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Exercise Section 1



EXERCISE 1. Consider the following function space:

1
L?(Sc(0,1), (2miz) " dz) := {f : Sc(0,1) — C| / |f(z)|2m dz < o0},
™
S([j(o,l)
where Sc(0,1) := {z € C||2| = 1}. Show that

(.|.) : L*(Sc(0,1), (2miz) ~'dz) x L*(Sc(0,1), (2miz)~'dz) — C

—_— 1
— d
(fo) = [ TEgle)g ¢z
SC(Ovl)
defines an inner product on L?(Sc(0,1), (2miz)~1dz).
EXERCISE 2. Find an isometric linear bijection (i.e. a unitary mapping) U : L? G —%, —% [ , (C) —

L?(Sc(0,1), (2miz)~dz). Show that the functions Sc(0,1) 3 z + 2z* form an orthonormal set in

L?(5¢(0,1), (2miz)~'dz). What are the (via U) corresponding functions in L? (-1, —1[,C)?
EXERCISE 3. Let (M,dys) and (NN, dy) be metric spaces, where N is a complete metric space. A

mapping f: D (f) € M — N is called Cauchy continuous near a € M if

A A dn (f (u), f (v)) <e.

e€]0,00[ 6€]0,00[ u,v€Bn (a,0)ND(f)

The mapping f is called Cauchy continuous, if it is Cauchy continuous at all points of M. Show

that if f is Cauchy continuous then it has a unique continous extension f defined on D (f).

T —
EXERCISE 4. The complex numbers C = Y ’ xz,y € R 3 are a Hilbert space over C with
Yy x

inner product
(@, ) = @ B.
. T -y .
Consider the complex numbers C = | z,y € R 3 as a linear space Cg over the field R
Yy x
x
(here identified with | z € R » and construct its complexification. Provide an orthonor-

0z
mal basis for this complexification.



Exercise Section 11



EXERCISE 5. (HW) Let Hy, H; be complex (or real) Hilbert spaces and A : D(A) C Hy — H; a
linear operator.

» Prove that the following statements are equivalent:
(1) A is closed,
(2) for all sequences (z,,)nen € D(A)N with z,, "% v € Hy and Az, "7 y € Hy we
have that z € D(A) and y = Ax.
» Prove that the following statements are equivalent:
(1) A is a closable operator,
(2) there is a closed, linear operator B : D(B) : Hy — H; such that A C B,
(3) for all sequences (,,)nen € D(A)N with z, "0 € Hy and Az, "= y € Hy we
have that y = 0.
EXERCISE 6. Let Hy, H; be complex Hilbert spaces and A : D(A) C Hy — H; a closed, linear
operator. Show that D(A) equipped with the graph inner product
(:I)pay : D(A) x D(A) — C
is a (complex) Hilbert space.

EXERCISE 7. (HW) Let Hy, Hy, Ho, H3 be complex Hilbert spaces and A : D(A) C Hy — H; a
closed, linear operator. Prove the following

(1) if B: D(B) C H; — Hs is a densely defined linear operator and such that D (BA) is
dense in Hy, then
A*B* C (BA)",
(2) if B: Hy — Hs is a continuous, densely defined linear operator and such that D (BA) is
dense in Hy, then
A*B* = (BA)",
(3) if U: Hy — Ho, V : H3 — Hj are continuous linear operators, V' a bijection, then
VAU = (UAV)".



Exercise Section 111



EXERCISE 8. Consider 9y as the closure of
C1 (R,C) € Hy (R) — Hyp (R)
o=@,
where

H,oR):= {gp € L*°°(R,C) | /]R o (£)]? exp (—2vt) dt < oo} , v E€]0,00[,

is a Hilbert space with inner product
(ulv), o = / u(t)v(t) exp (—2vt) dt.
’ R

(1) Show that the elements of the Hilbert space
Hu,l (R) =D ((80 - l/)*) s

equipped with the graph inner product, can be approximated in H,, ; (R) by sequences
(0r)gen in Hy 1 (R) such that ¢, has compact support, i.e. vanishes outside bounded

sets, k € N.

(2) Show that the elements of H, ; (R) can be approximated in H,; (R) by sequences (¢r),cn

in C; (R, C).

(3) Prove that the domain of 9y is H,, 1 (R) and that (9y — v) is skew-selfadjoint, i.e. (9 — v)"

— (80 — I/).

(4) Prove that 0y is strictly positive definite in the space H, o (R) considered as a real Hilbert

space.
EXERCISE 9. (HW) Let A: Hy — Hy be a continuous linear bijection with

Re (2] Az) > co |x\§{0

for some ¢y € ]0,00[ and all z € Hy. Consider a closed subspace U C Hy and its canonical

embedding
wy U — Hy,
T x.
Show that
A U = U

is a bijection with
Re (z)eg; Ao ) g, > o |z|§j,0
for all z € U.

EXERCISE 10. (HW) Let A : Hy — Hj be a continuous linear bijection. Consider a closed subspace

U C Hy and its canonical embedding

ty U — Hy,
T x.
Show by an explicit example that
A U = U
need not always be a bijection.
EXERCISE 11. Consider the equation
—0B0u = f

on the interval |—1,+1[ , where § is a multiplication operator given by the function

B(z) = {a+ for x > 0,

—a_ forz <0,

where ar € ]0,00[. Characterize the possible choices of such § for which well-posedness in

L?(]—1,+1]) holds?
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EXERCISE 12. Let Py : H — H be the orthogonal projector onto the closed, linear subspace U of
the Hilbert space H. Show that with the canonical embedding

U — H,
Tz,

we get
P =y =gy






Exercise Section IV



EXERCISE 13. (HW) Consider

((90P—|—(1—P)—|—61)u:f
in Hyp (R, L? (R, (C)), where P is an orthogonal projector in L? (R,C). Why is this problem well-
posed? Give an integral representation of the solution for an f € Cuy (]-1,+1[,C) under the
assumption that P commutes with ;.

Hint: Use that the solution of (9y + 1) u = f is given by
u(t,x):/“ ft—x+rmr) dr
—o0
EXERCISE 14. (HW) Consider
go 0 1—¢ 0 00
e N (1—e0) o
0 €1 0 (1 *61) 81 0

in H,o (R,L? (]—1,+1[,C)) and discuss the four cases for g9,e1 € {0,1} in correspondence to the
related second order problems.

EXERCISE 15. (HW) Consider
0o o™V
0o + 1
01 0
in Hy,o (R, [L? (R)] & ¢} [L* (R)]). Here
8%1) = 1501 e,

o == ()

and e, 1, are the canonical embeddings of the even and odd functions in L? (R) into L? (R),
respectively. Show

3§_1) = 150140
and unitary congruence to dy + 01 in H, (]R, L? (]R))

EXERCISE 16. (HW) Show that D (9y) N D (A) is dense in the domain of (9gMq + M; + A)™.



Exercise Section V



EXERCISE 17. (HW) In the theory of linear heat conduction the entropy 7 is linked to the heat
flux g via

Ty (00m) = —divg + ho,

where hg denotes an external heat source, gy is the coefficient of mass density and Tj € ]0,00[ a
reference temperature. Entropy and temperature are coupled via a material law of the form:

oon = 1.
The heat flux also depends on the temperature according to Fourier’s law
q=—rgradf,

where k is a coefficient of heat conduction. Already Maxwell suggested in 1867, later re-iterated
by Cattaneo (1958) and Vernotte (1958), to replace Fourier’s law by

10009 + q = —K grad 6,
where 7y € ]0, 00].

Can you develop a model system with the canonical form 9yMy + M; + A for this so-called
Maxwell-Cattaneo-Vernotte model (MCV model)?

EXERCISE 18. (HW) Consider the formal system

(ror™'800 + 1) (grad —div ) q 0
div ocdy 0 01=1h
— grad 0 C 19, o 0

In the homogeneous, isotropic case, C' has the simple form

C = apsymg + a1P + asskew, ag, a1, as € ]0,00],

where
1 *
P:= gtrace trace,
sym o = 1 (c+0T)
2 )
symg == (1 = P)sym = sym (1 — P),
1
skew o = 5 (O’ - O'T) .
with
sym : C3*3 — ¢3%3
and
trace : C3*% — C,
3
o — ZO’ii.
i=1
It is

trace® :C — C3*3,
Z Z]I3><3,
where I3y3 denotes the identity matrix in C3*3. Reformulate this in the isotropic case as a

system for 6 and g alone assuming that all coefficients are constant. Compare with the original
Guyer-Krumhansl model

(14 7190p) ¢ = —kgrad 8 + p1Aq + ps grad div g
0c0pd = —divg+ h
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and determine parameter ranges for well-posedness (assuming a skew-selfadjoint realization of

(0) ( grad — div ) (o) -c~ di
i
div 00 intheform | _ (00 with C C v and a choice
C —grad
— grad 00 00

of dense domain).
EXERCISE 19. (HW) The classical Schrdinger operator is of the form
9o —idivgrad + V (m) = 8y +1i ’griadr +V (m)
where the so-called potential V' (m) is a suitable multiplication operator. The so called relativistic

o 12 o
Schrdinger operator replaces grad’ by ’grad‘:

Op +1i groad‘ +V (m).
By separating real and imaginary part we obtain a system of our standard first order form
.2
0 div grad 0 - ‘grad’
0o + M1 + . =0p +M; + L2 )
— div grad 0 ‘ grad’ 0

where
ReV (m) —ImV (m)

JmV (m) ReV (m)

In the case of the relativistic Schrdinger operator this procedure leads to

M1 =

0 —

groad‘

0o + My + . ~

‘grad’ 0

Show that the latter is unitarily congruent to a system operator of the form

~ 0 div
do + My + .
grad 0

considered in H, <]R, L2 (Q) @ grad [D (groadﬂ > What is M;?

EXERCISE 20. (HW) Consider a system of the form
(OoMo + My + 95 "My + A) U = F,

where My, My are non-negative, selfadjoint and A, M; are skew-selfadjoint. Using that for U €
H,1 (R, H) we have

00 U5 = 2%e (UI0U),,
where the derivative on the left-hand side is in the sense of distributions®,

show that formally “energy conservation” holds in the sense of

s VAR 0+ [ VARG ) = 5[Vt 0

for s,t € I, s < t, where I is an open interval in which F' vanishes. How can the reasoning be
made rigorous?

1. |o denotes the norm and (- |- ), the inner product of H.



