A Short Course on the Hilbert Space Theory of Evolutionary Equations.

R. Picard
TU Dresden

Exercises

Please Submit Solutions to
EITHER exercises 5,7,9,10
OR any TWO exercises of 13-20

24th Jyväskylä Summer School Course 2014

Contents

Exercise Section I 5
Exercise Section II 7
Exercise Section III 9
Exercise Section IV 13
Exercise Section V 15

Exercise Section I

Exercise 1. Consider the following function space:

$$
L^{2}\left(S_{\mathbb{C}}(0,1),(2 \pi i z)^{-1} \mathrm{~d} z\right):=\left\{f:\left.S_{\mathbb{C}}(0,1) \rightarrow \mathbb{C}\left|\int_{S_{\mathbb{C}}(0,1)}\right| f(z)\right|^{2} \frac{1}{2 \pi i z} \mathrm{~d} z<\infty\right\}
$$

where $S_{\mathbb{C}}(0,1):=\{z \in \mathbb{C}| | z \mid=1\}$. Show that

$$
\begin{aligned}
\langle. \mid .\rangle: L^{2}\left(S_{\mathbb{C}}(0,1),(2 \pi i z)^{-1} \mathrm{~d} z\right) \times L^{2}\left(S_{\mathbb{C}}(0,1),(2 \pi i z)^{-1} \mathrm{~d} z\right) & \rightarrow \mathbb{C} \\
(f, g) & \mapsto \int_{S_{\mathbb{C}}(0,1)} \overline{f(z)} g(z) \frac{1}{2 \pi i z} \mathrm{~d} z
\end{aligned}
$$

defines an inner product on $L^{2}\left(S_{\mathbb{C}}(0,1),(2 \pi i z)^{-1} \mathrm{~d} z\right)$.
EXERCISE 2. Find an isometric linear bijection (i.e. a unitary mapping) $U: L^{2}(]-\frac{1}{2},-\frac{1}{2}[, \mathbb{C}) \rightarrow$ $L^{2}\left(S_{\mathbb{C}}(0,1),(2 \pi i z)^{-1} \mathrm{~d} z\right)$. Show that the functions $S_{\mathbb{C}}(0,1) \ni z \mapsto z^{k}$ form an orthonormal set in $L^{2}\left(S_{\mathbb{C}}(0,1),(2 \pi i z)^{-1} \mathrm{~d} z\right)$. What are the (via $\left.U\right)$ corresponding functions in $L^{2}(]-\frac{1}{2},-\frac{1}{2}[, \mathbb{C}) ?$
Exercise 3. Let $\left(M, d_{M}\right)$ and $\left(N, d_{N}\right)$ be metric spaces, where N is a complete metric space. A mapping $f: D(f) \subseteq M \rightarrow N$ is called Cauchy continuous near $a \in M$ if

$$
\bigwedge_{\varepsilon \in] 0, \infty[\delta \in] 0, \infty\left[u, v \in B_{M}(a, \delta) \cap D(f)\right.} \bigwedge_{N} d_{N}(f(u), f(v))<\varepsilon .
$$

The mapping f is called Cauchy continuous, if it is Cauchy continuous at all points of M. Show that if f is Cauchy continuous then it has a unique continous extension \bar{f} defined on $\overline{D(f)}$.
ExErcise 4. The complex numbers $\mathbb{C}=\left\{\left.\binom{x-y}{y} \right\rvert\, x, y \in \mathbb{R}\right\}$ are a Hilbert space over \mathbb{C} with inner product

$$
(\alpha, \beta) \mapsto \alpha^{\top} \beta
$$

Consider the complex numbers $\mathbb{C}=\left\{\left.\binom{x-y}{y} \right\rvert\, x, y \in \mathbb{R}\right\}$ as a linear space $\mathbb{C}_{\mathbb{R}}$ over the field \mathbb{R} (here identified with $\left\{\left.\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\}$ and construct its complexification. Provide an orthonormal basis for this complexification.

Exercise Section II

Exercise 5. (HW) Let H_{0}, H_{1} be complex (or real) Hilbert spaces and $A: D(A) \subseteq H_{0} \rightarrow H_{1}$ a linear operator.

- Prove that the following statements are equivalent:
(1) A is closed,
(2) for all sequences $\left(x_{n}\right)_{n \in \mathbb{N}} \in D(A)^{\mathbb{N}}$ with $x_{n} \xrightarrow{n \rightarrow \infty} x \in H_{0}$ and $A x_{n} \xrightarrow{n \rightarrow \infty} y \in H_{1}$ we have that $x \in D(A)$ and $y=A x$.
- Prove that the following statements are equivalent:
(1) A is a closable operator,
(2) there is a closed, linear operator $B: D(B): H_{0} \rightarrow H_{1}$ such that $A \subseteq B$,
(3) for all sequences $\left(x_{n}\right)_{n \in \mathbb{N}} \in D(A)^{\mathbb{N}}$ with $x_{n} \xrightarrow{n \rightarrow \infty} 0 \in H_{0}$ and $A x_{n} \xrightarrow{n \rightarrow \infty} y \in H_{1}$ we have that $y=0$.
Exercise 6. Let H_{0}, H_{1} be complex Hilbert spaces and $A: D(A) \subseteq H_{0} \rightarrow H_{1}$ a closed, linear operator. Show that $D(A)$ equipped with the graph inner product

$$
\begin{aligned}
\langle\cdot \mid .\rangle_{D(A)}: D(A) \times D(A) & \rightarrow \mathbb{C} \\
(x, y) & \mapsto\langle x \mid y\rangle_{H_{0}}+\langle A x \mid A y\rangle_{H_{1}}
\end{aligned}
$$

is a (complex) Hilbert space.
Exercise 7. (HW) Let $H_{0}, H_{1}, H_{2}, H_{3}$ be complex Hilbert spaces and $A: D(A) \subseteq H_{0} \rightarrow H_{1}$ a closed, linear operator. Prove the following
(1) if $B: D(B) \subseteq H_{1} \rightarrow H_{2}$ is a densely defined linear operator and such that $D(B A)$ is dense in H_{0}, then

$$
A^{*} B^{*} \subseteq(B A)^{*}
$$

(2) if $B: H_{1} \rightarrow H_{2}$ is a continuous, densely defined linear operator and such that $D(B A)$ is dense in H_{0}, then

$$
A^{*} B^{*}=(B A)^{*}
$$

(3) if $U: H_{1} \rightarrow H_{2}, V: H_{3} \rightarrow H_{0}$ are continuous linear operators, V a bijection, then

$$
V^{*} A^{*} U^{*}=(U A V)^{*}
$$

Exercise Section III

Exercise 8. Consider ∂_{0} as the closure of

$$
\begin{aligned}
\stackrel{\circ}{C}_{1}(\mathbb{R}, \mathbb{C}) \subseteq H_{\nu, 0}(\mathbb{R}) & \rightarrow H_{\nu, 0}(\mathbb{R}) \\
\varphi & \mapsto \varphi^{\prime}
\end{aligned}
$$

where

$$
\left.H_{\nu, 0}(\mathbb{R}):=\left\{\left.\varphi \in L^{2, \text { loc }}(\mathbb{R}, \mathbb{C})\left|\int_{\mathbb{R}}\right| \varphi(t)\right|^{2} \exp (-2 \nu t) d t<\infty\right\}, \nu \in\right] 0, \infty[
$$

is a Hilbert space with inner product

$$
\langle u \mid v\rangle_{\nu, 0}=\int_{\mathbb{R}} \overline{u(t)} v(t) \exp (-2 \nu t) d t
$$

(1) Show that the elements of the Hilbert space

$$
H_{\nu, 1}(\mathbb{R}):=D\left(\left(\partial_{0}-\nu\right)^{*}\right)
$$

equipped with the graph inner product, can be approximated in $H_{\nu, 1}(\mathbb{R})$ by sequences $\left(\varphi_{k}\right)_{k \in \mathbb{N}}$ in $H_{\nu, 1}(\mathbb{R})$ such that φ_{k} has compact support, i.e. vanishes outside bounded sets, $k \in \mathbb{N}$.
(2) Show that the elements of $H_{\nu, 1}(\mathbb{R})$ can be approximated in $H_{\nu, 1}(\mathbb{R})$ by sequences $\left(\varphi_{k}\right)_{k \in \mathbb{N}}$ in $\dot{C}_{1}(\mathbb{R}, \mathbb{C})$.
(3) Prove that the domain of ∂_{0} is $H_{\nu, 1}(\mathbb{R})$ and that $\left(\partial_{0}-\nu\right)$ is skew-selfadjoint, i.e. $\left(\partial_{0}-\nu\right)^{*}=$ $-\left(\partial_{0}-\nu\right)$.
(4) Prove that ∂_{0} is strictly positive definite in the space $H_{\nu, 0}(\mathbb{R})$ considered as a real Hilbert space.
Exercise 9. (HW) Let $A: H_{0} \rightarrow H_{0}$ be a continuous linear bijection with

$$
\mathfrak{R e}\langle x \mid A x\rangle_{H_{0}} \geq c_{0}|x|_{H_{0}}^{2}
$$

for some $\left.c_{0} \in\right] 0, \infty\left[\right.$ and all $x \in H_{0}$. Consider a closed subspace $U \subseteq H_{0}$ and its canonical embedding

$$
\begin{aligned}
\iota_{U}: U & \rightarrow H_{0}, \\
x & \mapsto x .
\end{aligned}
$$

Show that

$$
\iota_{U}^{*} A \iota_{U}: U \rightarrow U
$$

is a bijection with

$$
\mathfrak{R e}\left\langle x \mid \iota_{U}^{*} A \iota_{U} x\right\rangle_{H_{0}} \geq c_{0}|x|_{H_{0}}^{2}
$$

for all $x \in U$.
Exercise 10. (HW) Let $A: H_{0} \rightarrow H_{0}$ be a continuous linear bijection. Consider a closed subspace $U \subseteq H_{0}$ and its canonical embedding

$$
\begin{aligned}
\iota_{U}: U & \rightarrow H_{0}, \\
x & \mapsto x .
\end{aligned}
$$

Show by an explicit example that

$$
\iota_{U}^{*} A \iota_{U}: U \rightarrow U
$$

need not always be a bijection.
Exercise 11. Consider the equation

$$
-\partial \beta \partial ̊ u=f
$$

on the interval $]-1,+1[$, where β is a multiplication operator given by the function

$$
\beta(x)= \begin{cases}\alpha_{+} & \text {for } x \geq 0 \\ -\alpha_{-} & \text {for } x<0\end{cases}
$$

where $\left.\alpha_{ \pm} \in\right] 0, \infty[$. Characterize the possible choices of such β for which well-posedness in $L^{2}(]-1,+1[)$ holds?

Exercise 12. Let $P_{U}: H \rightarrow H$ be the orthogonal projector onto the closed, linear subspace U of the Hilbert space H. Show that with the canonical embedding

$$
\begin{aligned}
\iota_{U}: U & \rightarrow H, \\
x & \mapsto x,
\end{aligned}
$$

we get

$$
P=\iota_{U} \iota_{U}^{*}=\left|\iota_{U}^{*}\right| .
$$

Exercise Section IV

Exercise 13. (HW) Consider

$$
\overline{\left(\partial_{0} P+(1-P)+\partial_{1}\right)} u=f
$$

in $H_{\nu, 0}\left(\mathbb{R}, L^{2}(\mathbb{R}, \mathbb{C})\right)$, where P is an orthogonal projector in $L^{2}(\mathbb{R}, \mathbb{C})$. Why is this problem wellposed? Give an integral representation of the solution for an $f \in \dot{C}_{\infty}(]-1,+1[, \mathbb{C})$ under the assumption that P commutes with ∂_{1}.
Hint: Use that the solution of $\left(\partial_{0}+\partial_{1}\right) u=f$ is given by

$$
u(t, x)=\int_{-\infty}^{x} f(t-x+r, r) d r
$$

Exercise 14. (HW) Consider

$$
\partial_{0}\left(\begin{array}{cc}
\varepsilon_{0} & 0 \\
0 & \varepsilon_{1}
\end{array}\right)+\left(\begin{array}{cc}
\left(1-\varepsilon_{0}\right) & 0 \\
0 & \left(1-\varepsilon_{1}\right)
\end{array}\right)+\left(\begin{array}{cc}
0 & \partial_{1} \\
\partial_{1} & 0
\end{array}\right)
$$

in $H_{\nu, 0}\left(\mathbb{R}, L^{2}(]-1,+1[, \mathbb{C})\right)$ and discuss the four cases for $\varepsilon_{0}, \varepsilon_{1} \in\{0,1\}$ in correspondence to the related second order problems.
Exercise 15. (HW) Consider

$$
\partial_{0}+\left(\begin{array}{cc}
0 & \partial_{1}^{(-1)} \\
\partial_{1}^{(1)} & 0
\end{array}\right)
$$

in $H_{\nu, 0}\left(\mathbb{R}, \iota_{e}^{*}\left[L^{2}(\mathbb{R})\right] \oplus \iota_{o}^{*}\left[L^{2}(\mathbb{R})\right]\right)$. Here

$$
\begin{gathered}
\partial_{1}^{(1)}:=\overline{\iota_{o}^{*} \partial_{1}} \iota_{e}, \\
\partial_{1}^{(-1)}:=-\left(\partial_{1}^{(1)}\right)^{*}
\end{gathered}
$$

and ι_{e}, ι_{o} are the canonical embeddings of the even and odd functions in $L^{2}(\mathbb{R})$ into $L^{2}(\mathbb{R})$, respectively. Show

$$
\partial_{1}^{(-1)}=\overline{\iota_{e}^{*} \partial_{1} \iota_{o}}
$$

and unitary congruence to $\partial_{0}+\partial_{1}$ in $H_{\nu, 0}\left(\mathbb{R}, L^{2}(\mathbb{R})\right)$.
Exercise 16. (HW) Show that $D\left(\partial_{0}\right) \cap D(A)$ is dense in the domain of $\left(\partial_{0} M_{0}+M_{1}+A\right)^{*}$.

Exercise Section V

Exercise 17. (HW) In the theory of linear heat conduction the entropy η is linked to the heat flux q via

$$
T_{0} \partial_{0}\left(\varrho_{0} \eta\right)=-\operatorname{div} q+h_{0}
$$

where h_{0} denotes an external heat source, ϱ_{0} is the coefficient of mass density and $\left.T_{0} \in\right] 0, \infty[$ a reference temperature. Entropy and temperature are coupled via a material law of the form:

$$
\varrho_{0} \eta=\nu \theta
$$

The heat flux also depends on the temperature according to Fourier's law

$$
q=-\kappa \operatorname{grad} \theta
$$

where κ is a coefficient of heat conduction. Already Maxwell suggested in 1867, later re-iterated by Cattaneo (1958) and Vernotte (1958), to replace Fourier's law by

$$
\tau_{0} \partial_{0} q+q=-\kappa \operatorname{grad} \theta
$$

where $\left.\tau_{0} \in\right] 0, \infty[$.
Can you develop a model system with the canonical form $\partial_{0} M_{0}+M_{1}+A$ for this so-called Maxwell-Cattaneo-Vernotte model (MCV model)?
Exercise 18. (HW) Consider the formal system

In the homogeneous, isotropic case, C has the simple form

$$
\left.C:=\alpha_{0} \operatorname{sym}_{0}+\alpha_{1} \mathbb{P}+\alpha_{2} \text { skew, } \alpha_{0}, \alpha_{1}, \alpha_{2} \in\right] 0, \infty[
$$

where

$$
\begin{aligned}
\mathbb{P} & :=\frac{1}{3} \text { trace }^{*} \text { trace } \\
\operatorname{sym} \sigma & :=\frac{1}{2}\left(\sigma+\sigma^{\top}\right) \\
\operatorname{sym}_{0} & :=(1-\mathbb{P}) \operatorname{sym}=\operatorname{sym}(1-\mathbb{P}), \\
\text { skew } \sigma & :=\frac{1}{2}\left(\sigma-\sigma^{\top}\right) .
\end{aligned}
$$

with

$$
\text { sym : } \mathbb{C}^{3 \times 3} \rightarrow \mathbb{C}^{3 \times 3}
$$

and

$$
\text { trace : } \begin{aligned}
\mathbb{C}^{3 \times 3} & \rightarrow \mathbb{C}, \\
\sigma & \mapsto \sum_{i=1}^{3} \sigma_{i i} .
\end{aligned}
$$

It is

$$
\begin{aligned}
& \text { trace }^{*}: \mathbb{C} \rightarrow \mathbb{C}^{3 \times 3}, \\
& z \mapsto z \mathbb{I}_{3 \times 3},
\end{aligned}
$$

where $\mathbb{I}_{3 \times 3}$ denotes the identity matrix in $\mathbb{C}^{3 \times 3}$. Reformulate this in the isotropic case as a system for θ and q alone assuming that all coefficients are constant. Compare with the original Guyer-Krumhansl model

$$
\begin{aligned}
\left(1+\tau_{0} \partial_{0}\right) q & =-\kappa \operatorname{grad} \theta+\mu_{1} \Delta q+\mu_{2} \operatorname{grad} \operatorname{div} q \\
\varrho c \partial_{0} \theta & =-\operatorname{div} q+h
\end{aligned}
$$

and determine parameter ranges for well-posedness (assuming a skew-selfadjoint realization of $\left(\begin{array}{cc}(0) & (\operatorname{grad}-\operatorname{div}) \\ \binom{\operatorname{div}}{-\operatorname{grad}} & \left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\end{array}\right)$ in the form $\left(\begin{array}{cc}(0) & -C^{*} \\ \bar{C} & \left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\end{array}\right)$ with $C \subseteq\binom{\operatorname{div}}{-\operatorname{grad}}$ and a choice of dense domain).
Exercise 19. (HW) The classical Schrdinger operator is of the form

$$
\partial_{0}-\mathrm{i} \operatorname{div} \operatorname{grad}+V(\mathbf{m})=\partial_{0}+\mathrm{i}|\operatorname{grad}|^{2}+V(\mathbf{m})
$$

where the so-called potential $V(\mathbf{m})$ is a suitable multiplication operator. The so called relativistic Schrdinger operator replaces \mid grad $\left.\right|^{2}$ by $|\operatorname{grad}|:$

$$
\partial_{0}+\mathrm{i}|\underset{\circ}{\operatorname{grad}}|+V(\mathbf{m})
$$

By separating real and imaginary part we obtain a system of our standard first order form

$$
\partial_{0}+M_{1}+\left(\begin{array}{cc}
0 & \operatorname{div} \text { grad } \\
-\operatorname{div} \text { grad } & 0
\end{array}\right)=\partial_{0}+M_{1}+\left(\begin{array}{cc}
0 & -|\operatorname{grad}|^{2} \\
|\stackrel{\circ}{\operatorname{grad}}|^{2} & 0
\end{array}\right)
$$

where

$$
M_{1}:=\left(\begin{array}{cc}
\mathfrak{R e} V(\mathbf{m}) & -\mathfrak{I m} V(\mathbf{m}) \\
\mathfrak{I m} V(\mathbf{m}) & \mathfrak{R e} V(\mathbf{m})
\end{array}\right) .
$$

In the case of the relativistic Schrdinger operator this procedure leads to

$$
\partial_{0}+M_{1}+\left(\begin{array}{cc}
0 & -|\operatorname{grad}| \\
|\underset{\circ}{\circ}| & 0
\end{array}\right)
$$

Show that the latter is unitarily congruent to a system operator of the form

$$
\partial_{0}+\widetilde{M}_{1}+\left(\begin{array}{cc}
0 & \operatorname{div} \\
\text { grad } & 0
\end{array}\right)
$$

considered in $H_{\nu, 0}\left(\mathbb{R}, L^{2}(\Omega) \oplus \overline{\operatorname{grad}[D(\operatorname{grad})]}\right)$. What is \widetilde{M}_{1} ?
Exercise 20. (HW) Consider a system of the form

$$
\left(\partial_{0} M_{0}+M_{1}+\partial_{0}^{-1} M_{2}+A\right) U=F
$$

where M_{0}, M_{2} are non-negative, selfadjoint and A, M_{1} are skew-selfadjoint. Using that for $U \in$ $H_{\nu, 1}(\mathbb{R}, H)$ we have

$$
\partial_{0}|U|_{0}^{2}=2 \mathfrak{R e}\left\langle U \mid \partial_{0} U\right\rangle_{0}
$$

where the derivative on the left-hand side is in the sense of distributions ${ }^{1}$,
show that formally "energy conservation" holds in the sense of

$$
\frac{1}{2}\left|\sqrt{M_{0}} U\right|_{0}^{2}(t)+\frac{1}{2} \int_{s}^{t}\left|\sqrt{M_{2}} \partial_{0}^{-1} U\right|_{0}^{2}(r) d r=\frac{1}{2}\left|\sqrt{M_{0}} U\right|_{0}^{2}(s)
$$

for $s, t \in I, s<t$, where I is an open interval in which F vanishes. How can the reasoning be made rigorous?

[^0]
[^0]: ${ }^{1}|\cdot|_{0}$ denotes the norm and $\langle\cdot \mid \cdot\rangle_{0}$ the inner product of H.

