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Purpose of experimentation

Ï quantify relationship between some
response(s) and one or more explanatory /
experimental variables

Ï involves changing the system under study and
observing the effect changes have on the
system (↔ observational study or survey)

Ï advantages:
Ï draw causal inferences rather than note patterns
Ï informative events can be made to happen
Ï yields the data that are needed
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Purpose of this course

Ï there are huge libraries with lists of
experimental designs

Ï practical problems rarely allow one of these to
be used without any change

Ï people often change their problem to fit the
experimental design

Ï this course is about creating the best possible
design for a given problem
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Example from industry

Ï response y = voltage output

Ï depends on

{
blade speed x1

extension x2

Ï y =β0 +β1x1 +β2x2 +ε

y =β0 +β1x1 +β2x2 +β12x1x2 +ε

y =β0 +β1x1 +β2x2 +β12x1x2 +β11x2
1 +β22x2

2 +ε

Ï linear model in β-parameters
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Example from industry

Ï yi =β0 +β1x1i +β2x2i

+β12x1ix2i +β11x2
1i +β22x2

2i +εi

Ï data

run voltage speed extension
1 1.23 5300 0.000
2 3.13 8300 0.000
3 1.22 5300 0.012
...

...
...

...
11 1.59 6800 0.006

treatment
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Examples from medicine
and psychology

Ï medicine
Ï response y = corneal hydration
Ï depends on CO2 level x
Ï y =β0 +β1x+β2x2 +ε
Ï two treatments per subject

Ï psychology
Ï response y = number of mistakes on a test
Ï depends on number of hours test person is awake
Ï y =β0 +β1x+ε
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Choice experiment

Ï response y = race bicycle that is bought
Ï depends on

type of frame x1,x2

brand of gears and brakes x3

type of wheels x4

Ï utility U =β0 +β1x1 +β2x2 +β3x3 +β4x4 +ε

Ï multinomial logit model

P(option 1 is chosen) = eβ0+β1x11+...∑
i eβ0+β1x1i+...

Ï nonlinear in the β-parameters

7 / 19

Marketing experiment

Which of the two race bicycles would you prefer if the
options only differ with respect to the attributes shown?

Carbon frame Aluminium frame
Classic frame Sloping frame

Mavic Ksyrium SL wheels Shimano WH-7701 wheels
Campagnolo Record groupset Shimano Dura-Ace groupset
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Rating-based conjoint experiment

Ï response y = willingness-to-pay for a bicycle
Ï depends on

type of frame x1,x2

brand of gears and brakes x3

type of wheels x4

Ï y =β0 +β1x1 +β2x2 +β3x3 +β4x4 +ε
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Models and variables

Ï variables = factors (engineers call these
parameters)

Ï quantitative variables vs. qualitative
(categorical) ones

Ï linear models vs. non-linear models
(non-linear in the unknown model parameters)

Ï most examples involve quantitative variables
but methodology can easily handle qualitative
variables too

Ï first: linear models!
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Example from industry

Ï yi =β0 +β1x1i +β2x2i

+β12x1ix2i +β11x2
1i +β22x2

2i +εi

Ï data

run voltage speed extension
1 1.23 5300 0.000
2 3.13 8300 0.000
3 1.22 5300 0.012
...

...
...

...
11 1.59 6800 0.006

treatment
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Variable scaling

y x1 x2

run voltage speed extension
1 1.23 −1 −1
2 3.13 +1 −1
3 1.22 −1 +1
...

...
...

...
11 1.59 0 0

↓
x = u−u0

∆

where u = original value, u0 = midpoint between
min and max, ∆ = half the interval
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Assumption of independence

Ï yi =β0 +β1x1i +β2x2i

+β12x1ix2i +β11x2
1i +β22x2

2i +εi

Ï order of experimental runs is randomized
Ï make sure responses are independent

(e.g. reset factor levels for every run)
Ï all εi independent

Ï εi
iid∼ N(0,σ2)

⇒ ordinary least squares (OLS) is best linear
unbiased estimator
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OLS estimator
Ï β̂= (

XT X
)−1

XT y

where

β̂= [
β̂0 β̂1 β̂2 β̂12 β̂11 β̂22

]T

X =


1 −1 −1 +1 +1 +1
1 +1 −1 −1 +1 +1

...
1 0 0 0 0 0


↑ ↑ ↑ ↑ ↑ ↑

int. x1 x2 x1x2 x2
1 x2

2

y = [
1.23 3.13 1.22 . . . 1.59

]T
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Estimated model

Ï estimate of factor effects

b = [
1.67 0.65 −0.29 −0.30 0.22 0.02

]T

Ï estimated model

ŷi = 1.67+0.65x1 + (−0.29)x2 + (−0.30)x1x2

+0.22x2
1 +0.02x2

2

= 1.67+0.65x1 −0.29x2 −0.30x1x2

+0.22x2
1 +0.02x2

2

= fT (xi)b

where fT (xi) =
[
1 x1i x2i x1ix2i x2

1i x2
2i

]
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Inference
Ï variance-covariance matrix of β̂

var(β̂) =σ2(XT X)−1

Ï estimate σ2 using mean squared error

MSE = rT r

n−p

→ sum of squared residuals

→ residual degrees of freedom

where

r = y−Xb

n = # observations

p = # model parameters
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Variance-covariance matrix

var(β̂) =σ2(XT X)−1 =

0.26 0 0 0 −0.16 −0.16
0 0.17 0 0 0 0
0 0 0.17 0 0 0
0 0 0 0.25 0 0

−0.16 0 0 0 0.39 −0.11
−0.16 0 0 0 −0.11 0.39


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Information matrix

1

σ2

(
XT X

)=


11 0 0 0 6 6
0 6 0 0 0 0
0 0 6 0 0 0
0 0 0 4 0 0
6 0 0 0 6 4
6 0 0 0 4 6


(diagonal contains “effective sample sizes”)
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Ï point prediction

ŷi = 1.67+0.65x1 −0.29x2 −0.30x1x2

+0.22x2
1 +0.02x2

2

= fT (xi)b

Ï prediction variance

var
(
ŷi

)=σ2fT (xi)
(
XT X

)−1
f (xi)
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