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Electrical impedance tomography (EIT)

e In EIT electric currents [/ are applied to electrodes on the
surface of the object and the resulting potentials V are
measured using the same electrodes.
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e The conductivity distribution o = o(x) is reconstructed
based on the potential measurements.

« Diffusive tomography modality

TV prior
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Forward model for EIT
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Forward model & inverse problem in EIT

e Finite element (FE) approximation of the complete
electrode model = V = U(o)
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e Additive noise model

Viops = U(O‘) +n

TV prior
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Examples of forward solutions

e See examples of EIT forward solutions in Appendix 1.
(Don’t print it out; huge number of pages & figs.)

Potential distribution Potential distribution
15 25 15
10 10
2 2
5 5
15 15
0 z 0 z
1 1
-5 -5
10 05 0 05
15 -15 0
-15 -10 -5 0 5 10 15 -15 10 -5 0 5 10 15

e What do the last examples tell us about the ill-posedness
of EIT?

e Any suggestions for the remedy?
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MAP estimates

¢ In the case of Gaussian likelihood model and Gibbs’
type prior, the posterior density is of the form

m(o|V) o« 7w(V|o)r(o)

x exp (= 5V = UM (V — Ulo) - 5600) )

e And the MAP estimate can be written in the form

OMAP = arg main{HLn(V — U(0))|12 + G(0)} (1)

where LT L, =T,".
e [terative solution (e.g. Gauss-Newton)
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MAP estimates with Gaussian models

¢ In the case of Gaussian likelihood model and Gaussian
prior, the posterior density is of the form

wolV) x exp =V~ Ue)TH'(V - U(o)

1

5 =) o = )

e And the MAP estimate can be written in the form

omap = argmin{||Lp(V = U(0)|? + Lo (0 = 10)[IP}  (2)

where LT L, =T, LIL, =T
e [terative solution (e.g. Gauss-Newton)
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lteration step 1
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Left: estimated conductivity distribution. Right: Measured vs. computed potentials.
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Iteration step 2
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Left: estimated conductivity distribution. Right: Measured vs. computed potentials.
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Iteration step 3
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Left: estimated conductivity distribution. Right: Measured vs. computed potentials.
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Iteration step 4
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Left: estimated conductivity distribution. Right: Measured vs. computed potentials.



Forward model MAP estimates Computational aspects Gaussian prior models TV prior

Iteration step 5
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Left: estimated conductivity distribution. Right: Measured vs. computed potentials.
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MAP estimate
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Figure: Left: Photo of the true target; Right: estimated conductivity distribution.
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Computational aspects

¢ Solution of the optimization problem in the MAP estimate
typically Gauss-Newton-type iteration

e Line-search

e Non-negativity constraint:

e e.g. for Gaussian priors, P(c < 0) # 0. However, in reality
the conductivity is non-negative.

¢ In MAP estimates, the non-negativity constraint can be
handled by constrained optimization

omap = argming||La(V — U())I? + ILa(o = na)lIP}  (3)

e Projected line-search (not a good choice...)
e Interior point method
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Interior point method for the non-negativity constraint

Idea: set a barrier function b(o) which gives high penalty,
when any element of the conductivity vector o — 0.

The MAP estimate with the interior point method

omap = argmin{||La(V — U(0))|[? + | Lo (0 — 1) II? + b(o)}

Example: logarithmic barrier function

N

b(o) = —p Y _In(ok) (4)

k

where p is a weighting parameter.
Usually p is adaptively decreased during the iteration.
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White noise prior

¢ A white noise prior is of the form
0 ~N(1s,750) (5)

where 7, and 72 are the expectation and variance of o.
e The prior density

w(0) o exp (—Jvz(a—na)T(a—%)) )

g

1
x exp (—MH(U—%)HZ) 7)

g
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White noise prior: How to select 1, and ~2?
e Gaussian random variable o

o NN(T}O'”YE'/)

Define omin = 17 — 37, and omax = s + 370-
Then, P(omin < 0 < omax) ~ 0.997.

Practical way of selecting 7, and 2:

e The expectation of the conductivity n, can often be
assessed based on the knowledge of the physical
properties of the target (prior information!)

e Further, you may also have an idea of "upper limit" of
conductivity o, (loosely speaking!)

e Then, a reasonable choice for the variance is

2 _ (Omax—MNo 2
Yo = ( 3 )
Problems: White noise prior is usually not a good model in
EIT — the conductivity is usually spatially correlated.
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Uninformative smoothness prior

e Standard (uninformative) smoothness prior (continuous o)

(o) o<exp< /yvo||2dr>

¢ Finite dimensional approximation for o; prior density can
be written in the form

1 1
(o) x exp (—2(1HL00H2> = exp <—2aHaTLZLgG||2>

Matrix LTL, is not invertible = I, does not exist.

e Problems: How to select a? How to control the degree of
spatial smoothness?
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Extensions of the uninformative smoothness prior

¢ (Uninformative) anisotropic smoothness prior is defined
accordingly (continuos form)

(o) x oxp o [ 14)oar ) ®)

where A(r) is tensor field.

¢ (Uninformative) structural priors can be constructed by
selection of A(r) based on structural information (example:
anatomical information provided by another imaging
modality).
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An informative smoothness prior

e Gaussian random variable o ~ N (ny, )

1 _
wo)xop (00 -1 o ) @
e Write the covariance matrix I', as
. Ix;i — ;13
Fo(i,)) = aexp {_2b2 (10)

where x; € R?3 is the spatial coordinate corresponding to
a discrete conductivity value o; (Lieberman, Willcox,
Ghattas 2010).

e Other similar models exist.
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An informative smoothness prior:
How to select a and b?

e The variance of the conductivity at point x; is
var(yi) = To(i,f) = a (11)

e Selection of the variance: See the white noise prior above.

o Define the correlation length ¢ as the distance where the
cross-covariance I',(/,f) drops to 1% of var(v;). Then

p— (12)

v/2In(100)
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An informative anisotropic smoothness prior

e Again, Gaussian random variable o ~ N (75, 5)

o) xop (0 )TN0 - ) (13

e Write the covariance matrix I', as

>3 Ik — {2
F(i,f) = - ! 14
(i,]) aexp{ 20 (14)

where x; € R3, x; = (x (2 x® )) is the spatial
coordinate correspondlng to a dlscrete conductivity value
oj, and coefficients by define the correlation lengths ¢ at
the directions of the coordinate axes.

e Other directions by coordinate transformations.
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Examples of informative smoothness priors

e For examples of informative smoothness priors, see

Appendix 2.
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A sample based Gaussian prior

¢ Assume that you have a set of samples of the conductivity
distribution (based on e.g. other experiments or a flow
simulation); denote the samples by o), j =1.... K.

e Approximate o as a Gaussian random varlable

g~ N(ﬂa, ra)
(o) x exp (—;(0 — no)Tr;1 (0 — 77(,)> (15)

where 7, is chosen to be the sample mean % Zj’; o,
and the sample covariance is used as the prior covariance
matrix:

K
Z 0 — — )T (16)
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Total variation prior

A couple of different versions of TV prior exists. The
following one has certain advantages.

Total variation prior (continuous form, 2D case)

(o) o<exp< / \Vngdr) = exp (—a/ ,/gi g;dr>

Finite dimensional approximation

M
(o) o exp (—a > \/(an)f + (LyUﬁ)
(=1

Promotes sparsity of Vo.




Total variation prior

e Hence

where

e Gibbs’ type prior
e The posterior density is of the form

w(o|V) o« w(V|o)r(o)

x o (= 5(V = U))'Ty (V= Ulo) ~ Alo)

TV prior
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Total variation prior

e MAP estimate
1
ovap = argmin{ 5 [|Ln(V — U(0))|? + A(0)}

e Solution: e.g. Gauss-Newton
» Note: A(o) is not differentiable. Hence, approximation:

M
Alo) =3 J(Lxo)2 + (Lyo)? + 5
=1

where 3 is a small constant.
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An example

reconstructed conductivity, iteration 18/40

ms cm!
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Sensing skin application
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e http://iopscience.iop.org/0964-1 726/23/@78)85001 /article
e http://phys.org/news/2014-06-skin-quickly-concrete.html
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Sensing skin application

e http://iopscience.iop.org/0964-1726/23/8/085001/article
e http://phys.org/news/2014-06-skin-quickly-concrete.html

TV prior
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