
Optimal design of experiments
Session 6: Nonstandard design problems

Peter Goos
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Heterogeneous variances

Ï Y = Xβ+ε
Ï var(Yi) = var(εi) =σ2

i instead of constant σ2

Ï instead of ordinary least squares, use weighted
(generalized) least squares

Ï β̂= (
XT V−1X

)−1
XT V−1y

where

V =

σ
2
1 0

. . .
0 σ2

n


Ï var(β̂) = (

XT V−1X
)−1
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Heterogeneous variances

Ï thus, optimal design depends on V
⇒ you need prior information about σ2

1, . . . ,σ2
n

Ï M = XT V−1X
=∑n

i=1
1
σ2

i
f(xi)fT (xi)

Ï update formulas for adding a point a to the
design

Ï
(
XT V−1X

)
NEW = (

XT V−1X
)

OLD + f(a)fT (a)
σ2

a

Ï
∣∣XT V−1X

∣∣
NEW =∣∣XT V−1X

∣∣
OLD ×

(
1+ fT (a)

(
XT V−1X

)
f(a)

σ2
a︸ ︷︷ ︸

prediction variance is now weighted

)
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Heterogeneous variances

Example: quadratic regression in one variable

Yi =β0 +β1xi +β2x2
i +εi

where

var(εi) =σ2pxi

n = 6

Ï see quadratic1het.xls
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Correlated observations

V = var(Y) 6=


σ2 0

σ2

σ2

0 . . .



6=


σ2

1 0
σ2

2
σ2

3

0 . . .



=


σ2 σ12 σ13 . . .
σ12 σ2 σ23 . . .

σ13 σ23
. . .

...
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Correlated observations

Ï generalized least squares

β̂= (
XT V−1X

)
XT V−1y

var(β̂) = (
XT V−1X

)−1

Ï no simple update formulas any more
Ï order becomes important

order in which you run the observations
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Serial correlation

Ï 32 factorial design
Ï AR(1) correlation pattern

V =


σ2 ρσ2 ρ2σ2 . . . ρ8σ2

ρσ2 σ2 ρσ2 . . . ρ7σ2

... . . . . . . ...
ρ8σ2 ρ7σ2 ρ6σ2 . . . σ2


Ï usually 0 < ρ < 1
Ï Excel file correlation.xls contains two

sheets with the same design

what do you observe?
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Blocked experiments

what? not all observations can be done in identical
circumstances

e.g. more than one day
more than one batch
more than one operator
. . .
more than one block

→ response not just depends on experimental
variables but also on block effects γi

e.g. Yij =β0 +β1x1j +β2x2
ij +γi +εij

Y = Xβ+Zγ+ε
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Model for blocked experiments

x2

x1

x2

x1

x2

x1

Y =β0 +β1x1 +β2x2

X =



1 −1 +1
1 0 0
1 +1 −1
1 −1 −1
1 +1 0
1 0 +1
1 −1 0
1 0 −1
1 +1 +1


Z =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
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Orthogonal blocking

Ï definition orthogonal blocking
“average level of regressors is the same in every
block”

Ï consequence:
incorporating the block effects in the model or
not does not affect estimation of β

Ï no information is lost because of blocking
Ï example: arrange 23 factorial design in 2

blocks
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Orthogonally blocked 23 factorial de-
sign

−1 −1 −1  −1 → block 1
1 −1 −1 1 → block 2

−1 1 −1 1 → block 2
1 1 −1 −1 → block 1

−1 −1 1 1 → block 2
1 −1 1 −1 → block 1

−1 1 1 −1 → block 1
1 1 1 1 → block 2
↓ ↓ ↓
x1 x2 x3  x1x2x3
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Models for blocked experiments

MODEL 1

treat block effects as fixed:

Ï e.g. blocks are the machines
you have

Ï you want conclusions just
for those machines

Ï “intra-block analysis”

this was usually used in design litera-
ture (Atkinson & Donev (1989), Cook
& Nachtsheim (1989))

MODEL 2

treat block effects as random:

Ï e.g. blocks are batches
randomly drawn from
warehouse

Ï you want conclusions for all
batches

Ï “mixed model analysis” =
“combined inter- &
intra-block analysis”
(Cheng)

this was done more recently (Goos &
Vandebroek (2001))
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Model 1: intra-block analysis

Ï Y = Xβ+Zγ+ε
Ï treat block effects as fixed
Ï estimate β and γ using ordinary least squares

Ï

[
β̂

γ̂

]
=

[
XT X XT Z
ZT X ZT Z

]−1 [
XT y
ZT y

]
Ï var

[
β̂

γ̂

]
=σ2

[
XT X XT Z
ZT X ZT Z

]−1

Ï D-optimal design maximizes det

[
XT X XT Z
ZT X ZT Z

]
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Optimal design for Model 1

Ï BLKL-algorithm: look what happens to the set
of candidates

Ï run block.exe (fixed block effects)
input file: block.prn

Ï quadratic model in two variables
Ï 3 blocks with 3 observations

Ï the projection of the three blocks on top of
each other looks surprising
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block.prn

2 number of variables
0 number of mixtures variables
3 number of blocks
9 number of observations
3 3 3 number of observations in each block
2 order of the model
8 number of model parameters
1 0 linear effect variable 1
2 0 idem variable 2
3 0 linear effect first dummy variable
4 0 idem second dummy variable
5 0 idem third dummy variable
1 2 intercation effect
1 1 quadratic effect variable 1
2 2 quadratic effect variable 2
3
5

10
0
1
0 15 / 36

Model 2: mixed model analysis
Ï treat block effects as random
Ï γi ∼ N(0,σ2

γ)
all independent: γ∼ N(0,σ2

γIb)
Ï εi ∼ N(0,σ2

ε)
all independent: ε∼ N(0,σ2

εIn)
Ï V = var(Y) =σ2

εIn +σ2
γZZT

Ï β̂= (
XT V−1X

)−1
XT V−1y

Ï var(β̂) = (XT V−1X)−1

Ï note that V =σ2
ε

(
In +

σ2
γ

σ2
ε︸︷︷︸
η

ZZT
)
=σ2

εDη

Ï var(β̂) =σ2
ε(XT D−1

η X)−1
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Optimal designs for Model 2

Ï run blklbis.exe (for random block effects)
input file: block1.prn

Ï 3 blocks of 3 observations
Ï quadratic model in 2 variables
Ï optimal designs are computed for two values of η,

1 and 10

Ï have a look at the projections now too
Ï η= 1 yields different design than η= 10
Ï η= 10 yields same design as BLKL-algorithm

(fixed block effects)
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block1.prn

2 number of variables
9 observations
3 blocks
1 all blocks have same number of observations
2 eta values
1. 10. these are the two eta values for which you want a design
2 order of the model
6 number of beta-parameters
0 0 intercept
1 0 linear term in variable 1
2 0 linear term in variable 2
1 2 interaction
1 1 quadr var 1
2 2 quadr var 2
100 number of tries, the rest is technical stuff
100
100
0
0
0
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Optimal designs for Model 2

V =σ2
ε(In +ηZZT )

=σ2
ε



1+η η η 0 0 0 0 0 0
η 1+η η 0 0 0 0 0 0
η η 1+η 0 0 0 0 0 0
0 0 0 1+η η η 0 0 0
0 0 0 η 1+η η 0 0 0
0 0 0 η η 1+η 0 0 0
0 0 0 0 0 0 1+η η η

0 0 0 0 0 0 η 1+η η

0 0 0 0 0 0 η η 1+η
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Another example

run block.exe
input file: block2.prn

Ï 2 blocks of 4 observations
Ï 3 variables
Ï linear effects + two-factor interactions
Ï what would a researcher do when (s)he had

never heard of optimal design?
Ï η= 0.01, η= 1, η= 10
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block2.prn

3 variables
8 eight observations
2 two blocks
1 number of observations in each block is the same
3 number of eta’s
0.01 1. 10. eta-values
2 order of the model
7 number of beta parameters
0 0 intercept
1 0 lin 1
2 0 lin 2
3 0 lin 3
1 2 interaction 1 2
1 3 int 1 3
2 3 int 2 3
50 number of tries, the rest is technical stuff
100
100
0
0
0 21 / 36

Pastry dough experiment

(Trinca & Gilmour 2000)

• 7 days of experimentation
• 4 runs/day

purpose: increase quality

3 factors:
• initial moisture content (18–21–24%)
• feed flow rate (30–37.5–45 tons/h)
• screw speed (300–350–400 rpm)

22 / 36



Paired comparison experiments

option I option II
sloping frame classic frame

Shimano Campagnolo
Campagnolo Mavic

Hyperon Ksyrium

■
↑

slider
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Paired comparison experiments

Ï only one response is recorded for every set of
options

Ï this is essentially a comparison within a block
→ “intra-block analysis” like in the fixed block effects

case
→ BLKL-algorithm can be used to design paired

comparison experiments

Ï run blkbis.exe
input file: paired.prn
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paired.prn

2 number of expl variables
0 no mixture variables
4 four blocks
8 eight observations
2 2 2 2 all blocks have 2 observations
2 order of the model
7 number of parameters
1 0 linear term expl var 1
2 0 linear term expl var 2
1 2 interaction
3 0 first block effect
4 0 second
5 0 third
6 0 fourth block effect
3 k
5 l

10 number of times you try
0 technical stuff
1
0
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Hard-to-change variables
Ï doing experiments is time-consuming
Ï especially when some of the factors are “hard”

to change
Ï example: temperature of a furnace

high temperature
↓

low temperature
↓

intermediate temperature
↓

low temperature
...
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Hard-to-change variables

Ï researchers don’t want to change the levels of
such factors all the time
e.g. keep temperatures fixed during a day and try

other temperature on other days

Ï such experiments resemble blocked
experiments
why? observations are partitioned in groups

Ï the difference is that the level(s) of
hard-to-change variable(s) is (are) held
constant in every group
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Hard-to-change variables

Ï resulting designs are called split-plot designs
Ï groups: whole plots, main plots
Ï hard-to-change variable(s)

= whole-plot variable(s)
Ï other variables

= sub-plot variables
Ï D-optimal split-plot designs can be generated

using JMP software
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Protein extraction experiment

(Trinca & Gilmour 2001)

inflow of gases

inflow of
mixture

extraction of
proteins and

contaminants

mixture
containing
proteins A

and B

purpose: increase yield

5 factors:
• position of inflow (w)
• feed flow rate (s1)
• gas flow rate (s2)
• concentration protein A (s3)
• concentration protein B (s4)

• 2 runs/day
• 21 days of experimentation
• full quadratic model in the 5 variables
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Model uncertainty

Ï a lot of work has been done on that topic
Ï two competing models:

Y =β0 +β1x+ε

Y =β0 +β1x+β2x2 +ε

Ï linear model
−1 +1

1/2 1/2

Ï quadratic model

−1 0 +1

1/3 1/3 1/3
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Model uncertainty

Ï some trade-off between the optimal design for
the linear model and the quadratic model

Ï a simple approach is the Bayesian approach
proposed by Dumouchel & Jones (1995)

Ï idea:
Ï for some of the model terms, you know “for sure”

that they are in the model: β1
Ï for other terms you are not so sure: β2
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Bayesian D-optimal designs

Ï Bayesian idea: use a prior distribution for β’s
for which we’re not so sure

β2 ∼ NORMAL( 0 , τ2σ2I )

this means: “I think these parameters
are not in the model”
or “I think their effects are zero”

this means: “I’m not totally sure of that”

the smaller τ2, the less likely β2 is in the model
the larger τ2, the more likely β2 is in the model
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Bayesian estimator versus OLS
Ordinary least squares

β̂= (XT X)−1XT y[
β̂1

β̂2

]
=

[
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

]−1 [
XT

1 y

XT
2 y

]
Bayesian approach

β̂= (XT X+K)−1XT y[
β̂1

β̂2

]
=

XT
1 X1 XT

1 X2

XT
2 X1 XT

2 X2+ I

τ2

−1 [
XT

1 y

XT
2 y

]

(this is mean of posterior distribution of β)
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Bayesian D-optimality criterion

Classical D-optimality

maximize det

[
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

]

Bayesian D-optimality

maximize det

XT
1 X1 XT

1 X2

XT
2 X1 XT

2 X2+ I

τ2
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Illustration
Ï Yi =β0 +β1xi +β2x2

i +εi

Ï primary terms: β0, β1xi

Ï potential term: β2x2
i , β2 ∼ NORMAL(0,τ2σ2)

Ï β̂=

β̂0

β̂1

β̂2

=
 n

∑
xi

∑
x2

i∑
xi

∑
x2

i

∑
x3

i∑
x2

i

∑
x3

i

∑
x4

i + 1
τ2

−1

XT y

Ï Bayesian D-optimal design

maximizes

∣∣∣∣∣∣
n

∑
xi

∑
x2

i∑
xi

∑
x2

i

∑
x3

i∑
x2

i

∑
x3

i

∑
x4

i + 1
τ2

∣∣∣∣∣∣
→ see file bayesian1.sas
 uses prior option in the optex procedure
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bayesian1.sas

proc factex;
factors x / nlev = 3;
output out=can x nvals = (-1 0 1);
proc print data=can;
run;
proc optex data=can seed=57922;
model x, x*x / prior = 0, 10;
generate n=30 method=fedorov;
output out=des;
proc print data=des;
run;
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