Optimal design of experiments

Session 2: Standard designs

Peter Goos

\checkmark

Universiteit Antwerpen

\downarrow
 Outline

- quantitative variables
- first-order design
- second-order design
- qualitative or categorical variables
- completely randomized designs
- block designs

Experimental design textbooks

- quantitative experimental variables
- Box \& Draper (1987), Myers \& Montgomery (1995)

\rightarrow regression designs, response surface designs

- qualitative experimental variables
- Montgomery (1991), Wu \& Hamada (2000)

\rightarrow anova

- mixture variables
- Cornell (2002)
- optimal design
- Atkinson, Donev \& Tobias (2007)
- orthogonal arrays
- Hedayat, Sloane \& Stufken (1999)
- classical block designs
- Cochran \& Cox (1957), Cox (1958)

৮

Two-level factorial design

- each experimental variable has 2 levels
- each combination of levels is tested
- number of combinations?

2	options for x_{1}
$\times 2$	x_{2}
\vdots	
$\times 2$	x_{m}
2^{m}	for m variables
$\rightarrow 2^{m}$	factorial design

U 2^{3} factorial design

- three variables ($m=3$)

$$
\begin{array}{c|ccc}
& x_{1} & x_{2} & x_{3} \\
\hline 1 & -1 & -1 & -1 \\
2 & +1 & -1 & -1 \\
3 & -1 & +1 & -1 \\
4 & +1 & +1 & -1 \\
5 & -1 & -1 & +1 \\
6 & +1 & -1 & +1 \\
7 & -1 & +1 & +1 \\
8 & +1 & +1 & +1
\end{array}
$$

- model?

$$
\begin{aligned}
y= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{12} x_{1} x_{2} \\
& +\beta_{13} x_{1} x_{3}+\beta_{23} x_{2} x_{3}+\beta_{123} x_{1} x_{2} x_{3}+\epsilon
\end{aligned}
$$

- n is power of 2

$\circlearrowleft \quad 2^{3}$ factorial design

Information matrix 2^{3} factorial design

$$
\mathbf{X}^{T} \mathbf{X}=\left[\begin{array}{llllllll}
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 8
\end{array}\right]=8 \mathbf{I}_{8}
$$

Other two-level designs

- two-level fractional factorial designs
- 2^{m-f} fractional factorial design
- not every combination is tested
- screening purposes
- full model cannot be estimated
- n is a power of 2
- Plackett-Burman designs
- only meant for estimating main-effects model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{m} x_{m}
$$

- n is a multiple of 4
- Hadamard matrices

(2^{3-1} factorial design

ひ 2^{3-1} factorial design

\downarrow Plackett-Burman design

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
1	+1	+1	+1	-1	+1	-1	-1
2	-1	+1	+1	+1	-1	+1	-1
3	-1	-1	+1	+1	+1	-1	+1
4	+1	-1	-1	+1	+1	+1	-1
5	-1	+1	-1	-1	+1	+1	+1
6	+1	-1	+1	-1	-1	+1	+1
7	+1	+1	-1	+1	-1	-1	+1
8	-1	-1	-1	-1	-1	-1	-1

8-point Plackett-Burman design for $m=7$

Hadamard matrices

$$
\begin{aligned}
H_{1} & =[1] \\
H_{2} & =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
H_{4} & =\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Two-level designs

- all these designs have excellent properties
- one of them is that

$$
\operatorname{var}(\hat{\beta})=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

is a diagonal matrix (actually it is $\frac{\sigma^{2}}{n} \mathbf{I}$)

- all model parameters are estimated independently of each other
- all these designs can be used for quantitative and qualitative variables

\downarrow Second-order designs

- designs for quantitative variables
- Box-Behnken designs
- central composite designs
- Box-Behnken designs (1960) combine $\left\{\begin{array}{l}\text { two-level factorial design } \\ \text { balanced incomplete block design }\end{array}\right.$
- model for three variables

$$
\begin{aligned}
y= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3} \\
& +\beta_{12} x_{1} x_{2}+\beta_{13} x_{1} x_{3}+\beta_{23} x_{2} x_{3} \\
& +\beta_{11} x_{1}^{2}+\beta_{22} x_{2}^{2}+\beta_{33} x_{3}^{2}+\epsilon
\end{aligned}
$$

Box-Behnken design

Box-Behnken design

run	x_{1}	x_{2}	x_{3}
1	-1	-1	0
2	-1	1	0
3	1	-1	0
4	1	1	0
5	0	-1	-1
6	0	-1	1
7	0	1	-1
8	0	1	1
9	-1	0	-1
10	1	0	-1
11	-1	0	1
12	1	0	1
13	0	0	0
14	0	0	0
15	0	0	0

Information matrix

$$
\left[\begin{array}{cccccccccc}
15 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 8 & 8 \\
0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\
8 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 4 & 4 \\
8 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 8 & 4 \\
8 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 8
\end{array}\right]
$$

Central composite design

- Box \& Wilson (1951)
- CCD
- 3 components:

1. 2^{m} factorial (or 2^{m-f} fractional factorial) design
2. $2 m$ axial points (at distance α from center)
3. at least one center point
$\rightarrow \alpha=1$: face-centered CCD
$\rightarrow \alpha=\sqrt{m}$: spherical CCD

Central composite design $(\alpha>1)$

Central composite design

run	x_{1}	x_{2}	x_{3}
1	-1	-1	-1
2	-1	-1	1
3	-1	1	-1
4	-1	1	1
5	1	-1	-1
6	1	-1	1
7	1	1	-1
8	1	1	1
9	-1.68	0	0
10	1.68	0	0
11	0	-1.68	0
12	0	1.68	0
13	0	0	-1.68
14	0	0	1.68
15	0	0	0
16	0	0	0

Information matrix

$\left[\begin{array}{cccccccccc}16 & 0 & 0 & 0 & 0 & 0 & 0 & 13.66 & 13.66 & 13.66 \\ 0 & 13.66 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 13.66 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 13.66 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 \\ 13.66 & 0 & 0 & 0 & 0 & 0 & 0 & 24 & 8 & 8 \\ 13.66 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 24 & 8 \\ 13.66 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 8 & 24\end{array}\right]$

Face-centered central composite design

σ
 Three-level factorial design

- each experimental variable has 3 levels
- denoted by 3^{m} factorial design
- can be used for second-order models
- often used as candidate set for design construction algorithms
- 3^{m-f} factorial designs also exist

$\circlearrowleft 3^{m}$ factorial design

Other second-order designs

- many, many other second-order designs:
- Hoke
- Roquemore
- Mee
- small composite designs
- ...
- all have at least three levels for each experimental variable to capture curvature

Note on design regions

- quantitative factors
- cuboidal design regions

$$
\begin{gathered}
\left\{\begin{array}{c}
-1 \leq x_{1} \leq+1 \\
\vdots \\
-1 \leq x_{m} \leq+1
\end{array}\right. \\
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in[-1,+1]^{m}
\end{gathered}
$$

- spherical design regions

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{m}^{2} \leq r^{2}
$$

- design region is usually denoted by χ

Categorical designs

- factorial designs with 2 or more levels
- 3^{m} factorial design
- $2 \times 3 \times 4$ factorial design
- fractional factorial designs
- orthogonal arrays
- model (3 variables)

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\epsilon_{i j k}
$$

- anova type of models

む 3^{m} factorial design

\leftrightarrow
 Orthogonal array

	Factor				
Run	A	B	C	D	E
1	0	0	0	0	0
2	0	1	1	1	1
3	1	0	1	0	1
4	1	1	0	1	0
5	2	0	0	1	1
6	2	1	1	0	0
7	3	0	1	1	0
8	3	1	0	0	1

Block designs

- useful when not all experimental tests can be done under homogeneous circumstances
- balanced incomplete block designs
- BIBDs
- 1 categorical experimental variable 5 levels = treatments 10 test persons = blocks
- excellent properties
- partially balanced incomplete block designs
- BIBDs often require large n
- latin square designs

Balanced incomplete block design

b		t	
1	1	2	3
2	1	2	4
3	1	2	5
4	1	3	4
5	1	3	5
6	1	4	5
7	2	3	4
8	2	3	5
9	2	4	5
10	3	4	5

5 treatments, 10 blocks of 3 treatments

Partially balanced incomplete block design

b		t	
1	1	2	3
2	1	2	4
3	1	5	6
4	2	5	6
5	3	4	5
6	3	4	6

6 treatments, 6 blocks of size 3

Latin square design

column

row	1	2	3	4	5	6	7
1	A	B	C	D	E	F	G
2	B	C	D	E	F	G	A
3	C	D	E	F	G	A	B
4	D	E	F	G	A	B	C
5	E	F	G	A	B	C	D
6	F	G	A	B	C	D	E
7	G	A	B	C	D	E	F

\triangleleft Sudoku design

row	column								
	1	2	3	4	5	6	7	8	9
1	3	1	8	7	2	4	9	6	5
2	4	2	7	6	9	5	8	1	3
3	9	6	5	1	8	3	4	7	2
4		8	4	9	3	6	2	5	7
5	2	9	3	5	7	1	6	8	4
6	5	7	6	2	4	8	3	9	1
7		5	9	4	6	2		3	8
8		3	2	8	1	7		4	9
9	8	4	1	3	5	9	7	2	6

Limitations of standard designs

- what if n is not a power of 2 or a multiple of 4 ?
- what if some of the level combinations of a design are forbidden?
- what if some of the blocks are smaller than others?
- what if you don't find an orthogonal array for your problem?

