#### Optimal design of experiments Session 1: Introduction

#### Peter Goos



# Purpose of experimentation

- quantify relationship between some response(s) and one or more explanatory / experimental variables
- involves changing the system under study and observing the effect changes have on the system (↔ observational study or survey)
- advantages:
  - draw causal inferences rather than note patterns
  - informative events can be made to happen
  - yields the data that are needed

## Purpose of this course

- there are huge libraries with lists of experimental designs
- practical problems rarely allow one of these to be used without any change
- people often change their problem to fit the experimental design
- this course is about creating the best possible design for a given problem

- response y = voltage output
- depends on  $\begin{cases} blade speed & x_1 \\ extension & x_2 \end{cases}$
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$   $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \epsilon$
- linear model in  $\beta$ -parameters

#### Example from industry

• 
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_{12} x_{1i} x_{2i} + \beta_{11} x_{1i}^2 + \beta_{22} x_{2i}^2 + \epsilon_i$$

data

| run | voltage | speed       | extension |
|-----|---------|-------------|-----------|
| 1   | 1.23    | 5300        | 0.000     |
| 2   | 3.13    | 8300        | 0.000     |
| 3   | 1.22    | 5300        | 0.012     |
| •   | •       | •<br>•<br>• | •<br>•    |
| 11  | 1.59    | 6800        | 0.006     |
|     | 1       | treatment   |           |

Examples from medicine and psychology

- medicine
  - response y = corneal hydration
  - depends on  $CO_2$  level x
  - $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$
  - two treatments per subject
- psychology
  - response y = number of mistakes on a test
  - depends on number of hours test person is awake
  - $y = \beta_0 + \beta_1 x + \epsilon$

#### Choice experiment

- response y = race bicycle that is bought
- depends on  $\begin{cases} type of frame & x_1, x_2 \\ brand of gears and brakes & x_3 \\ type of wheels & x_4 \end{cases}$
- utility  $U = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$
- multinomial logit model

 $P(\text{option 1 is chosen}) = \frac{e^{\beta_0 + \beta_1 x_{11} + \dots}}{\sum_i e^{\beta_0 + \beta_1 x_{1i} + \dots}}$ 

• nonlinear in the  $\beta$ -parameters

7 / 19

## Harketing experiment

Which of the two race bicycles would you prefer if the options only differ with respect to the attributes shown?

| Carbon frame               | Aluminium frame           |
|----------------------------|---------------------------|
| Classic frame              | Sloping frame             |
| Mavic Ksyrium SL wheels    | Shimano WH-7701 wheels    |
| Campagnolo Record groupset | Shimano Dura-Ace groupset |

## Rating-based conjoint experiment

- response y = willingness-to-pay for a bicycle
- depends on  $\begin{cases} type of frame & x_1, x_2 \\ brand of gears and brakes & x_3 \\ type of wheels & x_4 \end{cases}$

• 
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$$

## Hodels and variables

variables = factors (engineers call these)

parameters)

- quantitative variables vs. qualitative (categorical) ones
- linear models vs. *non-linear* models

   (non-linear in the unknown model parameters)
- most examples involve quantitative variables but methodology can easily handle qualitative variables too
- first: linear models!

#### Example from industry

• 
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_{12} x_{1i} x_{2i} + \beta_{11} x_{1i}^2 + \beta_{22} x_{2i}^2 + \epsilon_i$$

data

| run | voltage | speed       | extension |
|-----|---------|-------------|-----------|
| 1   | 1.23    | 5300        | 0.000     |
| 2   | 3.13    | 8300        | 0.000     |
| 3   | 1.22    | 5300        | 0.012     |
| •   | •       | •<br>•<br>• | •<br>•    |
| 11  | 1.59    | 6800        | 0.006     |
|     | 1       | treatment   |           |

Variable scaling

|     | y y     | $x_1$                        | $x_2$     |
|-----|---------|------------------------------|-----------|
| run | voltage | speed                        | extension |
| 1   | 1.23    | -1                           | -1        |
| 2   | 3.13    | +1                           | -1        |
| 3   | 1.22    | -1                           | +1        |
| •   | •       | :                            | :         |
| 11  | 1.59    | 0                            | 0         |
|     |         | $\downarrow$                 |           |
|     |         | $x = \frac{u - u_0}{\Delta}$ |           |

where u = original value,  $u_0$  = midpoint between min and max,  $\Delta$  = half the interval

12 / 19

## Assumption of independence

- $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_{12} x_{1i} x_{2i} + \beta_{11} x_{1i}^2 + \beta_{22} x_{2i}^2 + \epsilon_i$
- order of experimental runs is randomized
- make sure responses are independent (e.g. reset factor levels for every run)
- all  $\epsilon_i$  independent
- $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

 $\Rightarrow$  ordinary least squares (OLS) is best linear unbiased estimator

## **OLS** estimator

$$\boldsymbol{\hat{\beta}} = \left( \mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

where

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_{0} & \hat{\beta}_{1} & \hat{\beta}_{2} & \hat{\beta}_{12} & \hat{\beta}_{11} & \hat{\beta}_{22} \end{bmatrix}^{T}$$

$$\mathbf{X} = \begin{bmatrix} 1 & -1 & -1 & +1 & +1 & +1 \\ 1 & +1 & -1 & -1 & +1 & +1 \\ 1 & +1 & -1 & -1 & +1 & +1 \\ \vdots & & & \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\stackrel{\uparrow}{\underset{\text{int. } x_{1}}{}} \stackrel{\uparrow}{\underset{x_{2}}{}} \stackrel{\uparrow}{\underset{x_{1}x_{2}}{}} \stackrel{\uparrow}{\underset{x_{1}}{}} \stackrel{\uparrow}{\underset{x_{2}}{}} \stackrel{\uparrow}{\underset{x_{2}}{}}$$

$$\mathbf{y} = \begin{bmatrix} 1.23 & 3.13 & 1.22 & \dots & 1.59 \end{bmatrix}^{T}$$

#### Estimated model

estimate of factor effects

$$\mathbf{b} = \begin{bmatrix} 1.67 & 0.65 & -0.29 & -0.30 & 0.22 & 0.02 \end{bmatrix}^{T}$$

estimated model

$$\hat{y}_i = 1.67 + 0.65x_1 + (-0.29)x_2 + (-0.30)x_1x_2 + 0.22x_1^2 + 0.02x_2^2 = 1.67 + 0.65x_1 - 0.29x_2 - 0.30x_1x_2 + 0.22x_1^2 + 0.02x_2^2 = \mathbf{f}^T(\mathbf{x}_i) \mathbf{b}$$

where  $\mathbf{f}^{T}(\mathbf{x}_{i}) = \begin{bmatrix} 1 & x_{1i} & x_{2i} & x_{1i}x_{2i} & x_{1i}^{2} & x_{2i}^{2} \end{bmatrix}$ 

15 / 19

Inference

• variance-covariance matrix of  $\hat{\beta}$  $var(\hat{\beta}) = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$ 

#### • estimate $\sigma^2$ using mean squared error

 $MSE = \frac{\mathbf{r}^T \mathbf{r}}{n-p} \rightarrow \text{sum of squared residuals}$ where

$$\mathbf{r} = \mathbf{y} - \mathbf{X}\mathbf{b}$$
  
 $n = \#$  observations  
 $p = \#$  model parameters

#### Variance-covariance matrix

$$\operatorname{var}(\hat{\boldsymbol{\beta}}) = \sigma^{2} (\mathbf{X}^{T} \mathbf{X})^{-1} = \begin{bmatrix} 0.26 & 0 & 0 & -0.16 & -0.16 \\ 0 & 0.17 & 0 & 0 & 0 \\ 0 & 0 & 0.17 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.25 & 0 & 0 \\ -0.16 & 0 & 0 & 0 & 0.39 & -0.11 \\ -0.16 & 0 & 0 & 0 & -0.11 & 0.39 \end{bmatrix}$$

17 / 19

## Information matrix

$$\frac{1}{\sigma^2} \left( \mathbf{X}^T \mathbf{X} \right) = \begin{bmatrix} 11 & 0 & 0 & 0 & 6 & 6 \\ 0 & 6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 6 & 0 & 0 & 0 & 6 & 4 \\ 6 & 0 & 0 & 0 & 4 & 6 \end{bmatrix}$$

(diagonal contains "effective sample sizes")

point prediction

$$\hat{y}_i = 1.67 + 0.65x_1 - 0.29x_2 - 0.30x_1x_2$$
  
+  $0.22x_1^2 + 0.02x_2^2$   
=  $\mathbf{f}^T(\mathbf{x}_i) \mathbf{b}$ 

prediction variance

$$\operatorname{var}(\hat{y}_i) = \sigma^2 \mathbf{f}^T(\mathbf{x}_i) \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{f}(\mathbf{x}_i)$$