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H' Constructing exact optimal designs

» direct approaches to maximize |X’X|

» Microsoft Excel
» mathematical programming

— run into problems for “large” problems

» rounding off continuous optimal designs
— performs well for large n
— only for completely randomized designs
(uncorrelated observations)

» design construction algorithms
— point-exchange algorithms
— coordinate-exchange algorithms
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H-' Point exchange algorithms

» require discretizing the problem
» instead of searching the whole design region y

X2

X1

» the exchange algorithm searches over a
discrete grid of points

Xp}+---+1 — candidate points (say c)
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H' Fedorov’s exchange algorithm

» Fedorov (1972)

» structure
step 1: select starting design
step 2: sequentially improve design using
exchange procedure
step 3: stop when no more beneficial
exchanges are found
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H' Step 1: Construct starting design

1. select n; points at random and compute (X'X)

2. for all candidate points, calculate prediction
variance
' (x) X' X+ K fx)

3. select point with largest prediction variance
and add it to the design
why? large prediction variance indicates lack
of information

4. compute new X' X and repeat step 2 and 3
until starting design has n points
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H' Step 2: Improve starting design

I. consider all possible exchanges
1. quantify impact of replacing 1st design point
by 1st candidate point: [X’X|,
2. quantify impact of replacing 1st design point
by 2nd candidate point: [X’X],

4. quantify impact of replacing 1st design point
by last candidate point: |X"X|

5. quantify impact of replacing 2nd design point
by 1st candidate point: [X'X| .

7. quantify impact of replacing last design point
by last candidate point: |X"X|
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11.

I1I.
IV.

Step 2: Improve starting design

consider all possible exchanges

save best exchange if it yields an improved
X7x|

go back to step I if an improvement was found
stop if no improvement was found

does this guarantee you've found the best
design?

no!
generate other starting designs and go through

the algorithm again (perform different tries of
the algorithm)
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Demonstration of the algorithm |

. run blkl .exe (Atkinson & Donev, 1992),

specify input file: munsterl.prn

» calculates D-optimal design for

y=Bo+ P11+ Poxo + Proxixe + Pr1x] + Baox; +€
> 9 observations
> guides you through algorithm step by step

— candidate set
— starting design
— evaluation of all possible exchanges
(type integer and press enter each time
algorithm stops)
» output: output.prn
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munsterl.prn

number of variables

no mixture variables

no blocks

number of observations

order of model

number of parameters

intercept

linear term variable 1

idem variable 2

interaction between variables
quadratic term variable 1

2 idem variable 2

k should be at most number of observations
1 should be at most number of candidates
number of times you try

technical stuff
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H' Demonstration of the algorithm lIlI

2. run blklbis.exe,

specify input file: munster2.prn
(same algorithm but doesn’t stop)
» compare outcome to optimal continuous design

3. run blklbis.exe,
specify input file: munster3.prn
» user-specified candidate set
» change number of observations to 6

4. run blklbis.exe,
specify input file: munster4.prn
» first-order model
» only two levels per factor
5. what would you do if
» quadratic model in 2 variables,
» levels between 1 and 3,
» X1+ Xp <52
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munster?.

prn

2 number of variables
0 no mixture variables

1 no blocks

100 number of observations

2 order of model

6 number of parameters

0

N = = N -

= N O O O

2

intercept

linear term variable 1

idem variable 2

interaction between variables
quadratic term variable 1
idem variable 2

100 k should be at most number of observations
9 1 should be at most number of candidates

200 number of times you try

O technical stuff

1
1
munster3.prn
2
0
1 no blocks
9
2 order of model
6
0 0
1 0
2 0
1 2
1 1
2 2
6
6
3
0
441
-1.0 -1.0

-0.9 -1.0
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number of variables
no mixture variables

number of observations

number of parameters

intercept

linear term variable 1

idem variable 2

interaction between variables
quadratic term variable 1
idem variable 2

k should be at most number of observations
1 should be at most number of candidates
number of times you try

technical stuff
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munster4.prn

P PO WNNMNEFPENPLPOPPNNDNOEFE, ODN

number of variables

no mixture variables
no blocks

number of observations
order of model

number of parameters

0 intercept

0 linear term variable 1

0 idem variable 2

2 interaction between variables

k should be at most number of observations
1 should be at most number of candidates
number of times you try

technical stuff
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H' Demonstration of the algorithm Il

6. qualitative experimental variables

>

| 2

X1 = max. speed car
Xp = gas usage

B BMW di=1, dy=0
X3 = brand { Mercedes di; =0, dr=1
y = willingness to pay
model:

¥y =Po+ P1x1 + Paxo+ Pr2x1x2
+ P11 + BoaXs + Bady + Pady
——
drop from model

input file: munster5. prn
what do you observe when looking at optimal
design?
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munsterb.prn

3 number of variables
0 no mixture variables
1 no blocks

10

number of observations

2 order of model
7 number of parameters

0

1
2
1
1
2
3
9
9
3
0

munster5.prn (continued)

intercept
linear term variable 1
idem variable 2
interaction between variables
quadratic term variable 1
idem variable 2

0 dummy variable
k should be at most number of observations
1 should be at most number of candidates
number of times you try
technical stuff

N N O OO
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H-' Design construction in SAS

proc factex

» for constructing candidate set
proc optex

» for computing optimal designs

1. example: simplel.sas

2. example: simple?2.sas
constrained design region

3. example: simple3.sas
qualitative variable
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simplel.sas

proc factex;
factors x1 x2 / nlev = 3;
output out=can

x1 nvals = (-1 0 1)

x2 nvals (-1 0 1);
proc print data=can;
run;
proc optex data=can seed=57922;
model x1 x2 x1*x2 xl1*x1 x2*x2;
generate n=100 method=fedorov;
output out=des;
proc print data=des;
run;
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simple2.sas

proc factex;
factors x1 x2 / nlev = 3;
output out=can
x1 nvals = (1 2 3)
x2 nvals = (1 2 3);
data can;
set can;
if x1 + x2 <= b5;
proc print data=can;
run;

proc optex data=can seed=57922;
model x1 x2 x1*x2 xl1xx1 x2*x2;
generate n=9 method=fedorov;

output out=des;
proc print data=des;
run;

simple3.sas

proc factex;
factors x1 x2 / nlev = 3;
output out=intermediate
x1 nvals = (-1 0 1)
x2 nvals = (-1 0 1);
run;
factors x3 / nlev = 2;

output out=can designrep=intermediate;

proc print data=can;
run;

proc optex data=can seed=57922;

class x3;

model x1 x2 x1*x2 x1*x1 x2*%x2 X3;
generate n=10 criterion=d method=fedorov;
examine information variance;

output out=des;
proc print data=des;
run;
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H' Some details about proc optex

» examine information X’X and variance
XIx)!
» criterion = D; other options: A, U, S, ...

» method = Fedorov; other options:
M_FEDOROV (modified Fedorov)

remark about D-efficiency reported by SAS

|)(T)(|1/P

n
» see simple4.sas
according to D-efficiency, design with 9
observations is worse than one with 8
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simple4.sas

proc factex;
factors x1 x2 / nlev = 3;
output out=can

x1 nvals = (-1 0 1)

x2 nvals = (-1 0 1);
proc print data=can;
run;
proc optex data=can seed=57922;
model x1 x2 x1*x2;
generate n=8 method=fedorov;
examine information variance;
output out=des;
proc print data=des;
run;
proc optex data=can seed=57922;
model x1 x2 x1*x2;
generate n=9 method=fedorov;
examine information variance;
output out=des;
proc print data=des;
run; 22 /33




H' Set of candidate points

» should cover entire design region

» best designs are found when vertices and edge
centroids are included in candidate set
» how many interior points?

» the more the better?

» 2 levels are enough for linear models with/without
interactions

» 3 levels are enough when there are quadratic
terms

> cubic terms: 4 levels

» constructing set of candidates may be difficult
when the design region is constrained
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H' Set of candidate points

» constrained design region
> vertices
» edge centroids
> Ppairwise averages
» spherical design regions
candidate set should include points on the
sphere’s surface + center point
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H' Update formulas

» add point a to the design
» information matrix
X' X)new = X' X)orp + f@F (a)
» determinant
XX xew = X X]gpp (1 +F (@) X X) 51 pf(@))

prediction variance
(explains why point with largest prediction

variance has to be added)
» variance-covariance matriTX X . Fo 1
X' X)~rf@f (a) X' X) -
1+f7(a)XTX) orpf(@

» saves computing time
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H' Update formulas

» delete point a from the design
» information matrix
X' X)new = X' X)orp — f@fF (a)
» determinant
XX e = X X] o1 (1~ £ (@ X X) 51 pf(@))

prediction variance
(explains why point with smallest prediction

variance has to be deleted)
» variance-covariance matrix

XXl f@f! @X'X) ;!
XXk, = XTX)5L, +( JoLpt(@) (a)_( JoLp
1 -7 (a) XTX) 1 pf(@)
» there are update formulas for the replacement
of a point a by a point b too
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H-' KL exchange algorithm

» Atkinson & Donev (1989)

» intended to speed up Fedorov’s algorithms

» does not evaluate all possible exchanges of
design points and candidate points

» only K design points are considered for
removal from the design (namely the ones
with the smallest prediction variances)

» only L candidate points are considered for
entry in the design (namely the ones with the
largest prediction variances)

» inspired by update formula for determinant
after exchanging a design point with a
candidate point
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H' Modified Fedorov algorithm

I. consider all exchanges for 1st design point
» quantify impact of replacing 1st design point by
Ist candidate point
» quantify impact of replacing 1st design point by
2nd candidate point

» quantify impact of replacing 1st design point by
last candidate point
>~ save best exchange
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H' Modified Fedorov algorithm

II. consider all exchanges for 2nd design point
» quantify impact of replacing 2nd design point by
Ist candidate point
» quantify impact of replacing 2nd design point by
2nd candidate point

» quantify impact of replacing 2nd design point by
last candidate point
>~ save best exchange

II. ...
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H' Modified Fedorov algorithm

IV. consider all exchanges for nth design point

> e o o

V. go back to I if one of the steps I to IV yielded
improvement and led to change

VI. stop if no improvement found
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H' Coordinate-exchange algorithm

» Meyer & Nachtsheim (1995)

» starting design is generated randomly
» improve starting design
1. replace first coordinate of first design point
— save if improvement
2. replace second coordinate of first design point
— save if improvement

4. replace last coordinate of last design point
— save if improvement
5. if at least one improvement was found, go back to
step 1
» this algorithm is faster, but not necessarily
better
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3 Jwvmp

» uses coordinate exchange algorithm

» does not always find equally good designs but
you can do more tries for a given amount of
computing time

» offers the advantage that it is not required to

construct a candidate set
» this may be important when
> the design region is highly constrained
> there are an awful lot of experimental variables
» the candidate set would become too large
(because then the classical algorithms have
problems finding the globally optimal design)

» custom design instead of optimal design
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H' Other algorithms

» genetic algorithms

» simulated annealing

» variable neighbourhood search
» tabu search

» ant colony optimisation

» each of these algorithms need substantial
tuning

» what algorithm you use is a matter of taste
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