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Optimal design

Ï plan experiments so that they contain as much
information as possible

Ï several approaches are possible to maximize
amount of information

Ï we start with “intuitive” approach
Ï several small examples
Ï Microsoft Excel, as in Goos & Leemans (2004)

(see outprint)
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Strengths of optimal design

Ï can be done for any number of observations n
Ï can be done for any number of experimental

variables m
Ï can be done for any degree of the model:

first-order, second-order, . . .
Ï can cope with constraints on the design region

(see freeze-drying experiment in Session 4)
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Strengths of optimal design

Ï can cope with quantitative and qualitative
variables at same time

Ï flexibility: it allows the researcher to create a
tailor-made design

Ï can be used when
Ï heterogeneous variance
Ï correlated observations
Ï blocked experiments
Ï split-plot experiments
Ï nonlinear models
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Selling point of optimal design

Optimal design of experiments helps you to
construct the design that best fits your problem.
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Weaknesses of optimal design

Ï depend on assumed model
Ï no replication
Ï not always nice and symmetric
Ï sometimes strange, exotic factor levels
Ï several criteria can be used for computing

optimal designs
Ï optimal design requires computational effort
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Computation of optimal designs

→ difficult
→ specialized software

Ï SAS proc optex
Ï JMP
Ï Design Expert
Ï Minitab
Ï . . .

→ for nonstandard problems, you have to
program your own software (correlated
observations, nonlinear models)
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Requirements of good design
(Box & Draper, 1971)

1. Generate a satisfactory distribution of
information throughout the region of interest.

2. Ensure that the fitted values are as close as
possible to the true values of the response.

3. Allow detection of lack-of-fit.

4. Allow estimation of transformations of both
the response and the quantitative
experimental factors.

5. Allow blocked experiments.

6. Allow designs to be built up sequentially.
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7. Provide an estimate of error from replication.

8. Be insensitive to wild observations and to
violation of normality assumptions.

9. Require a minimum of experimental runs.

10. Provide simple data patterns and allow visual
appreciation.

11. Ensure simplicity of calculation.

12. Behave well when errors occur in the settings
of the explanatory variables.
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Example

Ï relationship between the amount of sleep
deprivation and the number of mistakes made
in a test

Ï 6 test persons
Ï between 12 and 48 hours of sleep deprivation
Ï how many hours of sleep deprivation for each

test person?
Ï 12, 19.2, 26.4, 33.6, 40.8, 48 hours?
Ï 12, 12, 30, 30, 48, 48 hours?
Ï . . .
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Expected effect?

E(Y ) =β0 +β1x E(Y ) =β0 +β1x+β2x2
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Linear model

Yi =β0 +β1xi +εi

Y = Xβ+ε with X =


1 x1

1 x2
...

...
1 x6

 and β=
[
β0

β1

]
assumptions:

Ï εi ∼ N(0,σ2)
Ï independence of εi and εj

12 / 15



Ordinary least squares

β̂= (XT X)−1XT Y

var(β̂) =σ2(XT X)−1

=
[

var(β̂0) cov(β̂0, β̂1)
cov(β̂0, β̂1) var(β̂1)

]

Ï see psycho.xls (linear model)
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Quadratic model

Yi =β0 +β1xi +β2x2
i +εi

Y = Xβ+ε with X =


1 x1 x2

1
1 x2 x2

2
...

...
...

1 x6 x2
6

 and β=
β0

β1

β2


assumptions:

Ï εi ∼ N(0,σ2)
Ï independence of εi and εj

14 / 15



Ordinary least squares

β̂= (XT X)−1XT Y

var(β̂) =σ2(XT X)−1

=

 var(β̂0) cov(β̂0, β̂1) cov(β̂0, β̂2)
cov(β̂0, β̂1) var(β̂1) cov(β̂1, β̂2)
cov(β̂0, β̂2) cov(β̂1, β̂2) var(β̂2)


Ï see psycho.xls (quadratic model)
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