Optimal design of experiments

Session 2: Standard designs

Peter Goos

- quantitative variables
 - first-order design
 - second-order design
- qualitative or categorical variables
 - completely randomized designs
 - block designs

Experimental design textbooks

- quantitative experimental variables
 - ► Box & Draper (1987), Myers & Montgomery (1995)
- → regression designs, response surface designs
 - qualitative experimental variables
 - Montgomery (1991), Wu & Hamada (2000)
- → anova
 - mixture variables
 - Cornell (2002)
 - optimal design
 - Atkinson, Donev & Tobias (2007)
 - orthogonal arrays
 - Hedayat, Sloane & Stufken (1999)
 - classical block designs
 - Cochran & Cox (1957), Cox (1958)

3 / 35

Two-level factorial design

- each experimental variable has 2 levels
- each combination of levels is tested
- number of combinations?

2 options for x_1 × 2 x_2 ∴

× 2 x_m x_m for m variables x_m x_m x_m x_m

2³ factorial design

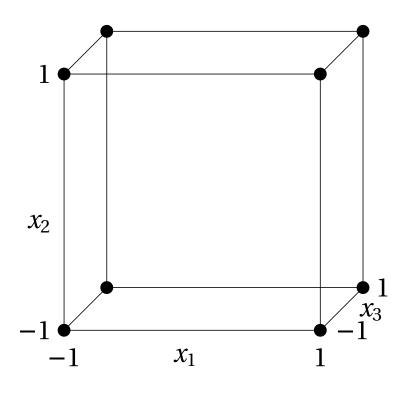
▶ three variables (m = 3)

► model?

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \epsilon$$

 \rightarrow *n* is power of 2

2³ factorial design



Information matrix 2³ factorial design

$$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 \end{bmatrix} = 8\mathbf{I}_{8}$$

7 / 35

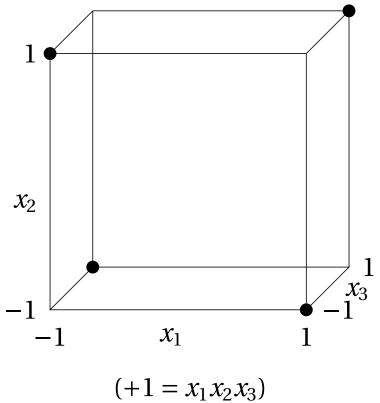
Other two-level designs

- two-level fractional factorial designs
 - 2^{m-f} fractional factorial design
 - not every combination is tested
 - screening purposes
 - full model cannot be estimated
 - \rightarrow *n* is a power of 2
- Plackett-Burman designs
 - only meant for estimating main-effects model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m$$

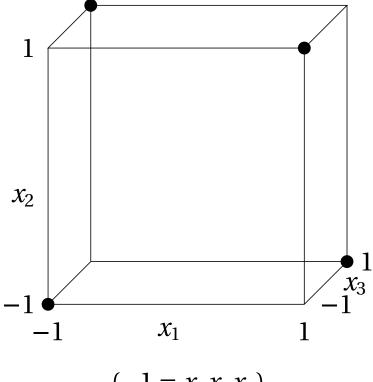
- \rightarrow *n* is a multiple of 4
- Hadamard matrices

2³⁻¹ factorial design



9 / 35

2³⁻¹ factorial design



 $(-1 = x_1 x_2 x_3)$

Plackett-Burman design

	x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_5	\mathcal{X}_6	\mathcal{X}_7
1	+1	+1	+1	-1	+1	-1	-1
2	-1	+1	+1	+1	-1	+1	-1
3	-1	- 1	+1	+1	+1	-1	+1
4	+1	-1	-1	+1	+1	+1	-1
5	-1	+1	-1	-1	+1	+1	+1
6	+1	- 1	+1	- 1	- 1	+1	+1
7	+1	+1	-1	+1	-1	-1	+1
8	-1	-1	-1	-1	-1	-1	-1

8-point Plackett-Burman design for m = 7

Hadamard matrices

- all these designs have excellent properties
- one of them is that

$$\operatorname{var}(\hat{\boldsymbol{\beta}}) = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$$

is a diagonal matrix (actually it is $\frac{\sigma^2}{n}$ **I**)

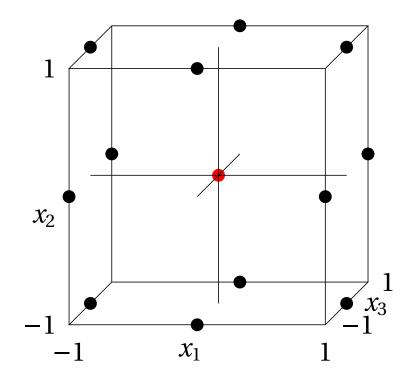
- all model parameters are estimated independently of each other
- all these designs can be used for quantitative and qualitative variables

13 / 35

Second-order designs

- designs for quantitative variables
 - Box-Behnken designs
 - central composite designs
- model for three variables

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$
$$+ \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3$$
$$+ \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{33} x_3^2 + \epsilon$$



15 / 35

Box-Behnken design

run	x_1	x_2	x_3
1	-1	-1	0
2	-1	1	0
3	1	-1	0
4	1	1	0
5	0	-1	-1
6	0	-1	1
7	0	1	-1
8	0	1	1
9	-1	0	-1
10	1	0	-1
11	-1	0	1
12	1	0	1
13	0	0	0
14	0	0	0
15	0	0	0

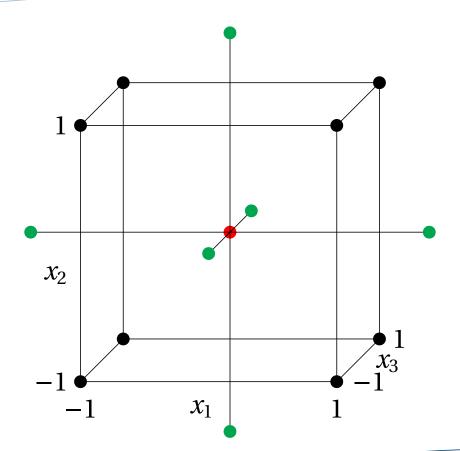
Information matrix

17 / 35

Central composite design

- ▶ Box & Wilson (1951)
- CCD
- ▶ 3 components:
 - 1. 2^m factorial (or 2^{m-f} fractional factorial) design
 - 2. 2m axial points (at distance α from center)
 - 3. at least one center point
 - $\rightarrow \alpha = 1$: face-centered CCD
 - $\rightarrow \alpha = \sqrt{m}$: spherical CCD

Central composite design $(\alpha > 1)$



19 / 35

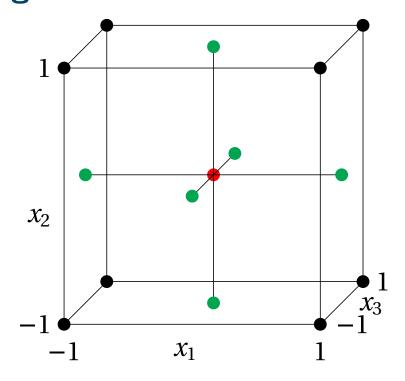
Central composite design

run	x_1	x_2	<i>x</i> ₃
1	-1	-1	-1
2	-1	-1	1
3	-1	1	-1
4	-1	1	1
5	1	-1	-1
6	1	-1	1
7	1	1	-1
8	1	1	1
9	-1.68	0	0
10	1.68	0	0
11	0	-1.68	0
12	0	1.68	0
13	0	0	-1.68
14	0	0	1.68
15	0	0	0
16	0	0	0

16	0	0	0	0	0	0	13.66	13.66	13.66]
0	13.66	0	0	0	0	0	0	0	0
0	0	13.66	0	0	0	0	0	0	0
0	0	0	13.66	0	0	0	0	0	0
0	0	0	0	8	0	0	0	0	0
0	0	0	0	0	8	0	0	0	0
0	0	0	0	0	0	8	0	0	0
13.66	0	0	0	0	0	0	24	8	8
13.66	0	0	0	0	0	0	8	24	8
13.66	0	0	0	0	0	0	8	8	24

21 / 35

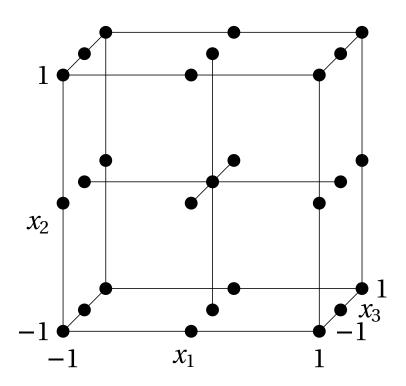
Face-centered central composite design



Three-level factorial design

- each experimental variable has 3 levels
- denoted by 3^m factorial design
- can be used for second-order models
- often used as candidate set for design construction algorithms
- $ightharpoonup 3^{m-f}$ factorial designs also exist

3^m factorial design



Other second-order designs

- many, many other second-order designs:
 - Hoke
 - Roquemore
 - Mee
 - small composite designs
 - **...**
- all have at least three levels for each experimental variable to capture curvature

25 / 35

Note on design regions

- quantitative factors
- cuboidal design regions

$$\begin{cases}
-1 \le x_1 \le +1 \\
\vdots \\
-1 \le x_m \le +1
\end{cases}$$

$$(x_1, x_2, \dots, x_m) \in [-1, +1]^m$$

spherical design regions

$$x_1^2 + x_2^2 + \dots + x_m^2 \le r^2$$

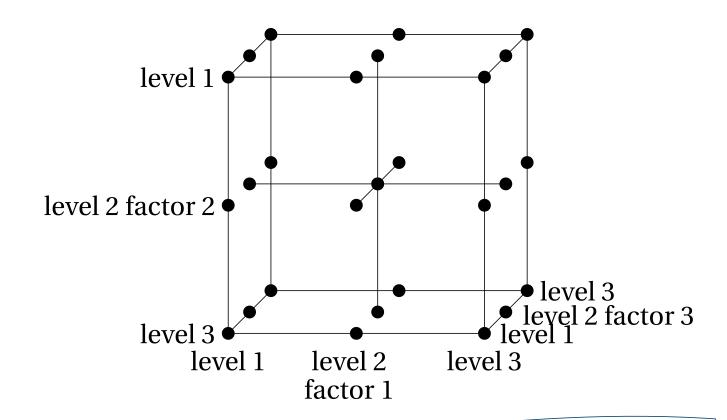
• design region is usually denoted by χ

- factorial designs with 2 or more levels
 - ▶ 3^m factorial design
 - ► 2 × 3 × 4 factorial design
 - fractional factorial designs
 - orthogonal arrays
- model (3 variables)

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}$$

anova type of models

3^m factorial design



	Factor						
Run	A	В	С	D	E		
1	0	0	0	0	0		
2	0	1	1	1	1		
3	1	0	1	0	1		
4	1	1	0	1	0		
5	2	0	0	1	1		
6	2	1	1	0	0		
7	3	0	1	1	0		
8	3	1	0	0	1		

29 / 35

Block designs

- useful when not all experimental tests can be done under homogeneous circumstances
- balanced incomplete block designs
 - BIBDs
 - 1 categorical experimental variable
 5 levels = treatments
 10 test persons = blocks
 - excellent properties
- partially balanced incomplete block designs
 - ► BIBDs often require large *n*
- latin square designs

Balanced incomplete block design

b		t	
1	1	2	3
2	1	2	4
3	1	2	5
4	1	3	4
5	1	3	5
6	1	4	5
7	2	3	4
8	2	3	5
9	2	4	5
10	3	4	5

5 treatments, 10 blocks of 3 treatments

31 / 35

Partially balanced incomplete block design

b		t	
1	1	2	3
2	1	2	4
3	1	5	6
4	2	5	6
5	3	4	5
6	3	4	6

6 treatments, 6 blocks of size 3

Latin square design

7	
CO	lumn
\mathbf{CO}	ıuıııı

row	1	2	3	4	5	6	7
1	A	В	С	D	Е	F	G
2	В	C	D	E	F	G	A
3	C	D	E	F	G	A	В
4	D	E	F	G	A	В	C
5	Е	F	D E F G	A	В	C	D
6	F	G	A	В	C	D	E
7	G	A	В	C	D	E	F

33 / 35

Sudoku design

column

row	1	2	3	4	5	6	7	8	9
1	3	1	8	7	2	4	9	6	5
2	4	2	7	6	9	5	8	1	3
3	9	6	5	1	8	3	4	7	2
4	1	8	4	9	3	6	2	5	7
5	2	9	3	5	7	1	6	8	4
6	5	7	6	2	4	8	3	9	1
7	7	5	9	4	6	2	1	3	8
8	6	3	2	8	1	7	5	4	9
9	8	4	1	3	5	9	7	2	6

Limitations of standard designs

- ▶ what if *n* is not a power of 2 or a multiple of 4?
- what if some of the level combinations of a design are forbidden?
- what if some of the blocks are smaller than others?
- what if you don't find an orthogonal array for your problem?