- 4.1 Quick loans. Let us consider the problem 6 of exercise 1. Calculate the following
 - (a) expected profit of Strata on condition that Antti pays back everything.
 - (b) expected profit of Strata on condition that both pay back something.
 - (c) standard deviation of the profit of Strata.
- **4.2** Indicator random variable. The indicator of an event $A \subset \Omega$ in a discrete probability space (Ω, P) is the $\{0, 1\}$ -valued random variable

$$1_A(\omega) = \begin{cases} 1, & \text{when } \omega \in A, \\ 0 & \text{else.} \end{cases}$$

- (a) Find out the distribution of 1_A .
- (b) Compute the expectation and variance of 1_A .
- (c) Find out the distribution of $Z = 1_{A_1} + \cdots + 1_{A_n}$ when we assume that $1_{A_1}, 1_{A_2}, \ldots, 1_{A_n}$ are independent and $\mathbb{P}(A_i) = p$ for all i = 1, ..., n.
- (d) Compute the expectation and variance of Z.
- **4.3** Let $X, X_1, X_2, ...$ be identically distributed independent random variables. The sample variance is defined by formula

$$v = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2,$$

where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is the sample mean. Show that

$$\operatorname{Var}\left(\bar{X}\right) = rac{\operatorname{Var}(X)}{n}$$
 and $\mathbb{E}[v] = \operatorname{Var}(X).$

Continues on the next page...

- **4.4** Law of large number does not always hold. Consider two independent collections of random variables such that
 - $\{X_1, X_2, ...\}$ are independent and identically distributed, and $\mathbb{E}(X_1) = 1$.
 - $\{Y_1, Y_2, \dots\}$ are independent and identically distributed, and $\mathbb{E}(Y_1) = 2$.

Let us first flip a coin and then define

$$S_n = \begin{cases} X_1 + X_2 + \dots + X_n, & \text{if we get heads,} \\ Y_1 + Y_2 + \dots + Y_n, & \text{if we get tails.} \end{cases}$$

Prove that

- (a) $\mathbb{E}(S_n/n) = 3/2.$
- (b) $\mathbb{P}(|S_n/n 3/2| > 1/4)$ does not converge to zero as n grows.
- (c) Is the above observation in conflict with the law of large numbers?

4.5 Let X and Y random variables, with finite expected values. Show, that

(a) $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$ and

(b)
$$\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X),$$

whenever $a, b \in \mathbb{R}$.