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Bayesian inverse problems

• Model for observations G

G = h(F ,N)

where G = observations, F = unknown (of interest), N =
observation noise.

• In Bayesian framework, G,F and N are modeled as
random variables.

• We denote realizations of G,F and N by g, f and n,
respectively.
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• The random variables G and F have a joint probability
density π(f ,g)

• The prior density π(f ) expresses what we know about the
unknown prior to the measurements.

πpr(f ) =

∫
RM

π(f ,g)dg

• If we would know the value of the unknown, that is, F = f ,
the conditional probability density of G given this
information, would be

π(g|f ) =
π(f ,g)

πpr(f )
, if πpr(f ) 6= 0

The conditional probability of G is called the likelihood
function, because it expresses the likelihood of different
measurement outcomes with F = f given.
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• Assume finally that the measurement data G = gobs is
given. The conditional probability distribution

π(f |gobs) =
π(f ,gobs)

π(gobs)
=
π(gobs|f )πpr(f )

π(gobs)

is called the posterior distribution of F . This distribution
expresses what we know about F after the realized
observation G = gobs.

• In the Bayesian framework, the inverse problem is
expressed in the following way: Given the data G = gobs,
find the conditional probability distribution π(f |gobs) of the
variable F .
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• Bayes’ theorem of inverse problems:

πpost(f ) = π(f |gobs) =
π(gobs|f )πpr(f )

π(gobs)

• The posterior density πpost(f ) is the full solution of the
Bayesian inverse problem.

• Note: π(gobs) does not depend on F ; acts as a normalizing
constant – usually unimportant.

• In summary, solving an inverse problem may be broken
into three subtasks:

1. Based on all the prior information of the unknown F , find a
prior probability density πpr(f ) that reflects judiciously this
prior information.

2. Find the likelihood function π(gobs|f ) that describes the
interrelation between the observation and the unknown.

3. Develop methods to explore the posterior probability
density.
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Point estimates

• Computing the maximum a posteriori estimate fMAP:

fMAP = arg max
f
π(f |gobs)

is an optimization problem.
• Computing the conditional mean estimate fCM:

fCM = E{f |gobs} =

∫
fπ(f |gobs)df

is an integration problem (usually MCMC).
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• Note: the maximum likelihood (ML) estimate fML is a
non-Bayesian estimator

fML = arg max
f
π(gobs|f )

• fML answers the question "Which value of the unknown is
most likely to produce the measured data y?". In ill-posed
inverse problems, fML is quite useless: It often corresponds
to solving the classical inverse problem without
regularization.
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Spread estimates

• The conditional (posterior) covariance

Γf |gobs =

∫
(f − fCM)(f − fCM)Tπ(f |gobs)df

• Integration problem (usually MCMC).
• Also other spread estimates are used: credibility limits, etc.



Bayesian inverse problems Likelihood models MCMC

Likelihood models, additive noise case

• Additive noise model

G = h(F ) + N

where F and N are mutually independent.
• π(n) is assumed to be known.
• When F = f is fixed⇒ g = h(f )︸︷︷︸

fixed

+n

⇒ G is distributed as N; only shifted by h(f )
⇒ π(g|f ) = πnoise(g − h(f ))

• Then posterior

π(f |gobs) ∝ π(f )π(gobs|f ) = πpr(f )πnoise(gobs − h(f ))



Bayesian inverse problems Likelihood models MCMC

Additive Gaussian noise

• Gaussian noise N ∼ N (0, Γn)

πnoise(n) ∝ exp(−1
2

nTΓ−1
n n)

π(gobs|f ) ∝ exp
(
−1

2
(gobs − h(f ))TΓ−1

n (gobs − h(f ))

)
• If further, a Gibbs-type prior

π(f ) ∝ exp(−A(f ))

• Then,

π(f |gobs) ∝ π(gobs|f )π(f )

= exp
(
−1

2
(gobs − h(f ))TΓ−1

n (gobs − h(f ))− A(f )

)
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• in this case, the MAP estimate is of the form

fMAP = arg max
f
π(f |gobs)

∝ arg min
f

{
1
2

(gobs − h(f ))TΓ−1
n (gobs − h(f )) + A(f )

}
= arg min

f

{
1
2

(gobs − h(f ))TLT
nLn(gobs − h(f )) + A(f )

}
= arg min

f

{
1
2
‖Ln(gobs − h(f ))‖2 + A(f )

}
where LT

nLn = Γ−1
n .
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• If Gaussian prior model F ∼ N (ηf , Γf )

πpr(f ) ∝ exp
(
−1

2
(f − ηf )TΓ−1

f (f − ηf )

)
• Then

fMAP = arg max
f
π(f |gobs)

∝ arg min
f

{
1
2

(gobs − h(f ))TΓ−1
n (gobs − h(f ))

+
1
2

(f − ηf )TΓ−1
f (f − ηf )

}
= arg min

f

{
1
2
‖Ln(gobs − h(f ))‖2 + ‖Lf (f − ηf )‖2

}
which is equivalent to Generalized Tikhonov regularization
with choices αLα = Lf , LT

f Lf = Γ−1
f and f∗ = ηf = E(f ).
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• Similarly, the maximum likelihood estimate

fML = arg max
f
π(gobs|f )

= arg min
f

{
1
2
‖Ln(gobs − h(f ))‖2

}
which is equivalent to Gauss-Markov estimate

• Non-regularized, does not work with ill-posed inverse
problems.
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• If further, the observation model is linear

G = KF + N

• Then

π(f |gobs) ∝ arg min
f

{
1
2

(gobs − Kf )TΓ−1
n (gobs − Kf )

+
1
2

(f − ηf )TΓ−1
f (f − ηf )

}
is Gaussian, and it can shown, that

fMAP = fCM = (K TΓ−1
n K + Γ−1

f )−1(K TΓ−1
n gobs + Γ−1

f ηf )

Γpost = (K TΓ−1
n K + Γ−1

f )−1

• See Matlab example 5.1.
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Computation of the integration based estimates

• Many estimators are of the form∫
u(f )π(f |gobs)df

• For fCM, u(f ) = f
• For Γf |g , u(f ) = (f − fCM)(f − fCM)T

• Analytical evaluation in most cases impossible
• Traditional numerical quadratures not applicable when N is

large (number of points needed unreasonably large,
support of π(f |gobs) may not be well known)⇒ Monte Carlo
integration.
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Monte Carlo integration
• Monte Carlo integration

1. Draw an ensemble {f (k), k = 1, . . . ,Q} of i.i.d samples
from πpost(f )

2. Estimate ∫
u(f )π(f |gobs)df ≈ 1

Q

Q∑
k=1

u(f (k))

• Direct sampling from πpost(f ) usually not possible⇒
Markov Chain Monte Carlo (MCMC) integration:

1. Draw {f (k), k = 1, . . . ,Q} by simulating a Markov chain
(with equilibrium distribution πpost(f ))

2. Estimate ∫
u(f )π(f |gobs)df ≈ 1

Q

Q∑
k=1

u(f (k))

• Algorithms for MCMC: Metropolis-Hastings algorithm,
Gibbs sampler
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Metropolis-Hastings
• Generation of an ensemble {f (k), k = 1, . . . ,Q} ∼ πpost(f )

using Metropolis-Hastings algorithm:

1. Pick an initial value f (1) and set ` = 1
2. Set f = f (`).
3. Draw a candidate sample f ′ from proposal density

f ′ ∼ q(f , f ′)

and compute the acceptance factor

α(f , f ′) = min
(

1,
πpost(f ′)q(f ′, f )

πpost(f )q(f , f ′)

)
4. Draw t ∈ [0,1] from uniform probability distribution

(t ∼ uni(0,1)).
5. If α(f , f ′) ≥ t , set f (`+1) = f ′, else f (`+1) = f . Increment

`→ `+ 1.
6. When ` = Q stop, else repeat from step 2.
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• Great flexibility in choosing the proposal density q(f , f ′);
almost any density would do the job (eventually).

• However, the choice of q(f , f ′) is a crucial part of
successful Metropolis-Hastings MCMC; it determines the
efficiency of the algorithm

• Matlab example 5.2
• f ∈ R2, and posterior

πpost(f ) ∝ exp
{
−10(f 2

1 − f2)2 − (f2 −
1
4

)4
}

• We choose the random walk proposal distribution

q(f , f ′) ∝ exp
(
− 1

2γ2 ‖f
′ − f‖2

)
Note: for this choice q(f , f ′) = q(f ′, f ).
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