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Exercise Section I



Exercise 1. Consider the following function space:

L2(SC(0, 1), (2πiz)
−1dz) := {f : SC(0, 1) → C |

∫
SC(0,1)

|f(z)|2 1

2πiz
dz < ∞},

where SC(0, 1) := {z ∈ C | |z| = 1}. Show that

〈.|.〉 : L2(SC(0, 1), (2πiz)
−1dz)× L2(SC(0, 1), (2πiz)

−1dz) → C

(f, g) 7→
∫

SC(0,1)

f(z) g(z)
1

2πiz
dz

defines an inner product on L2(SC(0, 1), (2πiz)
−1dz).

Exercise 2. Find an isometric linear bijection (i.e. a unitary mapping) U : L2
(]
−1

2 ,−
1
2

[
,C

)
→

L2(SC(0, 1), (2πiz)
−1dz). Show that the functions SC(0, 1) 3 z 7→ zk form an orthonormal set in

L2(SC(0, 1), (2πiz)
−1dz). What are the (via U) corresponding functions in L2

(]
− 1

2 ,−
1
2

[
,C

)
?

Exercise 3. Let (M,dM ) and (N, dN ) be metric spaces, where N is a complete metric space. A
mapping f : D (f) ⊆ M → N is called Cauchy continuous near a ∈ M if∧

ε∈]0,∞[

∨
δ∈]0,∞[

∧
u,v∈BM (a,δ)∩D(f)

dN (f (u) , f (v)) < ε.

The mapping f is called Cauchy continuous, if it is Cauchy continuous at all points of M . Show
that if f is Cauchy continuous then it has a unique continous extension f defined on D (f).

Exercise 4. The complex numbers C =


 x −y

y x

∣∣ x, y ∈ R

 are a Hilbert space over C with

inner product
(α, β) 7→ α>β.

Consider the complex numbers C =


 x −y

y x

∣∣ x, y ∈ R

 as a linear space CR over the field R

(here identified with


 x 0

0 x

∣∣ x ∈ R

 and construct its complexification. Provide an orthonor-

mal basis for this complexification.



Exercise Section II



Exercise 5. (HW) Let H0,H1 be complex (or real) Hilbert spaces and A : D(A) ⊆ H0 → H1 a
linear operator.

I Prove that the following statements are equivalent:
(1) A is closed,

(2) for all sequences (xn)n∈N ∈ D(A)N with xn
n→∞→ x ∈ H0 and Axn

n→∞→ y ∈ H1 we
have that x ∈ D(A) and y = Ax.

I Prove that the following statements are equivalent:
(1) A is a closable operator,
(2) there is a closed, linear operator B : D(B) : H0 → H1 such that A ⊆ B,

(3) for all sequences (xn)n∈N ∈ D(A)N with xn
n→∞→ 0 ∈ H0 and Axn

n→∞→ y ∈ H1 we
have that y = 0.

Exercise 6. Let H0,H1 be complex Hilbert spaces and A : D(A) ⊆ H0 → H1 a closed, linear
operator. Show that D(A) equipped with the graph inner product

〈.|.〉D(A) : D(A)×D(A) → C
(x, y) 7→ 〈x|y〉H0 + 〈Ax|Ay〉H1

is a (complex) Hilbert space.

Exercise 7. (HW) Let H0,H1,H2,H3 be complex Hilbert spaces and A : D(A) ⊆ H0 → H1 a
closed, linear operator. Prove the following

(1) if B : D(B) ⊆ H1 → H2 is a densely defined linear operator and such that D (BA) is
dense in H0, then

A∗B∗ ⊆ (BA)
∗
,

(2) if B : H1 → H2 is a continuous, densely defined linear operator and such that D (BA) is
dense in H0, then

A∗B∗ = (BA)
∗
,

(3) if U : H1 → H2, V : H3 → H0 are continuous linear operators, V a bijection, then

V ∗A∗U∗ = (UAV )
∗
.



Exercise Section III



Exercise 8. Consider ∂0 as the closure of

C̊1 (R,C) ⊆ Hν,0 (R) → Hν,0 (R)
ϕ 7→ ϕ′,

where

Hν,0 (R) :=
{
ϕ ∈ L2,loc (R,C) |

∫
R
|ϕ (t)|2 exp (−2νt) dt < ∞

}
, ν ∈ ]0,∞[ ,

is a Hilbert space with inner product

〈u|v〉ν,0 =

∫
R
u (t) v (t) exp (−2νt) dt.

(1) Show that the elements of the Hilbert space

Hν,1 (R) := D
(
(∂0 − ν)

∗)
,

equipped with the graph inner product, can be approximated in Hν,1 (R) by sequences
(ϕk)k∈N in Hν,1 (R) such that ϕk has compact support, i.e. vanishes outside bounded
sets, k ∈ N.

(2) Show that the elements ofHν,1 (R) can be approximated inHν,1 (R) by sequences (ϕk)k∈N
in C̊1 (R,C).

(3) Prove that the domain of ∂0 isHν,1 (R) and that (∂0 − ν) is skew-selfadjoint, i.e. (∂0 − ν)
∗
=

− (∂0 − ν).
(4) Prove that ∂0 is strictly positive definite in the space Hν,0 (R) considered as a real Hilbert

space.

Exercise 9. (HW) Let A : H0 → H0 be a continuous linear bijection with

Re 〈x|Ax〉H0
≥ c0 |x|2H0

for some c0 ∈ ]0,∞[ and all x ∈ H0. Consider a closed subspace U ⊆ H0 and its canonical
embedding

ιU : U → H0,

x 7→ x.

Show that
ι∗UAιU : U → U

is a bijection with
Re 〈x|ι∗UAιUx〉H0

≥ c0 |x|2H0

for all x ∈ U .

Exercise 10. (HW) Let A : H0 → H0 be a continuous linear bijection. Consider a closed subspace
U ⊆ H0 and its canonical embedding

ιU : U → H0,

x 7→ x.

Show by an explicit example that
ι∗UAιU : U → U

need not always be a bijection.

Exercise 11. Consider the equation

−∂β∂̊u = f

on the interval ]−1,+1[ , where β is a multiplication operator given by the function

β (x) =

{
α+ for x ≥ 0,

−α− for x < 0,

where α± ∈ ]0,∞[. Characterize the possible choices of such β for which well-posedness in
L2 (]−1,+1[) holds?
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Exercise 12. Let PU : H → H be the orthogonal projector onto the closed, linear subspace U of
the Hilbert space H. Show that with the canonical embedding

ιU : U → H,

x 7→ x,

we get
P = ιU ι

∗
U = |ι∗U | .





Exercise Section IV



Exercise 13. (HW) Consider

(∂0P + (1− P ) + ∂1)u = f

in Hν,0

(
R, L2 (R,C)

)
, where P is an orthogonal projector in L2 (R,C). Why is this problem well-

posed? Give an integral representation of the solution for an f ∈ C̊∞ (]−1,+1[ ,C) under the
assumption that P commutes with ∂1.

Hint: Use that the solution of (∂0 + ∂1)u = f is given by

u (t, x) =

∫ x

−∞
f (t− x+ r, r) dr.

Exercise 14. (HW) Consider

∂0

 ε0 0

0 ε1

+

 (1− ε0) 0

0 (1− ε1)

+

 0 ∂1

∂̊1 0


in Hν,0

(
R, L2 (]−1,+1[ ,C)

)
and discuss the four cases for ε0, ε1 ∈ {0, 1} in correspondence to the

related second order problems.

Exercise 15. (HW) Consider

∂0 +

 0 ∂
(−1)
1

∂
(1)
1 0


in Hν,0

(
R, ι∗e

[
L2 (R)

]
⊕ ι∗o

[
L2 (R)

])
. Here

∂
(1)
1 := ι∗o∂1ιe,

∂
(−1)
1 := −

(
∂
(1)
1

)∗

and ιe, ιo are the canonical embeddings of the even and odd functions in L2 (R) into L2 (R),
respectively. Show

∂
(−1)
1 = ι∗e∂1ιo

and unitary congruence to ∂0 + ∂1 in Hν,0

(
R, L2 (R)

)
.

Exercise 16. (HW) Show that D (∂0) ∩D (A) is dense in the domain of (∂0M0 +M1 +A)
∗
.



Exercise Section V



Exercise 17. (HW) In the theory of linear heat conduction the entropy η is linked to the heat
flux q via

T0∂0 (%0η) = − div q + h0 ,

where h0 denotes an external heat source, %0 is the coefficient of mass density and T0 ∈ ]0,∞[ a
reference temperature. Entropy and temperature are coupled via a material law of the form:

%0η = νθ.

The heat flux also depends on the temperature according to Fourier’s law

q = −κ grad θ,

where κ is a coefficient of heat conduction. Already Maxwell suggested in 1867, later re-iterated
by Cattaneo (1958) and Vernotte (1958), to replace Fourier’s law by

τ0∂0q + q = −κ grad θ,

where τ0 ∈ ]0,∞[.

Can you develop a model system with the canonical form ∂0M0 + M1 + A for this so-called
Maxwell-Cattaneo-Vernotte model (MCV model)?

Exercise 18. (HW) Consider the formal system
(
τ0κ

−1∂0 + κ−1
) (

grad − div
) div

− grad

  %c∂0 0

0 C−1∂0





q

θ

σ

 =


0

h

0

 .

In the homogeneous, isotropic case, C has the simple form

C := α0sym0 + α1P+ α2skew, α0, α1, α2 ∈ ]0,∞[ ,

where

P :=
1

3
trace∗trace,

sym σ :=
1

2

(
σ + σ>) ,

sym0 := (1− P) sym = sym (1− P) ,

skew σ :=
1

2

(
σ − σ>) .

with
sym : C3×3 → C3×3

and

trace : C3×3 → C,

σ 7→
3∑

i=1

σii.

It is

trace∗ :C → C3×3,

z 7→ zI3×3,

where I3×3 denotes the identity matrix in C3×3. Reformulate this in the isotropic case as a
system for θ and q alone assuming that all coefficients are constant. Compare with the original
Guyer-Krumhansl model

(1 + τ0∂0) q = −κ grad θ + µ1∆q + µ2 grad div q

%c∂0θ = − div q + h
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and determine parameter ranges for well-posedness (assuming a skew-selfadjoint realization of
(0)

(
grad − div

) div

− grad

  0 0

0 0


 in the form


(0) −C∗

C

 0 0

0 0


 with C ⊆

 div

− grad

 and a choice

of dense domain).

Exercise 19. (HW) The classical Schrdinger operator is of the form

∂0 − i div ˚grad + V (m) = ∂0 + i
∣∣∣ ˚grad

∣∣∣2 + V (m)

where the so-called potential V (m) is a suitable multiplication operator. The so called relativistic

Schrdinger operator replaces
∣∣∣ ˚grad

∣∣∣2 by
∣∣∣ ˚grad

∣∣∣:
∂0 + i

∣∣∣ ˚grad
∣∣∣+ V (m) .

By separating real and imaginary part we obtain a system of our standard first order form

∂0 +M1 +

 0 div ˚grad

− div ˚grad 0

 = ∂0 +M1 +

 0 −
∣∣∣ ˚grad

∣∣∣2∣∣∣ ˚grad
∣∣∣2 0

 ,

where

M1 :=

ReV (m) − ImV (m)

ImV (m) ReV (m)

 .

In the case of the relativistic Schrdinger operator this procedure leads to

∂0 +M1 +

 0 −
∣∣∣ ˚grad

∣∣∣∣∣∣ ˚grad
∣∣∣ 0

 .

Show that the latter is unitarily congruent to a system operator of the form

∂0 + M̃1 +

 0 div

˚grad 0


considered in Hν,0

(
R, L2 (Ω)⊕ ˚grad

[
D

(
˚grad

)])
. What is M̃1?

Exercise 20. (HW) Consider a system of the form(
∂0M0 +M1 + ∂−1

0 M2 +A
)
U = F,

where M0,M2 are non-negative, selfadjoint and A, M1 are skew-selfadjoint. Using that for U ∈
Hν,1 (R,H) we have

∂0 |U |20 = 2Re 〈U |∂0U〉0 ,
where the derivative on the left-hand side is in the sense of distributions1,

show that formally “energy conservation” holds in the sense of

1

2

∣∣∣√M0U
∣∣∣2
0
(t) +

1

2

∫ t

s

∣∣∣√M2∂
−1
0 U

∣∣∣2
0
(r) dr =

1

2

∣∣∣√M0U
∣∣∣2
0
(s)

for s, t ∈ I, s < t, where I is an open interval in which F vanishes. How can the reasoning be
made rigorous?

1| · |0 denotes the norm and 〈 · | · 〉0 the inner product of H.


