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H' Heterogeneous variances

v

Y=Xf+e€
var(Y;) = var(e;) = o¢ instead of constant o*

v

v

instead of ordinary least squares, use weighted
(generalized) least squares
p=(X"VX)"'X"vly

where

v

ro_% 0 .
V=

> var(f) = (X'V'X)™
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H-' Heterogeneous variances

» thus, optimal design depends on V

= you need prior information about ¢%,...,0°

n

» M=X'V'IX
=Y e (x)
» update formulas for adding a point a to the
design
- (XIVTIX) g = (XIVTIX) o + f(a)(g -
- XV =

<&

prediction variance is now weighted

f'(a) (X'V1X)f
XTIV Xy % (14 @] ) (a))
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H' Heterogeneous variances

Example: quadratic regression in one variable

Y; = Bo + B1x; + B2X; +¢€;

where

var(e;) = 0°V/X;

n==~6

» see quadraticlhet.xls
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H' Correlated obsezrvations
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V =var(Y) # o2
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H' Correlated observations

» generalized least squares
B=(X"vVIX)x"vly
var(f) = (X'V'x)"

» no simple update formulas any more

» order becomes important
order in which you run the observations
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H' Serial correlation

v

v

v

v

oy

what? not all observations can be done in identical

3% factorial design

AR(1) correlation pattern

02 po? p2o?

po® o* po?

2

0802 p’g? pbo

usually0<p <1

Excel file correlation.x1ls contains two

sheets with the same design
what do you observe?

Blocked experiments

circumstances

e.g.

e.g.

more than one day
more than one batch
more than one operator

more than one block

response not just depends on experimental
variables but also on block effects y;

Yjj= o+ Prj+ Paxi+yitey
Y=Xf+Zy +¢€

7136
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H-' Model for blocked experiments

XZB X9 o Xoe Y = ,80+,61x1+,62x2
X1

1 -1 +1] 1 0 0]
1 0 0 100
1 +1 -1 100
1 -1 -1 010
X=|1 +1 0 Z=[0 10
1 0 +1 010
1 -1 0 00 1
1 0 -1 00 1
1 +1 +1 00 1)
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H' Orthogonal blocking

» definition orthogonal blocking
“average level of regressors is the same in every

block”

» consequence:
incorporating the block effects in the model or
not does not affect estimation of

» no information is lost because of blocking

» example: arrange 2° factorial design in 2
blocks
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H' Orthogonally blocked 2° factorial de-

sign

-1 -1 -1 ~ -1 — blockl
1 -1 -1 1 — block?2

-1 1 -1 1 — block?2
1 1 -1 —1 — block1

-1 -1 1 1 — block?2
1 -1 1 —1 — block1

-1 1 1 —1 — block1
1 1 1 1 — block?2
b

X1 X2 X3 ~ X1X2X3
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H' Models for blocked experiments

MODEL 1

treat block effects as fixed:

> e.g. blocks are the machines
you have

> you want conclusions just
for those machines

> “intra-block analysis”
this was usually used in design litera-

ture (Atkinson & Donev (1989), Cook
& Nachtsheim (1989))

MODEL 2

treat block effects as random:

> e.g. blocks are batches
randomly drawn from
warehouse

> you want conclusions for all
batches

>  “mixed model analysis” =
“‘combined inter- &
intra-block analysis”
(Cheng)

this was done more recently (Goos &
Vandebroek (2001))
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H-' Model 1: intra-block analysis

» Y=Xf+Zy +€
» treat block effects as fixed

» estimate f§ and y using ordinary least squares
-1

Bl _[X'X x'z] [XTy
71 1Z2'X Z2'Z) |Z'y
A -1
. var |P| = 02 XX X Z
7 Z'X 7'z
_ _ . X'X X'Z
» D-optimal design maximizes det 77X 777
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H' Optimal design for Model 1

» BLKL-algorithm: look what happens to the set
of candidates
» run block. exe (fixed block effects)
input file: block.prn
» quadratic model in two variables
» 3 blocks with 3 observations
» the projection of the three blocks on top of
each other looks surprising

14/ 36



block.prn

2 number of variables

O number of mixtures variables

3 number of blocks

9 number of observations

3 3 3 number of observations in each block
2 order of the model

8 number of model parameters

1 O linear effect variable 1

2 O idem variable 2

3 O 1linear effect first dummy variable
4 O idem second dummy variable

5 O idem third dummy variable

1 2 1intercation effect

1 1 quadratic effect variable 1

2 2 quadratic effect variable 2

3

5
10

0

1
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H' Model 2: mixed model analysis

» treat block effects as random
» ¥i~N(0,0 f,)

all independent: y ~ N(0, O'?,Ib)
>~ €;~N(0,0%)

all independent: € ~ N(0,021,)
» V=var(Y) = o;l,+ 027"
- p=(XTVvIX)' X"V ly

> var(f) = XTv1ix)!
CTZ
>~ note that V=02 (I,,, + U—Z ZZT) =D,
——
n

> var(f) = o2X'D;'X) !
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H' Optimal designs for Model 2

run blklbis.exe (for random block effects)
input file: blockl.prn

» 3 blocks of 3 observations

» quadratic model in 2 variables

» optimal designs are computed for two values of ),
1 and 10

v

v

have a look at the projections now too

v

n = 1yields ditferent design than n = 10

v

n = 10 yields same design as BLKL-algorithm

(fixed block effects)
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blockl.prn

2 number of variables

9 observations

3 blocks

1 all blocks have same number of observations

2 eta values

1. 10. these are the two eta values for which you want a d

2 order of the model

6 number of beta-parameters

00 intercept

10 linear term in variable 1

2 0 linear term in variable 2

12 interaction

11 quadr var 1

2 2 quadr var 2

100 number of tries, the rest is technical stuff

100

100

o O O
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H' Optimal designs for Model 2

V=0:1,+nZZ")

(1+7 7 n 0 0 0 0 0 0 |
n l1+n n 0 0 0 0 0 0
n n 1+n O 0 0 0 0 0
0 0 0 1+n n n 0 0 0
=020 0 0 n 1+p n 0O 0 0
0 0 0 n n 1+n 0 0 0
0 0 0 0 0 0 1+n n n
0 0 0 0 0 0 n 1+n n
0 0 0 0 0 0 n n 1+n]
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H' Another example

run block.exe
input file: block?2.prn

» 2 blocks of 4 observations
3 variables

v

linear effects + two-factor interactions

v

what would a researcher do when (s)he had
never heard of optimal design?

n=0.01,n=1,n=10

v

v
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block2.prn

3 variables

8 eight observations

2 two blocks

1 number of observations in each block is the same
3 number of eta’s

0.01 1. 10. eta-values

2 order of the model

7 number of beta parameters

00 intercept

10 lin 1

20 lin 2

30 lin 3

12 interaction 1 2

13 int 1 3

2 3 int 2 3

50 number of tries, the rest is technical stuff
100

100

0

0
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H' Pastry dough experiment

(Trinca & Gilmour 2000)

purpose: increase quality

3 factors:

e initial moisture content (18-21-24%)
¢ feed flow rate (30-37.5-45 tons/h)

e screw speed (300-350-400 rpm)

e 7 days of experimentation
* 4 runs/day
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H-' Paired comparison experiments

option I option II
sloping frame | classic frame
Shimano Campagnolo

Campagnolo Mavic
Hyperon Ksyrium
H
!
slider
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H' Paired comparison experiments

» only one response is recorded for every set of
options
» this is essentially a comparison within a block

— “intra-block analysis” like in the fixed block effects
case

— BLKL-algorithm can be used to design paired
comparison experiments

» run blkbis.exe
input file: paired.prn
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paired.prn

2 number of expl variables
0 no mixture variables

4 four blocks

8 eight observations

2 2 2 2 all blocks have 2 observations
2 order of the model

7 number of parameters

1 0 linear term expl var 1

2 0 linear term expl var 2

1 2 interaction

3 0 first block effect

4 0 second

5 0 third

6 0 fourth block effect

3 k

5 1
10 number of times you try

0 technical stuff

1

0
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H- Hard-to-change variables

» doing experiments is time-consuming

» especially when some of the factors are “hard”
to change

» example: temperature of a furnace

high temperature

|

low temperature

|

intermediate temperature

|

low temperature
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H-' Hard-to-change variables

» researchers don’'t want to change the levels of
such factors all the time

e.g. keep temperatures fixed during a day and try
other temperature on other days
» such experiments resemble blocked
experiments
why? observations are partitioned in groups

» the difference is that the level(s) of
hard-to-change variable(s) is (are) held
constant in every group
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H- Hard-to-change variables

» resulting designs are called split-plot designs
» groups: whole plots, main plots

» hard-to-change variable(s)
= whole-plot variable(s)

» other variables
= sub-plot variables

» D-optimal split-plot designs can be generated
using JMP software
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H-' Protein extraction experiment

(Trinca & Gilmour 2001)

inflow of gases

Ill

mixture
inflow of . containing
mixture ——  proteins A
and B

purpose: increase yield

5 factors:

e position of inflow (w)

e feed flow rate (s7)

* gas flow rate (sp)

* concentration protein A (s3)
* concentration protein B (s4)

extraction of

S proteins and

e 2 runs/day
* 21 days of experimentation
e full quadratic model in the 5 variables

H' Model uncertainty

v

v

v

v

contaminants
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a lot of work has been done on that topic

two competing models:

Y= IBO+,61X+€

Y = ,30+,31x+,62x2+€

linear model

-1 +1

O O

1/2 1/2
quadratic model

-1 0 +1

O O O

/3 1/3 1/3
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H-' Model uncertainty

» some trade-off between the optimal design for
the linear model and the quadratic model

» a simple approach is the Bayesian approach
proposed by Dumouchel & Jones (1995)
» idea:
» for some of the model terms, you know “for sure”

that they are in the model: §,
~ for other terms you are not so sure: f3,

H' Bayesian D-optimal designs

» Bayesian idea: use a prior distribution for f’s
for which we’re not so sure

B, ~NORMAL( 0, 7°0°1)

this means: “I think these parameters
are not in the model”
or “I think their effects are zero”

this means: “I'm not totally sure of that”

the smaller 72, the less likely g, is in the model
the larger 74, the more likely g, is in the model
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H-' Bayesian estimator versus OLS

Ordinary least squares

ﬁ — (XTX)—ley
-1

ﬁ1 _ X Xi XiXo Xy
ﬁAz ngl Xng ng
Bayesian approach
f=X"X+K X"y
Bi|_[X% X% 1y
[ﬁz] ~ X ngﬁ% X,y

(this is mean of posterior distribution of f)
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H' Bayesian D-optimality criterion

Classical D-optimality

X{X; X{X,

maximize det . .
XXX XX,

Bayesian D-optimality

X{X; XX

maximize det I
X3X; X3 Xp+—
T
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H-' lllustration

Yi:ﬁO"‘ﬁlxi"'ﬁleg"‘ei
primary terms: Sy, B1X;
potential term: B,x5, B2 ~ NORMAL(0,7°0”)
Bo noYx Xx -

- p=|p|=|Xx X Xx X'y
B> Y X XXt
Bayesian D-optimal design

noYx, XYx
maximizes |YXx; LX; XX
XXX LXito

— see file bayesianl.sas

~~ uses prior option in the o
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bayesianl.sas

v

v

v

v

proc factex;

factors x / nlev = 3;

output out=can x nvals = (-1 0 1);
proc print data=can;

run;

proc optex data=can seed=57922;
model x, x*x / prior = 0, 10;
generate n=30 method=fedorov;
output out=des;

proc print data=des;

run;
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