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Bayesian inverse problems

Bayesian inverse problems

e Model for observations G
G = h(F,N)

where G = observations, F = unknown (of interest), N =
observation noise.

¢ In Bayesian framework, G, F and N are modeled as
random variables.

e We denote realizations of G, F and N by g, f and n,
respectively.



Bayesian inverse problems

e The random variables G and F have a joint probability
density 7(f, g)

e The prior density 7 (f) expresses what we know about the
unknown prior to the measurements.

ron(f) = / =(f.g)dg

¢ If we would know the value of the unknown, that is, F = f,
the conditional probability density of G given this
information, would be

(f.g) .
f)=—25, if m(f) #0
7T(g‘ ) Wpr(f) 7Tp( ) ;é
The conditional probability of G is called the likelihood
function, because it expresses the likelihood of different
measurement outcomes with F = f given.



Bayesian inverse problems

o Assume finally that the measurement data G = gqs is
given. The conditional probability distribution

7(f, Qobs) _ 71-(gobs|f)7rpr(f)
7T(gobs) 7T(gobs)

is called the posterior distribution of F. This distribution
expresses what we know about F after the realized
observation G = gops.-

¢ In the Bayesian framework, the inverse problem is
expressed in the following way: Given the data G = gobs,
find the conditional probability distribution 7(f|gobs) of the
variable F.

7(f|Gobs) =



Bayesian inverse problems

e Bayes’ theorem of inverse problems:

7(Gobs| F)mpe (f)

Tpost(f) = m(F|Gobs) = T(Gobs)

e The posterior density w05 (f) is the full solution of the
Bayesian inverse problem.

¢ Note: 7(gobs) does not depend on F; acts as a normalizing
constant — usually unimportant.

e In summary, solving an inverse problem may be broken
into three subtasks:

1. Based on all the prior information of the unknown F, find a
prior probability density m,(f) that reflects judiciously this
prior information.

2. Find the likelihood function 7(gons|f) that describes the
interrelation between the observation and the unknown.

3. Develop methods to explore the posterior probability
density.



Bayesian inverse problems

Point estimates

e Computing the maximum a posteriori estimate fyap:
fmap = arg m?X 7 (| Gobs)

is an optimization problem.
e Computing the conditional mean estimate f-\;:

fCM = E{f|gobs} = /fﬂ'(ﬂgobs)df

is an integration problem (usually MCMC).



Bayesian inverse problems

¢ Note: the maximum likelihood (ML) estimate fyy is a
non-Bayesian estimator

L = arg mfax 7"'(gobs|f)

e L answers the question "Which value of the unknown is
most likely to produce the measured data y?". In ill-posed
inverse problems, fyy is quite useless: It often corresponds
to solving the classical inverse problem without
regularization.



Bayesian inverse problems

Spread estimates

e The conditional (posterior) covariance

Figue = [ (= few)(f = fow) n(fgn ot

e Integration problem (usually MCMC).
¢ Also other spread estimates are used: credibility limits, etc.



Likelihood models

Likelihood models, additive noise case

Additive noise model
G=h(F)+ N

where F and N are mutually independent.
m(n) is assumed to be known.
When F = fis fixed = g = h(f)+n

~~

fixed
= G is distributed as N; only shifted by h(f)

= m(9lf) = Tnoise(9 — h(f))
Then posterior

7r(f|gobs) X 7"'(f)7"'(gobs|f) = 7Tpr(f)Trnoise(gobs — h(f))



Likelihood models

Additive Gaussian noise

 Gaussian noise N ~ N(0,T )

1
Tnoise(N) o exp(—énTF;1 n)

(gl ) o xp (30 — BT (e — (1))
e If further, a Gibbs-type prior
(1) o« exp(~A(1)
e Then,
7(f|Qobs) < 7 (Gobs|F)7(f)
— o (= 50— AT (g~ B ~ ACP)



Likelihood models

¢ in this case, the MAP estimate is of the form

har = arzmaxa(flge)
s argmin {5 (g — B3 (G — (1) + A1)
— arzmin { 50 ~ A" LhLogn ~ A+ A(D |
= angmin { 11 Lo(aw. — AP + A}

where LTL, =T,



Likelihood models

o If Gaussian prior model F ~ N (n, ¢)
1 Tr—1
71'pr(f) o exp _E(f_nf) rf (f — )
e Then
fuap = arg m)gx 7 (£|Qobs)
.1 _
s argmin { 3@ — TS (@ — (1)
1 _
(=T = |

. (1

= argmin { 3lLolan — HDIE + L7~ )12}

which is equivalent to Generalized Tikhonov regularization
with choices al, = Ly, LfL; =T, and f, = ny = E(f).



Likelihood models

e Similarly, the maximum likelihood estimate

fML = arg mfaX 7T(gobs|f)
. 1
= arg mfln {2’Ln(gobs - h(f))Hz}

which is equivalent to Gauss-Markov estimate

¢ Non-regularized, does not work with ill-posed inverse
problems.



Likelihood models

o If further, the observation model is linear

G=KF+N
e Then
7r(f|gobs) X arg mfin {;(gobs - Kf)Tr;1 (gobs - Kf)
1 _
(=T =)}

is Gaussian, and it can shown, that
Aiap = fost = (KT K+ T 1) Y (KT, Gons + T 1)

Mpost = (KT 1K+ T~

e See Matlab example 5.1.



MCMC

Computation of the integration based estimates

Many estimators are of the form
[ ud(tigun)at

For fom, u(f) =f
For Ff|g, U(f) = (f — fCM)(f — fCM)T
Analytical evaluation in most cases impossible

Traditional numerical quadratures not applicable when N is
large (number of points needed unreasonably large,
support of 7(f|gobs) May not be well known) = Monte Carlo
integration.



MCMC

Monte Carlo integration

e Monte Carlo integration

1. Draw an ensemble {f(%) k
from mpeu ()
2. Estimate

., Q} of i.i.d samples

[ uth(fign)ar ~

e Direct sampling from myos(f) usually not possible =
Markov Chain Monte Carlo (MCMC) integration:

1. Draw {f(®) k =1,..., Q} by simulating a Markov chain
(with equilibrium distribution 7o (f))

2. Estimate o
1
obs )Af ~ — £
[ nriggar= 5> u

e Algorithms for MCMC: Metropolis-Hastings algorithm,
Gibbs sampler

U

EMO



MCMC

Metropolis-Hastings

o Generation of an ensemble {f(K) k =1,...,Q} ~ mpos(f)
using Metropolis-Hastings algorithm:

1.
2.
3.

Pick an initial value f(') and set ¢ = 1
Set f = f(0),
Draw a candidate sample f’ from proposal density

f' ~q(f.f')
and compute the acceptance factor

%t(f)Q(ff))
mpost(F)Q(F, ')

Draw t € [0, 1] from uniform probability distribution

(t ~uni(0, 1)).

If a(f, f) > t, set F+1) = f' else f+1) = f. Increment
=041,

When ¢ = Q stop, else repeat from step 2.

a(f, f') = min <1,



MCMC

 Great flexibility in choosing the proposal density q(f, f');
almost any density would do the job (eventually).

o However, the choice of g(f, f') is a crucial part of
successful Metropolis-Hastings MCMC; it determines the
efficiency of the algorithm

e Matlab example 5.2
e f € R?, and posterior

Tpost (f) oc €xp {—10(f12 — )2 —(h— 1)4}

o We choose the random walk proposal distribution

1
q(f, ') o exp <_272f/ — f||2>

Note: for this choice g(f, ') = q(f', f).
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