
Optimal design of experiments
Session 5: Design construction

Peter Goos

1 / 33

Constructing exact optimal designs

Ï direct approaches to maximize
∣∣XT X

∣∣
Ï Microsoft Excel
Ï mathematical programming

→ run into problems for “large” problems
Ï rounding off continuous optimal designs
→ performs well for large n
→ only for completely randomized designs
(uncorrelated observations)

Ï design construction algorithms
→ point-exchange algorithms
→ coordinate-exchange algorithms

2 / 33

Point exchange algorithms

Ï require discretizing the problem
Ï instead of searching the whole design region χ

x2

x1

Ï the exchange algorithm searches over a
discrete grid of points

x2

x1

→ candidate points (say c)

3 / 33

Fedorov’s exchange algorithm

Ï Fedorov (1972)
Ï structure

step 1: select starting design
step 2: sequentially improve design using

exchange procedure
step 3: stop when no more beneficial

exchanges are found

4 / 33

Step 1: Construct starting design

1. select n1 points at random and compute (XT X)

2. for all candidate points, calculate prediction
variance

fT (x)(XT X+K)−1f(x)

3. select point with largest prediction variance
and add it to the design
why? large prediction variance indicates lack
of information

4. compute new XT X and repeat step 2 and 3
until starting design has n points

5 / 33

Step 2: Improve starting design
I. consider all possible exchanges

1. quantify impact of replacing 1st design point
by 1st candidate point:

∣∣XT X
∣∣

1
2. quantify impact of replacing 1st design point

by 2nd candidate point:
∣∣XT X

∣∣
2

3. . . .
4. quantify impact of replacing 1st design point

by last candidate point:
∣∣XT X

∣∣
c

5. quantify impact of replacing 2nd design point
by 1st candidate point:

∣∣XT X
∣∣

c+1
6. . . .
7. quantify impact of replacing last design point

by last candidate point:
∣∣XT X

∣∣
nc

6 / 33

Step 2: Improve starting design

I. consider all possible exchanges
II. save best exchange if it yields an improved∣∣XT X

∣∣
III. go back to step I if an improvement was found
IV. stop if no improvement was found

Ï does this guarantee you’ve found the best
design?

no!

Ï generate other starting designs and go through
the algorithm again (perform different tries of
the algorithm)

7 / 33

Demonstration of the algorithm I

1. run blkl.exe (Atkinson & Donev, 1992),
specify input file: munster1.prn

Ï calculates D-optimal design for
y =β0 +β1x1 +β2x2 +β12x1x2 +β11x2

1 +β22x2
2 +ε

Ï 9 observations
Ï guides you through algorithm step by step

→ candidate set
→ starting design
→ evaluation of all possible exchanges

(type integer and press enter each time
algorithm stops)

Ï output: output.prn

8 / 33

munster1.prn

2 number of variables
0 no mixture variables
1 no blocks
9 number of observations
2 order of model
6 number of parameters
0 0 intercept
1 0 linear term variable 1
2 0 idem variable 2
1 2 interaction between variables
1 1 quadratic term variable 1
2 2 idem variable 2
9 k should be at most number of observations
9 l should be at most number of candidates
3 number of times you try
0 technical stuff
1
1

9 / 33

Demonstration of the algorithm II
2. run blklbis.exe,

specify input file: munster2.prn
(same algorithm but doesn’t stop)

Ï compare outcome to optimal continuous design

3. run blklbis.exe,
specify input file: munster3.prn

Ï user-specified candidate set
Ï change number of observations to 6

4. run blklbis.exe,
specify input file: munster4.prn

Ï first-order model
Ï only two levels per factor

5. what would you do if
Ï quadratic model in 2 variables,
Ï levels between 1 and 3,
Ï x1 +x2 ≤ 5?

10 / 33

munster2.prn

2 number of variables
0 no mixture variables
1 no blocks
100 number of observations
2 order of model
6 number of parameters
0 0 intercept
1 0 linear term variable 1
2 0 idem variable 2
1 2 interaction between variables
1 1 quadratic term variable 1
2 2 idem variable 2
100 k should be at most number of observations
9 l should be at most number of candidates
200 number of times you try
0 technical stuff
1
1

11 / 33

munster3.prn

2 number of variables
0 no mixture variables
1 no blocks
9 number of observations
2 order of model
6 number of parameters
0 0 intercept
1 0 linear term variable 1
2 0 idem variable 2
1 2 interaction between variables
1 1 quadratic term variable 1
2 2 idem variable 2
6 k should be at most number of observations
6 l should be at most number of candidates
3 number of times you try
0 technical stuff
441

-1.0 -1.0
-0.9 -1.0
...

12 / 33

munster4.prn

2 number of variables
0 no mixture variables
1 no blocks
8 number of observations
2 order of model
4 number of parameters
0 0 intercept
1 0 linear term variable 1
2 0 idem variable 2
1 2 interaction between variables
2 k should be at most number of observations
2 l should be at most number of candidates
3 number of times you try
0 technical stuff
1
1

13 / 33

Demonstration of the algorithm III
6. qualitative experimental variables

Ï x1 = max. speed car
Ï x2 = gas usage

Ï x3 = brand

{
BMW d1 = 1, d2 = 0

Mercedes d1 = 0, d2 = 1
Ï y = willingness to pay
Ï model:

y =β0 +β1x1 +β2x2 +β12x1x2

+β11x2
1 +β22x2

2 +β3d1 +β4d2︸ ︷︷ ︸
drop from model

Ï input file: munster5.prn
Ï what do you observe when looking at optimal

design?

14 / 33

munster5.prn

3 number of variables
0 no mixture variables
1 no blocks
10 number of observations
2 order of model
7 number of parameters
0 0 intercept
1 0 linear term variable 1
2 0 idem variable 2
1 2 interaction between variables
1 1 quadratic term variable 1
2 2 idem variable 2
3 0 dummy variable
9 k should be at most number of observations
9 l should be at most number of candidates
3 number of times you try
0 technical stuff

15 / 33

munster5.prn (continued)

18
-1. -1. 1
0. -1. 1
1. -1. 1
-1. 0. 1
0. 0. 1
1. 0. 1
-1. 1. 1
0. 1. 1
1. 1. 1
-1. -1. 0
0. -1. 0
1. -1. 0
-1. 0. 0
0. 0. 0
1. 0. 0
-1. 1. 0
0. 1. 0
1. 1. 0
1

16 / 33

Design construction in SAS

proc factex
Ï for constructing candidate set

proc optex
Ï for computing optimal designs

1. example: simple1.sas
2. example: simple2.sas

constrained design region

3. example: simple3.sas
qualitative variable

17 / 33

simple1.sas

proc factex;
factors x1 x2 / nlev = 3;
output out=can

x1 nvals = (-1 0 1)
x2 nvals = (-1 0 1);

proc print data=can;
run;
proc optex data=can seed=57922;
model x1 x2 x1*x2 x1*x1 x2*x2;
generate n=100 method=fedorov;
output out=des;
proc print data=des;
run;

18 / 33

simple2.sas

proc factex;
factors x1 x2 / nlev = 3;
output out=can

x1 nvals = (1 2 3)
x2 nvals = (1 2 3);

data can;
set can;
if x1 + x2 <= 5;
proc print data=can;
run;
proc optex data=can seed=57922;
model x1 x2 x1*x2 x1*x1 x2*x2;
generate n=9 method=fedorov;
output out=des;
proc print data=des;
run;

19 / 33

simple3.sas

proc factex;
factors x1 x2 / nlev = 3;
output out=intermediate

x1 nvals = (-1 0 1)
x2 nvals = (-1 0 1);

run;
factors x3 / nlev = 2;
output out=can designrep=intermediate;
proc print data=can;
run;
proc optex data=can seed=57922;
class x3;
model x1 x2 x1*x2 x1*x1 x2*x2 x3;
generate n=10 criterion=d method=fedorov;
examine information variance;
output out=des;
proc print data=des;
run;

20 / 33

Some details about proc optex

Ï examine information XT X and variance
(XT X)−1

Ï criterion = D; other options: A, U, S, . . .
Ï method = Fedorov; other options:

M_FEDOROV (modified Fedorov)

remark about D-efficiency reported by SAS

Ï

∣∣XT X
∣∣1/p

n
Ï see simple4.sas

according to D-efficiency, design with 9
observations is worse than one with 8

21 / 33

simple4.sas

proc factex;
factors x1 x2 / nlev = 3;
output out=can

x1 nvals = (-1 0 1)
x2 nvals = (-1 0 1);

proc print data=can;
run;
proc optex data=can seed=57922;
model x1 x2 x1*x2;
generate n=8 method=fedorov;
examine information variance;
output out=des;
proc print data=des;
run;
proc optex data=can seed=57922;
model x1 x2 x1*x2;
generate n=9 method=fedorov;
examine information variance;
output out=des;
proc print data=des;
run; 22 / 33

Set of candidate points

Ï should cover entire design region
Ï best designs are found when vertices and edge

centroids are included in candidate set
Ï how many interior points?

Ï the more the better?
Ï 2 levels are enough for linear models with/without

interactions
Ï 3 levels are enough when there are quadratic

terms
Ï cubic terms: 4 levels

Ï constructing set of candidates may be difficult
when the design region is constrained

23 / 33

Set of candidate points

Ï constrained design region
Ï vertices
Ï edge centroids
Ï pairwise averages

Ï spherical design regions
candidate set should include points on the
sphere’s surface + center point

24 / 33

Update formulas

Ï add point a to the design
Ï information matrix

(XT X)NEW = (XT X)OLD + f(a)fT (a)
Ï determinant∣∣XT X

∣∣
NEW = ∣∣XT X

∣∣
OLD

(
1+ fT (a)(XT X)−1

OLDf(a)︸ ︷︷ ︸
prediction variance

)
(explains why point with largest prediction
variance has to be added)

Ï variance-covariance matrix

(XT X)−1
NEW = (XT X)−1

OLD− (XT X)−1
OLDf(a)fT (a)(XT X)−1

OLD

1+ fT (a)(XT X)−1
OLDf(a)

Ï saves computing time

25 / 33

Update formulas

Ï delete point a from the design
Ï information matrix

(XT X)NEW = (XT X)OLD − f(a)fT (a)
Ï determinant∣∣XT X

∣∣
NEW = ∣∣XT X

∣∣
OLD

(
1− fT (a)(XT X)−1

OLDf(a)︸ ︷︷ ︸
prediction variance

)
(explains why point with smallest prediction
variance has to be deleted)

Ï variance-covariance matrix

(XT X)−1
NEW = (XT X)−1

OLD+ (XT X)−1
OLDf(a)fT (a)(XT X)−1

OLD

1− fT (a)(XT X)−1
OLDf(a)

Ï there are update formulas for the replacement
of a point a by a point b too

26 / 33

KL exchange algorithm
Ï Atkinson & Donev (1989)
Ï intended to speed up Fedorov’s algorithms
Ï does not evaluate all possible exchanges of

design points and candidate points
Ï only K design points are considered for

removal from the design (namely the ones
with the smallest prediction variances)

Ï only L candidate points are considered for
entry in the design (namely the ones with the
largest prediction variances)

Ï inspired by update formula for determinant
after exchanging a design point with a
candidate point

27 / 33

Modified Fedorov algorithm

I. consider all exchanges for 1st design point
Ï quantify impact of replacing 1st design point by

1st candidate point
Ï quantify impact of replacing 1st design point by

2nd candidate point
Ï . . .
Ï quantify impact of replacing 1st design point by

last candidate point
Ï save best exchange

28 / 33

Modified Fedorov algorithm

II. consider all exchanges for 2nd design point
Ï quantify impact of replacing 2nd design point by

1st candidate point
Ï quantify impact of replacing 2nd design point by

2nd candidate point
Ï . . .
Ï quantify impact of replacing 2nd design point by

last candidate point
Ï save best exchange

III. . . .

29 / 33

Modified Fedorov algorithm

IV. consider all exchanges for nth design point
Ï . . .

V. go back to I if one of the steps I to IV yielded
improvement and led to change

VI. stop if no improvement found

30 / 33

Coordinate-exchange algorithm

Ï Meyer & Nachtsheim (1995)
Ï starting design is generated randomly
Ï improve starting design

1. replace first coordinate of first design point
→ save if improvement

2. replace second coordinate of first design point
→ save if improvement

3. . . .
4. replace last coordinate of last design point

→ save if improvement
5. if at least one improvement was found, go back to

step 1

Ï this algorithm is faster, but not necessarily
better

31 / 33

JMP

Ï uses coordinate exchange algorithm
Ï does not always find equally good designs but

you can do more tries for a given amount of
computing time

Ï offers the advantage that it is not required to
construct a candidate set

Ï this may be important when
Ï the design region is highly constrained
Ï there are an awful lot of experimental variables
Ï the candidate set would become too large

(because then the classical algorithms have
problems finding the globally optimal design)

Ï custom design instead of optimal design

32 / 33

Other algorithms

Ï genetic algorithms
Ï simulated annealing
Ï variable neighbourhood search
Ï tabu search
Ï ant colony optimisation
Ï each of these algorithms need substantial

tuning
Ï what algorithm you use is a matter of taste

33 / 33

