5.1 Valtteri's roulette game. Valtteri plays 300 rounds of roulette by betting one euro at each round to small numbers (1-18). Valtteri's initial capital equals $V_{0}=300$ euros. Denote the value of Valtteri's game account after t rounds by V_{t}.
(a) Let U_{1}, \ldots, U_{300} be independent uniformly distributed random variables in $S=\{0,1, \ldots, 36\}$. Define a function f such that the game account can be represented by,

$$
V_{t}=V_{0}+\sum_{s=1}^{t} f\left(U_{s}\right)
$$

(b) What is the state space of the random variable V_{300} ?
(c) Using part a) compute the expectation $\mathbb{E} V_{300}$.
(d) Let θ_{s} be the indicator of the event $\left\{U_{s} \in[1,18]\right\}$. Explain why θ_{s} follows a $\operatorname{Ber}(p)$ distribution for some p and find out the value of p.
(e) Define a function g such that the game account can be represented as

$$
V_{t}=V_{0}+g\left(\sum_{s=1}^{t} \theta_{s}\right) .
$$

(f) Using part e) prove that

$$
\mathbb{P}\left(\frac{V_{300}-V_{0}}{V_{0}} \geq 0.1\right)=\sum_{k=j}^{300}\binom{300}{k} p^{k}(1-p)^{300-k}
$$

for some value of j and find out this value.
(Hint: See problem 2 of Exercise 4.)
5.2 Binomial distribution. Let X be a random number following Binomial distribution with parameters $p \in(0,1), n \geq 2$.
(a) Compute the probability generating function G_{X} of X.
(b) For which values of $t G_{X}(t)$ is defined?
(c) Compute the expectation of X using G_{X}.
(d) Compute the variance of X.
5.3 Poisson distribution. Let X be a Poisson-distributed random number with parameter $\lambda>0$, so that

$$
\mathbb{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1, \ldots
$$

(a) Compute the probability generating function G_{X} of X.
(b) For which values of $t G_{X}(t)$ is defined?
(c) Compute the expectation of X using G_{X}.
(d) Compute the variance of X.
5.4 Sum of Poisson distributed random numbers. Let X and Y be independent Poisson distributed random numbers with parameters λ_{1} and λ_{2}. Show that $X+Y$ is Poisson distributed.
5.5 Random sum. Let N, X_{1}, X_{2}, \ldots be independent random numbers taking values in Z_{+}, where X_{1}, X_{2}, \ldots are identically distributed.
(a) Compute the expectation of the random sum $M=\sum_{i=1}^{N} X_{i}$.
(b) Show that for the variance of the random sum M it holds that

$$
\operatorname{Var}(M)=\operatorname{Var}(N)(\mathbb{E}[X])^{2}+\operatorname{Var}(X) \mathbb{E}[N]
$$

