Optimal design of experiments

Session 1: Introduction

Peter Goos

Universiteit Antwerpen

は

Purpose of experimentation

- quantify relationship between some response(s) and one or more explanatory / experimental variables
- involves changing the system under study and observing the effect changes have on the system (\leftrightarrow observational study or survey)
- advantages:
- draw causal inferences rather than note patterns
- informative events can be made to happen
- yields the data that are needed

- Purpose of this course

- there are huge libraries with lists of experimental designs
- practical problems rarely allow one of these to be used without any change
- people often change their problem to fit the experimental design
- this course is about creating the best possible design for a given problem

Example from industry

- response $y=$ voltage output
- depends on $\begin{cases}\text { blade speed } & x_{1} \\ \text { extension } & x_{2}\end{cases}$
- $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon$
$y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\epsilon$
$y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\beta_{11} x_{1}^{2}+\beta_{22} x_{2}^{2}+\epsilon$
- linear model in β-parameters

Example from industry

- $y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}$ $+\beta_{12} x_{1 i} x_{2 i}+\beta_{11} x_{1 i}^{2}+\beta_{22} x_{2 i}^{2}+\epsilon_{i}$
- data

run	voltage	speed	extension
1	1.23	5300	0.000
2	3.13	8300	0.000
3	1.22	5300	0.012
\vdots	\vdots	\vdots	\vdots
11	1.59	6800	0.006

treatment

\downarrow Examples from medicine and psychology

- medicine
- response $y=$ corneal hydration
- depends on CO_{2} level x
- $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\epsilon$
- two treatments per subject
- psychology
- response $y=$ number of mistakes on a test
- depends on number of hours test person is awake
- $y=\beta_{0}+\beta_{1} x+\epsilon$

Choice experiment

- response $y=$ race bicycle that is bought
- depends on
$\begin{cases}\text { type of frame } & x_{1}, x_{2} \\ \text { brand of gears and brakes } & x_{3} \\ \text { type of wheels } & x_{4}\end{cases}$
- utility $U=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+\epsilon$
- multinomial logit model

$$
P(\text { option } 1 \text { is chosen })=\frac{e^{\beta_{0}+\beta_{1} x_{11}+\ldots}}{\sum_{i} e^{\beta_{0}+\beta_{1} x_{1 i}+\ldots}}
$$

- nonlinear in the β-parameters

\downarrow Marketing experiment

Which of the two race bicycles would you prefer if the	
options only differ with respect to the attributes shown?	
Carbon frame	Aluminium frame
Classic frame	Sloping frame
Mavic Ksyrium SL wheels	Shimano WH-7701 wheels
Campagnolo Record groupset	Shimano Dura-Ace groupset

Rating-based conjoint experiment

- response $y=$ willingness-to-pay for a bicycle
- depends on
$\begin{cases}\text { type of frame } & x_{1}, x_{2} \\ \text { brand of gears and brakes } & x_{3} \\ \text { type of wheels } & x_{4}\end{cases}$
- $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+\epsilon$

Models and variables

- variables = factors
(engineers call these parameters)
- quantitative variables vs. qualitative (categorical) ones
- linear models vs. non-linear models (non-linear in the unknown model parameters)
- most examples involve quantitative variables but methodology can easily handle qualitative variables too
- first: linear models!

Example from industry

- $y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}$

$$
+\beta_{12} x_{1 i} x_{2 i}+\beta_{11} x_{1 i}^{2}+\beta_{22} x_{2 i}^{2}+\epsilon_{i}
$$

- data

run	voltage	speed	extension
1	1.23	5300	0.000
2	3.13	8300	0.000
3	1.22	5300	0.012
\vdots	\vdots	\vdots	\vdots
11	1.59	6800	0.006

treatment

\downarrow Variable scaling

run	y voltage	x_{1} speed	x_{2} extension
1	1.23	-1	-1
2	3.13	+1	-1
3	1.22	-1	+1
\vdots	\vdots	\vdots	\vdots
11	1.59	0	0
		\downarrow	
		$x=\frac{u-u_{0}}{\Delta}$	

where $u=$ original value, $u_{0}=$ midpoint between \min and max, $\Delta=$ half the interval

Assumption of independence

- $y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}$ $+\beta_{12} x_{1 i} x_{2 i}+\beta_{11} x_{1 i}^{2}+\beta_{22} x_{2 i}^{2}+\epsilon_{i}$
- order of experimental runs is randomized
- make sure responses are independent (e.g. reset factor levels for every run)
- all ϵ_{i} independent
- $\epsilon_{i} \stackrel{\mathrm{iid}}{\sim} N\left(0, \sigma^{2}\right)$
\Rightarrow ordinary least squares (OLS) is best linear unbiased estimator

OLS estimator

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

where

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left[\begin{array}{llllll}
\hat{\beta}_{0} & \hat{\beta}_{1} & \hat{\beta}_{2} & \hat{\beta}_{12} & \hat{\beta}_{11} & \hat{\beta}_{22}
\end{array}\right]^{T} \\
\mathbf{X} & =\left[\begin{array}{cccccc}
1 & -1 & -1 & +1 & +1 & +1 \\
1 & +1 & -1 & -1 & +1 & +1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\uparrow & \uparrow \\
\uparrow & \uparrow \\
\uparrow & \uparrow \\
\text { int. } & x_{1} \\
x_{2} & x_{1} x_{2}
\end{aligned} x_{1}^{2} \quad x_{2}^{2} .
$$

Estimated model

- estimate of factor effects

$$
\mathbf{b}=\left[\begin{array}{llllll}
1.67 & 0.65 & -0.29 & -0.30 & 0.22 & 0.02
\end{array}\right]^{T}
$$

- estimated model

$$
\begin{aligned}
\hat{y}_{i}= & 1.67+ \\
& 0.65 x_{1}+(-0.29) x_{2}+(-0.30) x_{1} x_{2} \\
& +0.22 x_{1}^{2}+0.02 x_{2}^{2} \\
= & 1.67+ \\
\quad & 0.65 x_{1}-0.29 x_{2}-0.30 x_{1} x_{2} \\
& +0.22 x_{1}^{2}+0.02 x_{2}^{2} \\
= & \mathbf{f}^{T}\left(\mathbf{x}_{i}\right) \mathbf{b}
\end{aligned}
$$

where $\mathbf{f}^{T}\left(\mathbf{x}_{i}\right)=\left[\begin{array}{llllll}1 & x_{1 i} & x_{2 i} & x_{1 i} x_{2 i} & x_{1 i}^{2} & x_{2 i}^{2}\end{array}\right]$

Inference

- variance-covariance matrix of $\hat{\beta}$

$$
\operatorname{var}(\hat{\beta})=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

- estimate σ^{2} using mean squared error

$$
\text { MSE }=\frac{\mathbf{r}^{T} \mathbf{r}}{n-p} \rightarrow \text { sum of squared residuals }
$$ where

$$
\begin{aligned}
& \mathbf{r}=\mathbf{y}-\mathbf{X b} \\
& n=\# \text { observations } \\
& p=\# \text { model parameters }
\end{aligned}
$$

Variance-covariance matrix

$\operatorname{var}(\hat{\beta})=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=$

$$
\left[\begin{array}{cccccc}
0.26 & 0 & 0 & 0 & -0.16 & -0.16 \\
0 & 0.17 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.17 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.25 & 0 & 0 \\
-0.16 & 0 & 0 & 0 & 0.39 & -0.11 \\
-0.16 & 0 & 0 & 0 & -0.11 & 0.39
\end{array}\right]
$$

\checkmark Information matrix

$$
\frac{1}{\sigma^{2}}\left(\mathbf{X}^{T} \mathbf{X}\right)=\left[\begin{array}{cccccc}
11 & 0 & 0 & 0 & 6 & 6 \\
0 & 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
6 & 0 & 0 & 0 & 6 & 4 \\
6 & 0 & 0 & 0 & 4 & 6
\end{array}\right]
$$

(diagonal contains "effective sample sizes")

- point prediction

$$
\begin{aligned}
\hat{y}_{i}= & 1.67+0.65 x_{1}-0.29 x_{2}-0.30 x_{1} x_{2} \\
& +0.22 x_{1}^{2}+0.02 x_{2}^{2} \\
= & \mathbf{f}^{T}\left(\mathbf{x}_{i}\right) \mathbf{b}
\end{aligned}
$$

- prediction variance

$$
\operatorname{var}\left(\hat{y}_{i}\right)=\sigma^{2} \mathbf{f}^{T}\left(\mathbf{x}_{i}\right)\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{f}\left(\mathbf{x}_{i}\right)
$$

