⊗ w ∈ Hν,0 ⊗H

and
inf supp0

(
M
(
∂−1
0

)
φ⊗ w

)
≥ 0.

�
Remark 24. We note here that the seemingly rather restrictive assumption on the material law
operator M

(
∂−1
0

)
is largely unavoidable in order to maintain causality. Simple examples for

a causal operator are the ’delay operator’ τ−h, h ∈ R>0, or positive fractional powers of ∂−1
0 ,

α ∈ R≥0, (fractional integration). Indeed

(∂α0 )α∈R

is a continuous one-parameter group of (forward) causal operators inHν,−∞, ν ∈ R>0.[Schmüdgen 2012]
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