4.1 Quick loans. Let us consider the problem 6 of exercise 1. Calculate the following
(a) expected profit of Strata on condition that Antti pays back everything.
(b) expected profit of Strata on condition that both pay back something.
(c) standard deviation of the profit of Strata.
4.2 Indicator random variable. The indicator of an event $A \subset \Omega$ in a discrete probability space (Ω, P) is the $\{0,1\}$-valued random variable

$$
1_{A}(\omega)= \begin{cases}1, & \text { when } \omega \in A \\ 0 & \text { else }\end{cases}
$$

(a) Find out the distribution of 1_{A}.
(b) Compute the expectation and variance of 1_{A}.
(c) Find out the distribution of $Z=1_{A_{1}}+\cdots+1_{A_{n}}$ when we assume that $1_{A_{1}}, 1_{A_{2}}, \ldots, 1_{A_{n}}$ are independent and $\mathbb{P}\left(A_{i}\right)=p$ for all $i=1, \ldots, n$.
(d) Compute the expectation and variance of Z.
4.3 Let X, X_{1}, X_{2}, \ldots be identically distributed independent random varibles. The sample variance is defined by formula

$$
v=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is the sample mean. Show that

$$
\operatorname{Var}(\bar{X})=\frac{\operatorname{Var}(X)}{n} \quad \text { and } \quad \mathbb{E}[v]=\operatorname{Var}(X)
$$

4.4 Law of large number does not always hold. Consider two independent collections of random variables such that

- $\left\{X_{1}, X_{2}, \ldots\right\}$ are independent and identically distributed, and $\mathbb{E}\left(X_{1}\right)=1$.
- $\left\{Y_{1}, Y_{2}, \ldots\right\}$ are independent and identically distributed, and $\mathbb{E}\left(Y_{1}\right)=2$.

Let us first flip a coin and then define

$$
S_{n}= \begin{cases}X_{1}+X_{2}+\cdots+X_{n}, & \text { if we get heads } \\ Y_{1}+Y_{2}+\cdots+Y_{n}, & \text { if we get tails }\end{cases}
$$

Prove that
(a) $\mathbb{E}\left(S_{n} / n\right)=3 / 2$.
(b) $\mathbb{P}\left(\left|S_{n} / n-3 / 2\right|>1 / 4\right)$ does not converge to zero as n grows.
(c) Is the above observation in conflict with the law of large numbers?
4.5 Let X and Y random variables, with finite expected values. Show, that
(a) $\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$ and
(b) $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$,
whenever $a, b \in \mathbb{R}$.

