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Optimal design theory

Ï continuous or approximate optimal designs
Ï implicitly assume an infinitely large number of

observations are available
Ï is mathematically convenient

Ï exact or discrete designs
Ï finite number of observations
Ï fewer theoretical results
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Continuous versus exact designs

Ï continuous
Ï ξ=

{
x1 x2 . . . xh

w1 w2 . . . wh

}
Ï x1,x2, . . . ,xh: design points or support points
Ï w1,w2, . . . ,wh: weights (wi ≥ 0,

∑
i wi = 1)

Ï h: number of different points

Ï exact
Ï ξ=

{
x1 x2 . . . xh

n1 n2 . . . nh

}
Ï n1,n2, . . . ,nh: (integer) numbers of observations at

x1, . . . ,xn
Ï

∑
i ni = n

Ï h: number of different points
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Information matrix
Ï all criteria to select a design are based on

information matrix
Ï model matrix

X =


1 −1 −1 +1 +1 +1
1 +1 −1 −1 +1 +1
1 −1 +1 −1 +1 +1
...

...
...

...
...

...
1 0 0 0 0 0

=


fT (x1)
fT (x2)
fT (x3)

...
fT (xn)


↑ ↑ ↑ ↑ ↑ ↑
I x1 x2 x1x2 x2

1 x2
2
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Information matrix

Ï (total) information matrix

M = 1

σ2
XT X = 1

σ2

n∑
i=1

f(xi)fT (xi)

Ï per observation information matrix

1

σ2
f(xi)fT (xi)
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Information matrix industrial example

1

σ2

(
XT X

)=


11 0 0 0 6 6
0 6 0 0 0 0
0 0 6 0 0 0
0 0 0 4 0 0
6 0 0 0 6 4
6 0 0 0 4 6
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Information matrix

Ï exact designs

M =
h∑

i=1

ni f(xi)fT (xi)

where
h = number of different points
ni = number of replications of point i

Ï continuous designs

M =
h∑

i=1

wi f(xi)fT (xi)

7 / 40

D-optimality criterion

Ï seeks designs that minimize
variance-covariance matrix of β̂

Ï . . . that minimize
∣∣σ2(XT X)−1

∣∣
Ï . . . that minimize

∣∣(XT X)−1
∣∣

Ï . . . that maximize
∣∣XT X

∣∣ or |M|
Ï D-optimal designs minimize

Ï generalized variance of β̂
Ï volume of confidence ellipsoid about unknown β

Ï “D” stands for determinant
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Ds-optimality criterion

Ï useful when the interest is only in a subset of
the parameters

Ï useful when intercept or block effects are of no
interest

Ï seeks designs that minimize determinant of
variance-covariance matrix corresponding to
subset of β

Ï Y = Xβ+ε
= X1β1 +X2β2 +ε

where β1 is the set of parameters of interest
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Ds-optimality criterion

Ï M = (XT X) =
[

XT
1 X1 XT

1 X2

XT
2 X1 XT

2 X2

]
Ï cov(β̂) = (XT X)−1 =

[
A B
C D

]
part of the variance-covariance matrix corresponding to β1

Ï minimizing |A| is the same as minimizing∣∣∣(XT
1 X1 −XT

1 X2(XT
2 X2)−1XT

2 X1

)−1
∣∣∣

and as maximizing∣∣XT
1 X1 −XT

1 X2(XT
2 X2)−1XT

2 X1

∣∣
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A-optimality criterion
Ï seeks designs that minimize average variance

of parameter estimates
Ï seeks designs that minimize

p∑
i=1

var
(
β̂i

)
/p

p = number of model parameters
Ï seeks designs that minimize

trace σ2 (
XT X

)−1

or

trace
(
XT X

)−1
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V- and G-optimality criteria

Ï V-optimality (also Q-, IV-, I-optimality)
Ï seeks designs that minimize average prediction

variance over design region χ
Ï . . . that minimize∫

χ
σ2fT (x)(XT X)−1f(x)dx

Ï G-optimality
Ï seeks designs that minimize maximum prediction

variance over design region χ
Ï . . . that minimize

max
χ

var{ŷ(x)} = max
χ

fT (x)(XT X)−1f(x)
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Discussion

Ï problem: in general, all optimality criteria lead
to different designs

Ï exception: D-optimal continuous designs =
G-optimal continuous designs

Ï general equivalence theorem
Ï prediction variance is maximal in design points
Ï maximum = number of model parameters

Ï what optimality criterion to use?
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D-optimality criterion

Ï most popular criterion
Ï D-optimal designs are usually quite good w.r.t.

other criteria
Ï D-optimal designs are not affected by linear

transformations of levels of the experimental
variables

Ï computational advantages: update formulas
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Linear transformations of factor levels

X → XA = Z
↓ ↘

max
∣∣XT X

∣∣ max
∣∣ZT Z

∣∣
= ∣∣(XA)T XA

∣∣
= ∣∣AT XT XA

∣∣
= ∣∣AT

∣∣ ∣∣XT X
∣∣ |A|

= |A|2 ∣∣XT X
∣∣
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Quadratic regression in one variable

Ï χ= [−1,1]
Ï Y =β0 +β1x+β2x2 +ε

Ï D-optimal continuous design

Design 1 =
{−1 0 +1

1/3 1/3 1/3

}
Ï information matrix

M1 =
 1 0 2/3

0 2/3 0
2/3 0 2/3
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Quadratic regression in one variable

Ï general equivalence theorem implies that
D-optimal continuous design is also
G-optimal

Ï D-optimal design minimizes the maximum
prediction variance

Ï maximum is equal to p
Ï check by plotting prediction variance

var{ŷ(x)} = fT (x)M−1
1 f(x)

for all x ∈ [−1,1]
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Prediction variance

var{ŷ(x)} = fT (x)M−1
1 f(x)

= [
1 x x2

] 3 0 −3
0 3

2 0
−3 0 9

2

 1
x
x2


= [

3−3x2 3
2x −3+ 9

2x2
] 1

x
x2


= 3−3x2 + 3

2
x2 −3x2 + 9

2
x4

= 3− 9

2
x2 + 9

2
x4
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Prediction variance

var{ŷ(x)}

−1 −0.5 0 0.5 1

1

2

p =3
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Quadratic regression in one variable

Ï consider other design

Design 2 =
{−1 0 +1

1/4 1/2 1/4

}
Ï information matrix

M2 =
1 0 1

2
0 1

2 0
1
2 0 1

2
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Prediction variance

var{ŷ(x)} = fT (x)M−1
2 f(x)

= [
1 x x2

] 2 0 −2
0 2 0
−2 0 4

 1
x
x2


= [

2−2x2 2x −2+4x2
] 1

x
x2


= 2−2x2 +2x2 −2x2 +4x4

= 2−2x2 +4x4
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Prediction variance

var{ŷ(x)}

−1 −0.5 0 0.5 1

1

2

p =3

4

⇓
Design 2 is not D-optimal

22 / 40



Optimal exact designs

Ï A-optimal continuous design

ξ=
{−1 0 1

1
4

1
2

1
4

}
Ï what if n = 4,8,12?

Ï multiply weights of continuous design by 4, 8 or 12
Ï integer numbers of runs at each point

Ï what if n = 5,6,7?
Ï multiply weights by 5, 6, or 7
Ï non-integer numbers of runs at some of the points
Ï not useful in practice
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Polynomial regression in one variable

D-optimal design points for the dth order
polynomial regression in one variable

d x1 x2 x3 x4 x5 x6 x7 weight
1 −1 1 1/2

2 −1 0 1 1/3

3 −1 −a3 a3 1 1/4

4 −1 −a4 0 a4 1 1/5

5 −1 −a5 −b5 b5 a5 1 1/6

6 −1 −a6 −b6 0 b6 a6 1 1/7

a3 =
p

1/5 b5 =
√

(7−2
p

7)/21

a4 =
p

3/7 a6 =
√

(15+2
p

15)/33

a5 =
√

(7+2
p

7)/21 b6 =
√

(15−2
p

15)/33
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Quadratic regression in one variable
Ï Design 1 has covariance matrix

(XT X)−1 =
 3 0 −3

0 3/2 0
−3 0 9/2


with trace(XT X)−1 = 3+3/2+9/2 = 9

Ï Design 2 has covariance matrix

(XT X)−1 =
 2 0 −2

0 2 0
−2 0 4


with trace(XT X)−1 = 2+2+4 = 8

Ï Design 2 is A-optimal
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23 Factorial design

Ï main-effects model
Y =β0 +β1x1 +β2x2 +β3x3 +ε

Ï model matrix

X =



1 −1 −1 −1
1 +1 −1 −1
1 −1 +1 −1
1 +1 +1 −1
1 −1 +1 +1
1 +1 +1 +1
1 −1 −1 +1
1 +1 −1 +1
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23 factorial design

Ï (total) information matrix

M = XT X =


8 0 0 0
0 8 0 0
0 0 8 0
0 0 0 8


Ï per observation information matrix

M∗ = 1

n
(XT X) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Prediction variance

Ï var{ŷ(x)} = fT (x)
{

M∗}−1
f(x)

= [
1 x1 x2 x3

]{
M∗}−1


1
x1

x2

x3


= 1+x2

1 +x2
2 +x2

3
Ï if χ= [−1,1]3, then this is maximal when

x1 =±1, x2 =±1, x3 =±1

Ï maximum = 4 = p
Ï general equivalence theorem is satisfied
Ï 23 factorial design is D- and G-optimal
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More

Ï Plackett-Burman designs: optimal for
main-effects model

Ï factorial designs: optimal for
main-effects-plus-interactions models

Ï some remarks
Ï off-diagonal elements of information matrix often

zero
(impossible when quadratic terms)

Ï optimal designs are often symmetric
Ï these properties are more difficult to achieve for

exact designs
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Quadratic regression in two variables

Ï Y =β0+β1x1+β2x2+β12x1x2+β11x2
1 +β22x2

2 +ε
Ï D-optimal continuous design

+1

x2

−1−1 x1 +1

0.08025

0.14575

0.096

Ï D-optimal discrete designs
Ï n = 9: one observation at each point of the

continuous D-optimal design
Ï n = 6: D-optimal exact design does not resemble

D-optimal continuous one
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Information matrix D-optimal
continuous design



1 0 0 0 0.74 0.74
0 0.74 0 0 0 0
0 0 0.74 0 0 0
0 0 0 0.58 0 0

0.74 0 0 0 0.74 0.58
0.74 0 0 0 0.58 0.74
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Quadratic regression in two variables

n = 6 n = 7

n = 8 n = 9
D-optimal exact designs
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Quadratic design in two variables

n = 6 n = 7

n = 8 n = 9
D-optimal exact three-level designs
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Quadratic regression in 2 variables

1 run, 2 runs, 3 runs

D-optimal exact design
n = 18
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An industrial example

Ï experiment to investigate effect of
Ï amount of glycerine (%), x1 (1 ≤ x1 ≤ 3)
Ï speed temperature reduction (°F/min), x2

(1 ≤ x2 ≤ 3)

Ï response: amount of surviving biological
material (%), y

Ï context: freeze-dried coffee
retaining volatile compounds in freeze-dried
coffee is important for its smell and taste

Ï Excel file: quadratic3.xls
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An industrial example

Ï Yi =β0 +β1x1i +β2x2i

+β12x1ix2i +β11x2
1i +β22x2

2i +ε

Ï 9 observations / tests
Ï 32 factorial design is optimal

Ï what if combination of high x1 and high x2 are
not allowed?

36 / 40



Constrained design region

3

2x2

1
1 2

x1

3

x1 +x2 ≤ 5
constraint

x1: glycerine, x2: temperature reduction
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Constrained design region: solution I

scale 32 factorial design down so that it fits in
constrained design region

3

2x2

1
1 2

x1

3

det(XT X)−1 = 0.0192
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Constrained design region: solution II

move forbidden point (3,3) inward

3

2x2

1
1 2

x1

3

det(XT X)−1 = 0.0006
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Constrained design region: solution III

use optimal design approach

3

2x2

1
1 2

x1

3

(1.9,1.9)

det(XT X)−1 = 0.0005
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