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Forward problem

• The cause is known.
• Task: find out the consequence.
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An ill-posed inverse problem

• If finding out the cause based on the observed
consequence is a very challenging problem...
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Hadamard conditions

According to Hadamard (1865-1963),
a problem is well-posed if the following
three conditions hold:

1. A solution exists
2. The solution is unique
3. The solution depends

continuously on the input
The third condition is related to sta-
bility of the solutions. Solutions of
numerical problems can be unstable
(intolerant to measurement noise and
modeling errors) even if the solution
depends continuously on data.
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Example: Differentiation and the choice of
computation grid

• 1D function g(x); denote f (x) = dg(x)
dx

• Consider a situation where one observes finite number of
samples {g(xi)} (at points x1, . . . , xN ) such that the
observations are corrupted by additive Gaussian noise.

• Thus, the observations are of the form

gδk
.

= g(xk ) + nk = gk + nk ,

where E{nk} = 0 (mean), var(nk ) = δ2 (variance) and
E{nknm} = 0, k 6= m, i.e., errors nk are mutually
independent.
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• Approximate the derivative f (x) = dg(x)
dx by finite difference

approximation f δ` in the same (equispaced) grid y` = xk
(h = xk − xk−1). We get

f δk
.

= Dgδk = D(gk + nk ) = Dgk + Dnk

=
gk − gk−1

xk − xk−1
+

nk − nk−1

xk − xk−1
.

• The first term has the property→ g′(xk ) = f (xk ) as
xk − xk−1 → 0.

• The second term represents the estimation error for f (x).



Introduction Hadamard conditions Example: Differentiation Estimation problems Example: SPECT EIT & other diffusive IP

• This term is random with variance

var
(

nk − nk−1

xk − xk−1

)
= E

{(
nk − nk−1

xk − xk−1

)2
}
− E

{
nk − nk−1

xk − xk−1

}2

= (xk − xk−1)−2E{n2
k + n2

k−1 − 2nknk−1}
= (xk − xk−1)−2(E{n2

k}+ E{n2
k−1}

−2E{nknk−1})

=
2δ2

(xk − xk−1)2

→ ∞ , as xk − xk−1 → 0 .

• Thus, the variance of the estimation error increases w.r.t
the accuracy of the computation grid. Figure 1 shows noisy
data gδh, true integral function g(x), true target function f (x)
and estimates f δh with three different mesh parameters
h = xk − xk−1.
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Figure 1: a) Integral function g(x) and noisy observation gδh,
b)-d) f (x) and estimates f δh , when h = 0.1,0.03,0.01,
respectively.
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• Clearly, the optimal mesh parameter h with respect the
estimation error ‖f − f δk ‖2 depends on the noise level δ. In
this example, the regularization of the problem was carried
out by tuning the discretization. This is an obsolete,
non-recommended approach.
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Estimation problems
• In this course we mostly consider estimation problems

based on an observation model of the form

g = h(f ,n)

where g = measurable variable, f = primary unknow of
interest, n = noise, and h(f ,n) = numerical model that
connects g with the unknown f and n.

• Our aim is to estimate f based on observed g.
• In cases of ill-posed inverse problems, conventional

solutions, such as LS-solutions are non-unique and/or
extremely intolerant to measurement noise and modeling
errors.

• In deterministic inversion framework, f is considered as
deterministic but unknow variable, while in Bayesian
(statistical) inversion framework, f is modeled as a random
variable.
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Two simple examples

• The following two examples are considered in the lectures.
Matlab codes are provided.

• Example 2.1: Linear model

g = Kf , where f ,g ∈ R2, K =

(
0 1
a 1

)
, a 6= 0.

We demonstrate that the estimate for f becomes intolerant
to noise in observations g, when a gets small.

• Example 2.2: In the second example, we consider the
tolerance of the estimates in Example 2.1 to modeling
errors.
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Notes on the above examples

• The solutions in above examples were unique.
• The problems were not numerically unstable (Matlab does

not complain about inverting the matrix K ...)

• What caused the instability?
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What caused the instability?
• When a << 1, then

K
(

1
0

)
=

(
0
a

)
is very small.

• Then, the contribution of f1 to the data is very small, i.e., a
large change in f1 causes only a small change in the
observable variable g.

• "Inversely" thinking (and loosely speaking),
accommodating to a small change in the observed data
(caused by measurement noise or modeling error),
requires a large change in f1 ⇒ Instability.

• Even more loosely speaking, vector (1 0)T is "almost" in
the null-space of K .

• The intolerances with respect to measurement noise and
modeling errors are the characterizing features of ill-posed
inverse problems.
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Single photon emission computed tomography
(SPECT)
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• If one projection only, non-uniqueness
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• Linear observation model

g = Kf + n

where g = [P1, ...PM ]T ∈ RM , K ∈ RN×M ,
f = [f1, ...fM ]T ∈ RM and n ∈ RM .



Introduction Hadamard conditions Example: Differentiation Estimation problems Example: SPECT EIT & other diffusive IP

Experiment with a cylindrical phantom
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Projection images at different directions
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Reconstruction

• Reconstructed image on one horizontal plane

• The ill-posedness of the SPECT inverse problem depends
e.g. on the number (and span) of projections, the
collimator and the attenuation coefficient of the material
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Inverse problems related to diffusion phenomena

• In physics, it is difficult to deduce the input of a
diffusion-type process based on the measured outcome of
the process (Kaipio & Somersalo book, Section 1.1.
"Thermal archaeology" example)

• Similarly, estimating distributions of parameters affecting
the diffusion, based on the outcome of diffusion is difficult.
(Ill-posed inverse problems in electrical impedance
tomography, optical tomography, thermal diffusion
tomography, etc.)

• Closely related: image deblurring problems (another
classical inverse problem)
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Electrical impedance tomography (EIT)

• In EIT electric currents I are applied to electrodes on the
surface of the object and the resulting potentials V are
measured using the same electrodes.

• The conductivity distribution σ = σ(x) is reconstructed
based on the potential measurements.

• Diffusive tomography modality
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Forward model for EIT

∇ · (σ∇u) = 0 , x ∈ Ω

u + z`σ
∂u
∂n

= U`, x ∈ e`∫
e`

σ
∂u
∂n

dS = I` , ` = 1,2, ...,L

σ
∂u
∂n

= 0 , x ∈ ∂Ω\
L⋃

`=1

e`
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Forward model & inverse problem in EIT

• Finite element (FE) approximation of the complete
electrode model⇒ V = U(σ)

• Additive noise model

Vobs = U(σ) + n

• Solving σ based on noisy observations V is a non-linear
ill-posed inverse problem.
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Example: EIT imaging of concrete

Figure: EIT imaging of concrete (Karhunen et al 2010)
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Forward model & inverse problem in EIT

• EIT is a classical inverse problem; has been widely studied
theoretically.

• Lot of applications:
• Process industry (multi-phase flows, single-phase flows)
• Geophysis (explosives, archeology, soil water content, ect)
• Medical imaging (breast cancer, lungs, brains)
• Concrete (cracks, reinforcing bars, humidity, etc)
• etc

• In this course, many of the examples on large scale
inverse problems are related to EIT. Note however, that
many of the methods are directly applicable to other large
scale inverse problems.
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