Optimal design of experiments

Session 4: Some theory

Peter Goos

\checkmark

Universiteit Antwerpen

Optimal design theory

- continuous or approximate optimal designs
- implicitly assume an infinitely large number of observations are available
- is mathematically convenient
- exact or discrete designs
- finite number of observations
- fewer theoretical results

Continuous versus exact designs

- continuous
$\boldsymbol{-}=\left\{\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{h} \\ w_{1} & w_{2} & \ldots & w_{h}\end{array}\right\}$
- $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{h}$: design points or support points
- $w_{1}, w_{2}, \ldots, w_{h}$: weights $\left(w_{i} \geq 0, \sum_{i} w_{i}=1\right)$
- h : number of different points
- exact
- $\boldsymbol{\xi}=\left\{\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{h} \\ n_{1} & n_{2} & \ldots & n_{h}\end{array}\right\}$
- $n_{1}, n_{2}, \ldots, n_{h}$: (integer) numbers of observations at $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$
- $\sum_{i} n_{i}=n$
- h : number of different points

Information matrix

- all criteria to select a design are based on information matrix
- model matrix

$$
\begin{aligned}
\mathbf{X}= & {\left[\begin{array}{cccccc}
1 & -1 & -1 & +1 & +1 & +1 \\
1 & +1 & -1 & -1 & +1 & +1 \\
1 & -1 & +1 & -1 & +1 & +1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{c}
\mathbf{f}^{T}\left(\mathbf{x}_{1}\right) \\
\mathbf{f}^{T}\left(\mathbf{x}_{2}\right) \\
\mathbf{f}^{T}\left(\mathbf{x}_{3}\right) \\
\vdots \\
\mathbf{f}^{T}\left(\mathbf{x}_{n}\right)
\end{array}\right] } \\
& \uparrow \quad \uparrow \quad \uparrow \\
\mathbf{I} & x_{1}
\end{aligned} x_{2} x_{1} x_{2} x_{1}^{2} x_{2}^{2} .
$$

Information matrix

- (total) information matrix

$$
\mathbf{M}=\frac{1}{\sigma^{2}} \mathbf{X}^{T} \mathbf{X}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n} \mathbf{f}\left(\mathbf{x}_{i}\right) \mathbf{f}^{T}\left(\mathbf{x}_{i}\right)
$$

- per observation information matrix

$$
\frac{1}{\sigma^{2}} \mathbf{f}\left(\mathbf{x}_{i}\right) \mathbf{f}^{T}\left(\mathbf{x}_{i}\right)
$$

Information matrix industrial example

$$
\frac{1}{\sigma^{2}}\left(\mathbf{X}^{T} \mathbf{X}\right)=\left[\begin{array}{cccccc}
11 & 0 & 0 & 0 & 6 & 6 \\
0 & 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
6 & 0 & 0 & 0 & 6 & 4 \\
6 & 0 & 0 & 0 & 4 & 6
\end{array}\right]
$$

Information matrix

- exact designs

$$
\mathbf{M}=\sum_{i=1}^{h} n_{i} \mathbf{f}\left(\mathbf{x}_{i}\right) \mathbf{f}^{T}\left(\mathbf{x}_{i}\right)
$$

where
$h=$ number of different points
$n_{i}=$ number of replications of point i

- continuous designs

$$
\mathbf{M}=\sum_{i=1}^{h} w_{i} \mathbf{f}\left(\mathbf{x}_{i}\right) \mathbf{f}^{T}\left(\mathbf{x}_{i}\right)
$$

D-optimality criterion

- seeks designs that minimize variance-covariance matrix of $\hat{\boldsymbol{\beta}}$
- ... that minimize $\left|\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right|$
- ... that minimize $\left|\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right|$
- ... that maximize $\left|\mathbf{X}^{T} \mathbf{X}\right|$ or $|\mathbf{M}|$
- D-optimal designs minimize
- generalized variance of $\hat{\boldsymbol{\beta}}$
- volume of confidence ellipsoid about unknown $\boldsymbol{\beta}$
- "D" stands for determinant

\downarrow
 D_{s}-optimality criterion

- useful when the interest is only in a subset of the parameters
- useful when intercept or block effects are of no interest
- seeks designs that minimize determinant of variance-covariance matrix corresponding to subset of $\boldsymbol{\beta}$
- $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$
$=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\epsilon}$
where $\boldsymbol{\beta}_{1}$ is the set of parameters of interest

は

D_{s}-optimality criterion

- $\mathbf{M}=\left(\mathbf{X}^{T} \mathbf{X}\right)=\left[\begin{array}{ll}\mathbf{X}_{1}^{T} \mathbf{X}_{1} & \mathbf{X}_{1}^{T} \mathbf{X}_{2} \\ \mathbf{X}_{2}^{T} \mathbf{X}_{1} & \mathbf{X}_{2}^{T} \mathbf{X}_{2}\end{array}\right]$
$-\operatorname{cov}(\hat{\boldsymbol{\beta}})=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\left[\begin{array}{ll}\mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D}\end{array}\right]$
part of the variance-covariance matrix corresponding to $\boldsymbol{\beta}_{1}$
- minimizing $|\mathbf{A}|$ is the same as minimizing

$$
\left|\left(\mathbf{X}_{1}^{T} \mathbf{X}_{1}-\mathbf{X}_{1}^{T} \mathbf{X}_{2}\left(\mathbf{X}_{2}^{T} \mathbf{X}_{2}\right)^{-1} \mathbf{X}_{2}^{T} \mathbf{X}_{1}\right)^{-1}\right|
$$

and as maximizing

$$
\left|\mathbf{X}_{1}^{T} \mathbf{X}_{1}-\mathbf{X}_{1}^{T} \mathbf{X}_{2}\left(\mathbf{X}_{2}^{T} \mathbf{X}_{2}\right)^{-1} \mathbf{X}_{2}^{T} \mathbf{X}_{1}\right|
$$

A-optimality criterion

- seeks designs that minimize average variance of parameter estimates
- seeks designs that minimize

$$
\sum_{i=1}^{p} \operatorname{var}\left(\hat{\beta}_{i}\right) / p
$$

$p=$ number of model parameters

- seeks designs that minimize

$$
\operatorname{trace} \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

or

$$
\operatorname{trace}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

(V- and G-optimality criteria

- V-optimality (also Q-, IV-, I-optimality)
- seeks designs that minimize average prediction variance over design region χ
- ...that minimize

$$
\int_{\chi} \sigma^{2} \mathbf{f}^{T}(\mathbf{x})\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{f}(\mathbf{x}) d \mathbf{x}
$$

- G-optimality
- seeks designs that minimize maximum prediction variance over design region χ
- ...that minimize

$$
\max _{\chi} \operatorname{var}\{\hat{y}(x)\}=\max _{\chi} \mathbf{f}^{T}(\mathbf{x})\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{f}(\mathbf{x})
$$

Discussion

- problem: in general, all optimality criteria lead to different designs
- exception: D-optimal continuous designs = G-optimal continuous designs
- general equivalence theorem
- prediction variance is maximal in design points
- maximum = number of model parameters
- what optimality criterion to use?

D-optimality criterion

- most popular criterion
- D-optimal designs are usually quite good w.r.t. other criteria
- D-optimal designs are not affected by linear transformations of levels of the experimental variables
- computational advantages: update formulas

\leftrightarrow Linear transformations of factor levels

$$
\begin{aligned}
& \quad \mathbf{X} \rightarrow \mathbf{X A}= \mathbf{Z} \\
& \downarrow \\
& \max \left|\mathbf{X}^{T} \mathbf{X}\right| \\
& \max \left|\mathbf{Z}^{T} \mathbf{Z}\right| \\
&=\left|(\mathbf{X} \mathbf{A})^{T} \mathbf{X} \mathbf{A}\right| \\
&=\left|\mathbf{A}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{A}\right| \\
&=\left|\mathbf{A}^{T}\right|\left|\mathbf{X}^{T} \mathbf{X}\right||\mathbf{A}| \\
&=|\mathbf{A}|^{2}\left|\mathbf{X}^{T} \mathbf{X}\right|
\end{aligned}
$$

Quadratic regression in one variable

- $\chi=[-1,1]$
- $Y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\epsilon$
- D-optimal continuous design

$$
\text { Design } 1=\left\{\begin{array}{ccc}
-1 & 0 & +1 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right\}
$$

- information matrix

$$
\mathbf{M}_{1}=\left[\begin{array}{ccc}
1 & 0 & 2 / 3 \\
0 & 2 / 3 & 0 \\
2 / 3 & 0 & 2 / 3
\end{array}\right]
$$

Quadratic regression in one variable

- general equivalence theorem implies that

D-optimal continuous design is also
G-optimal

- D-optimal design minimizes the maximum prediction variance
- maximum is equal to p
- check by plotting prediction variance

$$
\operatorname{var}\{\hat{y}(x)\}=\mathbf{f}^{T}(x) \mathbf{M}_{1}^{-1} \mathbf{f}(x)
$$

for all $x \in[-1,1]$

Prediction variance

$$
\begin{aligned}
\operatorname{var}\{\hat{y}(x)\} & =\mathbf{f}^{T}(x) \mathbf{M}_{1}^{-1} \mathbf{f}(x) \\
& =\left[\begin{array}{lll}
1 & x & x^{2}
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & -3 \\
0 & \frac{3}{2} & 0 \\
-3 & 0 & \frac{9}{2}
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
3-3 x^{2} & \frac{3}{2} x & -3+\frac{9}{2} x^{2}
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right] \\
& =3-3 x^{2}+\frac{3}{2} x^{2}-3 x^{2}+\frac{9}{2} x^{4} \\
& =3-\frac{9}{2} x^{2}+\frac{9}{2} x^{4}
\end{aligned}
$$

\downarrow Prediction variance

\checkmark Quadratic regression in one variable

- consider other design

$$
\text { Design } 2=\left\{\begin{array}{ccc}
-1 & 0 & +1 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right\}
$$

- information matrix

$$
\mathbf{M}_{2}=\left[\begin{array}{lll}
1 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]
$$

Prediction variance

$$
\begin{aligned}
\operatorname{var}\{\hat{y}(x)\} & =\mathbf{f}^{T}(x) \mathbf{M}_{2}^{-1} \mathbf{f}(x) \\
& =\left[\begin{array}{lll}
1 & x & x^{2}
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & -2 \\
0 & 2 & 0 \\
-2 & 0 & 4
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
2-2 x^{2} & 2 x & -2+4 x^{2}
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right] \\
& =2-2 x^{2}+2 x^{2}-2 x^{2}+4 x^{4} \\
& =2-2 x^{2}+4 x^{4}
\end{aligned}
$$

Prediction variance

Design 2 is not D-optimal

Optimal exact designs

- A-optimal continuous design

$$
\xi=\left\{\begin{array}{ccc}
-1 & 0 & 1 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right\}
$$

- what if $n=4,8,12$?
- multiply weights of continuous design by 4,8 or 12
- integer numbers of runs at each point
- what if $n=5,6,7$?
- multiply weights by 5,6 , or 7
- non-integer numbers of runs at some of the points
- not useful in practice

Polynomial regression in one variable

D-optimal design points for the d th order polynomial regression in one variable

d	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	weight
1	-1						1	$1 / 2$
2	-1			0			1	$1 / 3$
3	-1		$-a_{3}$		a_{3}		1	$1 / 4$
4	-1		$-a_{4}$	0	a_{4}		1	$1 / 5$
5	-1	$-a_{5}$	$-b_{5}$		b_{5}	a_{5}	1	$1 / 6$
6	-1	$-a_{6}$	$-b_{6}$	0	b_{6}	a_{6}	1	$1 / 7$

$a_{3}=\sqrt{1 / 5}$	$b_{5}=\sqrt{(7-2 \sqrt{7}) / 21}$
$a_{4}=\sqrt{3 / 7}$	$a_{6}=\sqrt{(15+2 \sqrt{15}) / 33}$
$a_{5}=\sqrt{(7+2 \sqrt{7}) / 21}$	$b_{6}=\sqrt{(15-2 \sqrt{15}) / 33}$

Quadratic regression in one variable

- Design 1 has covariance matrix

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\left[\begin{array}{ccc}
3 & 0 & -3 \\
0 & 3 / 2 & 0 \\
-3 & 0 & 9 / 2
\end{array}\right]
$$

with $\operatorname{trace}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=3+3 / 2+9 / 2=9$

- Design 2 has covariance matrix

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\left[\begin{array}{ccc}
2 & 0 & -2 \\
0 & 2 & 0 \\
-2 & 0 & 4
\end{array}\right]
$$

with $\operatorname{trace}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=2+2+4=8$

- Design 2 is A-optimal

$\circlearrowleft \quad 2^{3}$ Factorial design

- main-effects model

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\epsilon
$$

- model matrix

$$
\mathbf{X}=\left[\begin{array}{llll}
1 & -1 & -1 & -1 \\
1 & +1 & -1 & -1 \\
1 & -1 & +1 & -1 \\
1 & +1 & +1 & -1 \\
1 & -1 & +1 & +1 \\
1 & +1 & +1 & +1 \\
1 & -1 & -1 & +1 \\
1 & +1 & -1 & +1
\end{array}\right]
$$

$\downarrow 2^{3}$ factorial design

- (total) information matrix

$$
\mathbf{M}=\mathbf{X}^{T} \mathbf{X}=\left[\begin{array}{llll}
8 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 8 & 0 \\
0 & 0 & 0 & 8
\end{array}\right]
$$

- per observation information matrix

$$
\mathbf{M}^{*}=\frac{1}{n}\left(\mathbf{X}^{T} \mathbf{X}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Prediction variance

- $\operatorname{var}\{\hat{y}(x)\}=\mathbf{f}^{T}(\mathbf{x})\left\{\mathbf{M}^{*}\right\}^{-1} \mathbf{f}(\mathbf{x})$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
1 & x_{1} & x_{2} & x_{3}
\end{array}\right]\left\{\mathbf{M}^{*}\right\}^{-1}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =1+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
\end{aligned}
$$

- if $\chi=[-1,1]^{3}$, then this is maximal when

$$
x_{1}= \pm 1, \quad x_{2}= \pm 1, \quad x_{3}= \pm 1
$$

- maximum $=4=p$
- general equivalence theorem is satisfied
- 2^{3} factorial design is D- and G-optimal

More

- Plackett-Burman designs: optimal for main-effects model
- factorial designs: optimal for main-effects-plus-interactions models
- some remarks
- off-diagonal elements of information matrix often zero
(impossible when quadratic terms)
- optimal designs are often symmetric
- these properties are more difficult to achieve for exact designs

৮

Quadratic regression in two variables

- $Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\beta_{11} x_{1}^{2}+\beta_{22} x_{2}^{2}+\epsilon$
- D-optimal continuous design

- D-optimal discrete designs
- $n=9$: one observation at each point of the continuous D-optimal design
- $n=6$: D-optimal exact design does not resemble D-optimal continuous one
\& Information matrix D-optimal continuous design
$\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0.74 & 0.74 \\ 0 & 0.74 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.74 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.58 & 0 & 0 \\ 0.74 & 0 & 0 & 0 & 0.74 & 0.58 \\ 0.74 & 0 & 0 & 0 & 0.58 & 0.74\end{array}\right]$

Uuadratic regression in two variables

$n=6$
$n=7$

$$
n=8 \quad n=9
$$

D-optimal exact designs

Quadratic design in two variables

$n=6$

$n=7$

$n=8$
$n=9$
D-optimal exact three-level designs

1 run, 2 runs, 3 runs

D-optimal exact design

$$
n=18
$$

U $A n$ industrial example

- experiment to investigate effect of
- amount of glycerine (\%), $x_{1}\left(1 \leq x_{1} \leq 3\right)$
- speed temperature reduction (${ }^{\circ} \mathrm{F} / \mathrm{min}$), x_{2}

$$
\left(1 \leq x_{2} \leq 3\right)
$$

- response: amount of surviving biological material (\%), y
- context: freeze-dried coffee retaining volatile compounds in freeze-dried coffee is important for its smell and taste
- Excel file: quadratic3.xls

は

An industrial example

- $Y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}$

$$
+\beta_{12} x_{1 i} x_{2 i}+\beta_{11} x_{1 i}^{2}+\beta_{22} x_{2 i}^{2}+\epsilon
$$

- 9 observations / tests
- 3^{2} factorial design is optimal

- what if combination of high x_{1} and high x_{2} are not allowed?

Constrained design region

x_{1} : glycerine, x_{2} : temperature reduction

Constrained design region: solution I

scale 3^{2} factorial design down so that it fits in constrained design region

Constrained design region: solution II

move forbidden point $(3,3)$ inward

$$
\operatorname{det}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=0.0006
$$

use optimal design approach

