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Physical basis of climate change
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Observations: global CO,

Concentrations of Greenhouse Gases from O to 2005
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Observations: global CO,

Scripps Institution of Oceanography
NOAA Earth System Research Laboratory
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Observations: global temperature

Jan-Dec Global Mean Temperature over Land & Ocean
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Observations: global precipitation

January-December Precipitation Anomalies @

1900-2013
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Observations: global ice & snow

CHANGES IN TEMPERATURE, SEA LEVEL AND NORTHERN HEMISPHERE SNow COVER
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Observations: global ice & snow

1928

2004

Upsala glacier, Patagonia
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Observations: global ice & snow

1982

Extent (millions of square kilometers)

Average Monthly Arctic Sea Ice Extent

January 1979 - 2015

National Snow and Ice Data Center
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Arctic Sea Ice Extent
(Area of ocean with at least 15% sea ice)
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Sea Ice Extent
Sep 2014

near-real-time data

Total extent = 5.3 million sq km

National Snow and Ice Data Center, Boulder, CO
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Observations: regional temperature IPCC AR4
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Observations: regional ice & snow

Freeze Dates
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Natural variation..? 2013: 400 ppm!

Antarctic Time Series for CO,, CH,4 and Temperature

Natural (ice age)
cycles; pattern
repeats about every
100,000 years

400 350 300 250 200 150 100 50
Kyr Before Present

Vimeux et al EPSL2002




Predictions: global greenhouse gas emissions

Scenarios for GHG emissions from 2000 to 2100 in the
absence of additional climate policies
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Predictions: temperature

A2

A1B

B1

Year 2000 Constant
Concentrations

20th century

For the next two decades, a warming of about
0.2°C per decade is projected for a range of SRES
emission scenarios. Even if the concentrations of

all greenhouse gases and aerosols had been kept
constant at year 2000 levels, a further warming of
about 0.1°C per decade would be expected. {10.3,
10.7}

IPCC AR4



Predictions: temperature

B1 2011 -2030 B1: 2046-2065 B1:2080-2099 _

| e —
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Figure 10.8. Multi-model mean of annual mean surface warming (surface air temperature change, °C) for the scenarios B1 (top), A1B (middle) and A2 (bottom), and three
time periods, 2011 to 2030 (left), 2046 to 2065 (middle) and 2080 to 2099 (right). Stippling is omitted for clarity (see text). Anomalies are relative to the average of the period
1980 to 1999. Results for individual models can be seen in the Supplementary Material for this chapter.




Predictions: precipitation
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Predictions: ice & snow
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Northern Europe: what lies ahead?

Annual

Temp Response (°C)
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Northern Europe: what lies ahead?

mean 1980-2000 mean 2080-2100



Northern Europe: what lies ahead?

Gudrun-storm, southern Sweden Jan 2005: max wind speeds
165 km/h, 75 million m? forest destroyed



Finland: what lies ahead?

e temperature increase in near future ca. 0.4 £ 0.1° C / decade
e Winters become shorter
e increased likelihood of extreme high temperatures

e precipitation increases particularly in winter, but summer
rains still more abundant

* heavy rainfall events become stronger in all seasons
 snow cover will diminish especially in early and late winter

e interior and northern Finland may initially get more snow in
nearest decades



Nature of change

E Forcing j

Response Tlpplng Point

Time

« \arious responses of a climate variable to forcing
« smooth or threshold transition; return likewise or impossible



Ecological effects of climate change

o distribution shifts, range limitations
 phenology

e population and community dynamics,
Including trophic interactions

e traits, incl. behaviour




Distribution shifts

* species limited by physical
constraints of the environment

 temperature, precipitation, nutrients,
length of growing season

e interactions within & among trophic
levels (e.g. prey distribution)

YUODEN LEMP@SUMMA, 1971-2000, A2 -SKEN VUODEN L#MP@SU
TN TN

temp.
sum
1971-
2000




DiStribution Shifts, examples Figure 1. Distribution of P. aegeria in

the UK at a gnd resolution of 10 km.

(a} Historical distribution: red
squares, pre-1915 distribution: black
squares, most restricted distribution
(19151939}, () Current recorded
fdistribution: black squares, species
'%I‘L"‘E"['ﬂl‘l‘]f‘t‘] 194H0-1989: red squares,
. hrst recent record 1990-1997.

Pre-1939 Current (-1997)

Hill et al. PRSL1999



Distribution shifts; examples Lindgren et al. EHP2000

1980s

Figure 1. White dots illu:
19805 and (E) in the mid-1930s. 1dy region is within the black line,

to the 1980s. Our results indicate that the reported northern shift in the distribution limit of
ticks is related to fewer days during the winter seasons with low minimum temperatures, i.e.,
below -12°C. At high latitudes, low winter temperatures had the clearest impact on tick distribu-
tion. Further south, a combination of mild winters (fewer days with minimum temperatures
below -7°C) and extended spring and autumn seasons (more days with minimum temperatures
from 5 to 8°C) was related to increases in tick density. We conclude that the relatively mild cli-
mate of the 1990s in Sweden is probably one of the primary reasons for the observed increase of

density and geographic range of I. ricinus ticks. Key words. climate change, geographic distribu-



Distribution shifts due? Finnish voles
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Distribution shifts due? Finnish voles
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Distribution shifts due? Finnish voles
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Distribution shifts due? Finnish voles
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Distribution shifts due? Finnish voles
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Distribution shifts due? Finnish voles
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Distribution shifts due? Finnish voles
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Distribution shifts due? Finnish voles
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Distribution shifts due? Finnish voles
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Phenological changes

e many biological processes governed
by seasonal cues, e.g. temperature
sum

e Vegetation, budburst
e migration, moult
* breeding

e voles: migratory raptors & owls



Phenological changes; examples

 Finnish migratory birds have advanced spring arrival by ~1
day / decade (median arrival date)

82 species, 35 arrival years 163 sp. altogether

y = 0.0032x2-0.4031x + 109.51
R*= 0.5045

E. Lehikoinen, unpubl.



Phenoloqgy and trophic interactions

Before climate change : | During climate change |
® O rg an i S m S ad apte d to Frequency of dates of: Frequency of dates of:

: laying hatching | fledging laying hatcing  fledging
current environmental | =
food conditions

o climate change will not
necessarily affect all
components of food
chains/webs
simultaneously

En\rlrmm ent at || Environment at Environment a e
time of decision- | | time of selection time of decision- | 4me of selection
ma#ﬁng making

may not match Visser et al. ARE2004

* responses by organisms

->mismatch



Changes 1n population dynamics

e larch budmoth; typically cyclic forest insect

o cyclic dynamics for 1100 years, absence of outbreaks since
early 1980°s -> temperature rise?

severe
outbreak minor  outbreak -
outbreak ~ absence !

temperature ("C)

o]

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

year

-

Figure 3. Long-term LBM and temperature reconstructions for the European Alps. (a) MXD-based LBM outbreak
reconstruction since AD 832. Time-series is the age-corrected difference series between gap-filled and original MXD data (for
details on gap-filling and age-correction procedures, see the electronic supplementary material). Values less than —0.005gcm ™~
are shown. (b) The temperature model (white curve) is shown together with the standard error (coloured band) derived from the fit
with instrumental data. Dashed lines indicate the last LBM mass outbreak in 1981 (vertical) and the upper standard error limit
recorded in the late ninth century (horizontal).

Esper et al. PRSL2007



Seasonality and population dynamics

o cyclicity in small rodents strongly affected by seasonality

* density dependence (dd) structures vary seasonally, strong
direct and delayed dd in population growth in winter, also
In summer

summer involves breeding, population growth, access to
diverse growing food sources, and interaction with more
predators. In contrast, the winter is characterized by less
diverse and nonreplenishing food sources, aging, and el-

evated importance of mustelid predators that specialize in
hunting below the snow cover. These factors are not likely
to change in compensatory fashion as the length of seasons
change.

Hansen et al. AmNat1999



Seasonality and population dynamics

e seasonality = cyclicity
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Seasonality and population dynamics

e recent findings show disappearing cycles across Europe

Microtus agrestis (I Myodes rufocanus
Umea (Sweden) Umea (Sweden) //\
N=44 Ay N=27 Ay

CYCLIC
2 3 4 56/
(period)

.E)

970 980 1990 (
®
- G Microtus agrestis
Heinola (Finland)
" N=5 "
>
E % “ [
1870 9 2000 2010

980 990 2000 2010 .
Microtus arvalis F mus
Rochefort (France) Bialowiei §Poland)
N=1 = . N=3
foa6
2010




Seasonality and population dynamics

e destructive sampling

e natural fluctuation pattern

* habitat fragmentation

e adverse winter

e predation Increase

» food/shelter decrease

» food-quality decrease

e environmental stress/disease

Clethrionomys glareolus

Density index

2000 2005

C. rufocanus

Density index
- [ =]

63
o
k=
Pt
=
w
c
[
ot

Fig. 1. T i indices for (a) Clethrionomys glareolus,
(b) C. rufc nd (c) Microtus agrestis in spring and fall
from fall 1971 to fall 2002.

Hornfeldt Oikos2004




Direct vs. indirect effects of climate change

o direct: changing abiotic
environmental conditions have an
Immediate effect on organisms

e indirect: changes In focal species
are mediated by changes on other
trophic levels (vegetation,
predation, parasitism, etc.)

e top-down vs. bottom-up

* non-exclusive, very difficult to
tease apart

Schmitz et al. BioScience2003



Direct effects of climate on rodent dynamics

e boreal and arctic mammals: thermo-
regulation

o (extreme) cold or heat (e.g. moose
experience heat stress in winter when
temp > -5°C, In summer when > 14°C)

e precipitation , drought

 snow depth

L% w-40%  Alr

o catastrophies

-10% to -25%  Snow

e in small rodents: snow cover
critical; provides shelter from
predators and insulates!




Direct effects of climate on rodent dynamics

o disappearing field vole cycles in
the UK

e gradual decline in strength of
both direct and delayed density
dependence

« also decline In degree of spatial
autocorrelation

e major changes occurred in Bierman et al. 2006

winter : ..
region of cyclicity:

under parabola



Direct effects of climate on rodent dynamics

Kielder Forest, UK
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Bierman et aI. 2006




Direct effects of climate on rodent dynamics

e recurrent melting and freezing
episodes detrimental to vole
overwinter survival; density-
Independent phenomenon

e ice formation on ground
reduces thermal insulation and
accessibility to food resources

0 5 10 15
» also predisposes to spring Number of days >0°C
- FI1G. 3. Yearly winter tundra vole survival rate (with 95%
fl OOd I ng confidence intervals) plotted against the number of days with

temperatures above 0°C during midwinter (December—Feb-

ruary). Mean winter temperature and the year are denoted

® Stabi I iSi ng eﬁect On dynamiCS above the survival rate estimates.
-> |oss of cyclicity? Aars & Ims Ecology2002




Direct effects of climate on rodent dynamics

e lemming dynamics cyclic between
1970-1994, non-cyclic since

e Winter weather and snow conditions
(incr. temperature and humidity) ->
wetter conditions in the subnivean L
space -> population dynamics ‘& " o

] } Lemmings

iy

o s

5 -’i ! [ Other rodents
Lo - 8 !

0 AN AN YA

19701975 1980 1985 1990 1995 2000 2005
Year

Catch rate

o

(4]
E
i
=

@

i;?':

o]

e

[ =

1]

5

o

rate of change

0 1 2 a 4 )
Average hardness of lowest snow layer (kg cm—=)

e

pac
RS R e

Kausrud et al. 2008
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Direct effects of climate on rodent dynamics

(a) North
cyclic — temporary
disappearance

weakly cyclic, no
change

1970 1980 1990
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' increasingly strong
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1970 1950
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Korpela et al. 2013



Winter delayed density dependence

Direct effects of climate on rodent 3 et winter: Shallow snow cover

dynamics \

e both winter and summer delayed
density dependence is I
ast winter: Ueep snow co

Influenced by growing season :
A 10 12 14 16 18
Cond Itl ons Previous summer temperature

e breeding season determines
population dynamics

Summer delayed density dependence

-2 0 2 4 6 8

Spring temperature

Korpela et al. 2013



Indirect effects of climate on rodent dynamics

e top-down: trophic levels
above focal species affected
-> cascades

« owl phenology; temperatures
and snow pack may
Influence breeding

« owl hunting success
governed by snow pack
hardness

« mustelids not likely to be
directly affected (winter
pelage..?)




Indirect effects of climate on rodent d

[ ]|%of variation in vole population growth rates explained by the small mustelid index
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Korpela et al. 2013




Indirect effects of climate on rodent dynamics

Vole index
Vole index

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010
karvia kauhava

4l

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010
koli korpilahti

Vole index
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Vole index
Vole index

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010

voles x predators x climate —model provides best fit to

data.
Korpela et al. 2015



Indirect effects of climate on rodent dynamics

e changes in vegetation species
composition, range shifts

e spatial mismatch between
resource and consumer

e productivity will increase in N
Europe -> high arctic
ecosystems particularly
vulnerable (lemmings!)

* vegetation responses: growth Akl
VS ] d efe n Ses S2004, ACLA | Map SCford G‘rabl'uzfn: -‘ -




Indirect effects of climate on rodent dynamics: feedbacks

GLOBAL WARMING

N Fennoscandia »L

+ WINTER TEMPERATURE

+ SUMMER TEMPERATURE -
+ SNOW DEPTH

+ SOIL TEMPERATURE

+ PINE SAWFLIES

+ AUTUMNAL MOTHS

+ PREDATORS OF
AUTUMNAL MOTHS

+ LICHENS + RECOVERY BY BIRCH

. PINE €———— i

> + BROADLEAFED ———> + LITTER QUALITY

T ! - PINE FORESTS
. N SUPPLY + BIRCH FORESTS

INCREASE IN BROADLEAFED TREES
INCREASE IN SPRUCE

Figure 2. Effects of climatic warming on those biotic mteractions likely to influence forest

composifion in northern Fennoscandia.
Niemeld et al. ClimChange2001
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Climate and rodent d IcS: predictions

cycles lost...

Vole index

P
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Irregular
fluctuations &
outbreaks...

v Vole index
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Korpela et al. 2015




N o g kB~ W

Conclusions

. global temperature is rising, changes in precipitation patterns

northern Europe will experience warmer summers and
winters, more precipitation especially in winter; ecotones shift
north

small rodent species’ ranges will change

breeding phenology might change -> mismatch with resources
population dynamics change / cycles lost; seasonality is key
direct effects: thermoregulation, precipitation, snow depth etc.

Indirect effects: changes in natural enemies or vegetation
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