Optimal design of experiments

Session 7: Nonlinear models

Peter Goos

\downarrow

Universiteit Antwerpen

Binary data with logistic link

- example:
- $y=0$ or 1 (adhesion or no adhesion)
- explanatory variable
$x=$ time of plasma etching
- $n=2$ observations
- logistic regression model:

$$
\begin{aligned}
& P\left(Y_{i}=1\right)=\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}} \\
& P\left(Y_{i}=0\right)=\frac{1}{1+e^{\beta_{0}+\beta_{1} x_{i}}}
\end{aligned}
$$

L Likelihood

- likelihood function observation i

$$
\begin{aligned}
L_{i}=P\left(Y_{i}=y_{i}\right) & =\left(\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}\right)^{y_{i}}\left(\frac{1}{1+e^{\beta_{0}+\beta_{1} x_{i}}}\right)^{1-y_{i}} \\
& =\frac{e^{y_{i}\left(\beta_{0}+\beta_{1} x_{i}\right)}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}
\end{aligned}
$$

- \log likelihood observation i

$$
\begin{aligned}
\ln L_{i} & =\ln e^{y_{i}\left(\beta_{0}+\beta_{1} x_{i}\right)}-\ln \left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right) \\
& =y_{i}\left(\beta_{0}+\beta_{1} x_{i}\right)-\ln \left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)
\end{aligned}
$$

Information matrix

- general definition observation i :

$$
\mathbf{M}_{i}=-E\left(\frac{\partial^{2} \ln L_{i}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}}\right)=E\left(\left(\frac{\partial \ln L_{i}}{\partial \boldsymbol{\theta}}\right)\left(\frac{\partial \ln L_{i}}{\partial \boldsymbol{\theta}}\right)^{T}\right)
$$

with $\boldsymbol{\theta}$ the vector of model parameters

- total information matrix

$$
\mathbf{M}=\sum_{i=1}^{n} \mathbf{M}_{i}
$$

Binary logistic regression

$-\mathbf{M}_{i}=-E\left[\begin{array}{cc}\frac{\partial^{2} \ln L_{i}}{\partial \beta_{0}^{2}} & \frac{\partial^{2} \ln L_{i}}{\partial \beta_{0} \partial \beta_{1}} \\ \frac{\partial^{2} \ln L_{i}}{\partial \beta_{1} \partial \beta_{0}} & \frac{\partial^{2} \ln L_{i}}{\partial \beta_{1}^{2}}\end{array}\right]$

- $\ln L_{i}=y_{i}\left(\beta_{0}+\beta_{1} x_{i}\right)-\ln \left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)$
- $\frac{\partial \ln L_{i}}{\partial \beta_{0}}=y_{i}-\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}$
$-\frac{\partial \ln L_{i}}{\partial \beta_{1}}=y_{i} x_{i}-\frac{e^{\beta_{0}+\beta_{1} x_{i} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}$

Binary logistic regression

$$
\begin{aligned}
& -\frac{\partial^{2} \ln L_{i}}{\partial \beta_{0}^{2}}=-\frac{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right) e^{\beta_{0}+\beta_{1} x_{i}-e^{\beta_{0}+\beta_{1} x_{i}} e^{\beta_{0}+\beta_{1} x_{i}}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}} \\
& =-\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}} \\
& -\frac{\partial^{2} \ln L_{i}}{\partial \beta_{0} \partial \beta_{1}}=-\frac{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right) e^{\beta_{0}+\beta_{1} x_{i} x_{i}-e^{\beta_{0}+\beta_{1} x_{i}} e^{\beta_{0}+\beta_{1} x_{i} x_{i}}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}} \\
& =-\frac{e^{\beta_{0}+\beta_{1} x_{i} x_{i}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}}=\frac{\partial^{2} \ln L_{i}}{\partial \beta_{1} \partial \beta_{0}} \\
& -\frac{\partial^{2} \ln L_{i}}{\partial \beta_{1}^{2}}=-\frac{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right) e^{\beta_{0}+\beta_{1} x_{i} x_{i}^{2}-e^{\beta_{0}+\beta_{1} x_{i}} x_{i} e^{\beta_{0}+\beta_{1} x_{i} x_{i}}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}} \\
& =-\frac{e^{\beta_{0}+\beta_{1} x_{i} x_{i}^{2}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}}
\end{aligned}
$$

U. Information matrix

- observation i

$$
\mathbf{M}_{i}=-E\left[\begin{array}{ll}
\frac{-e^{\beta_{0}+\beta_{1} x_{i}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}} & \frac{-x_{i} e^{\beta_{0}+\beta_{1} x_{i}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}} \\
\frac{-x_{i} e^{\beta_{0}+\beta_{1} x_{i}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}} & \frac{-x_{i}^{2} e^{\beta_{0}+\beta_{1} x_{i}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}}
\end{array}\right]
$$

- total information matrix $\mathbf{M}=\sum_{i=1}^{n} \mathbf{M}_{i}$
- the information matrix (and thus the amount of information) on the unknown parameters depends on the unknown parameters
- to maximize the information content of your experiment, you need a guess for β_{0} and β_{1}

\downarrow Information matrix

- observation i

$$
\mathbf{M}_{i}=\left[\begin{array}{ll}
\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}} & \frac{x_{i} e^{\beta_{0}+\beta_{1} x_{i}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}} \\
\frac{x_{i} e^{\beta_{0}+\beta_{1} x_{i}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}} & \frac{x_{i}^{2} e^{\beta_{0}+\beta_{1} x_{i}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)^{2}}
\end{array}\right]
$$

- total information matrix $\mathbf{M}=\sum_{i=1}^{n} \mathbf{M}_{i}$
- the information matrix (and thus the amount of information) on the unknown parameters depends on the unknown parameters
- to maximize the information content of your experiment, you need a guess for β_{0} and β_{1}

\leftrightarrow Locally optimal design

- binary.xls
- 2 examples are given:
$\begin{cases}\text { parameterset } 1: & \beta_{0}=-2 \text { and } \beta_{1}=+2 \\ \text { parameterset } 2: & \beta_{0}=-2 \text { and } \beta_{1}=+3\end{cases}$
- set 1 leads to: $\left\{\begin{array}{lc}x_{1}=0.228 & \text { these designs } \\ x_{2}=1.772 & \text { are called locally }\end{array}\right.$
- set 2 leads to: $\left\{\begin{array}{l}x_{1}=0.152 \\ x_{2}=1.181\end{array}\right.$
optimal
(optimal for just one set of β 's)

Bayesian approach

- problem with locally optimal designs: they might not be very good for other β 's
- a Bayesian (D-)optimal design is a design that performs well on average
- how?
for each $\beta_{i}: \beta_{i} \sim \operatorname{NORMAL}\left(a, b^{2}\right)$ some density/distribution

I think β_{i} is around a

I'm not that sure, I might be wrong
(small b : I'm pretty sure \leftrightarrow large b : unsure)

G Simple example

- $\beta_{0}=-2, \beta_{1}=\left\{\begin{array}{ll}2 & (50 \% \text { chance }) \\ 3 & (50 \% \text { chance })\end{array}\right.$ instead of
- construct information matrix for every set of β 's
- calculate $|\mathbf{M}|$ for each set of β 's: $|\mathbf{M}|_{1},|\mathbf{M}|_{2}$
- what you have to maximize is the Bayesian

D-criterion
$0.5|\mathbf{M}|_{1}+0.5|\mathbf{M}|_{2} \quad$ probability second set of β 's probability first set of β 's

- example: Bayesian binary.xls

Bayesian D-optimal design: $\left\{\begin{array}{l}x_{1}=0.2 \\ x_{2}=1.573\end{array}\right.$

\leftrightarrow

Implementation normal prior

 distribution- what if $\beta_{i} \sim$ NORMAL?
- generate "a lot" of β_{i} 's from the normal distribution ($R=$ number of draws)
- maximize the Bayesian D-criterion $\sum_{j=1}^{R} \frac{1}{R}|\mathbf{M}|_{j}$
determinant for the j th set of β 's you randomly drew from the normal distributions for β_{i} 's
- this is done to approximate $\int_{\mathbb{R}^{k}}|\mathbf{M}|_{j} \pi(\beta) d \beta$ joint probability distribution of β_{i} 's

Implementation normal prior distribution

- usually, a Monte Carlo sample is drawn from the prior distribution
- for this to work well, you need to draw a lot of random samples
- this is computationally demanding
- solution: do not draw samples randomly but systematically
- Halton sequences
- Sobol sequences
- Gaussian quadrature
- in that case, you need much fewer draws

More on Bayesian optimal design

- no Bayesian design:
maximizing $|\mathbf{M}|$ and $\log |\mathbf{M}|$ is the same thing
- Bayesian design:
maximizing $\sum_{j=1}^{R} \frac{1}{R}|\mathbf{M}|_{j}$ and $\sum_{j=1}^{R} \frac{1}{R} \log |\mathbf{M}|_{j}$ is
NOT the same thing!
- see Bayesian binary (version 2).xls

Bayesian D-optimal design: $\left\{\begin{array}{l}x_{1}=0.179 \\ x_{2}=1.419\end{array}\right.$

Maximin designs

- designs that have the best possible worst case performance
- how?
- for each set of β 's, there is a locally optimal design, with determinant $|\mathbf{M}|_{j}^{*}$ for parameter set j
- any other design will be worse than $|\mathbf{M}|_{j}^{*}$ for that set
- how bad?

$$
\left(\frac{\mid \mathbf{M}(\text { set } j) \mid}{|\mathbf{M}|_{j}^{*}}\right)^{1 / p}
$$

- we compute this quantity for every set of β 's
- we focus on the smallest / worst value and maximize that value

$*$
 Our example

		(locally)	opt. determ.
	β	opt. design	$\|\mathbf{M}\|_{j}^{*}$
set 1	$\beta_{0}=-2$	$x_{1}=0.228$	
	$\beta_{1}=+2$	$x_{2}=1.772$	$\|\mathbf{M}\|_{1}^{*}=0.0501$
set 2	$\beta_{0}=-2$	$x_{1}=0.152$	
	$\beta_{1}=+3$	$x_{2}=1.181$	$\|\mathbf{M}\|_{2}^{*}=0.0223$

find design with information matrix \mathbf{M} that maximizes

$$
\min \left\{\left(\frac{|\mathbf{M}(-2,2)|}{|\mathbf{M}|_{1}^{*}}\right)^{1 / 2},\left(\frac{|\mathbf{M}(-2,3)|}{|\mathbf{M}|_{2}^{*}}\right)^{1 / 2}\right\}
$$

\downarrow Our example

- maximin binary.xls
- maximin design $\left\{\begin{array}{l}x_{1}=0.18 \\ x_{2}=1.436\end{array}\right.$
- this design is 94.4% efficient for both sets of β 's
- this means that

$$
\left(\frac{|\mathbf{M}(-2,2)|}{|\mathbf{M}|_{1}^{*}}\right)^{1 / 2}=\left(\frac{|\mathbf{M}(-2,3)|}{|\mathbf{M}|_{2}^{*}}\right)^{1 / 2}=0.944
$$

Sequential optimal design

- idea

1. start with a small design and collect some data
2. update your knowledge on model's parameters
3. create a new design that uses improved knowledge
4. repeat steps 2 and 3 as often as possible/desirable

- avoids constructing a large design based on poor prior knowledge
- this approach performs very well usually
- not always feasible

Other considerations

- the logistic regression models belong to a class of generalized linear models
- maximum likelihood estimation
- for some models, maximum likelihood theory can not be used to derive an information matrix
- this is what next slides are about

Nonlinear regression models

- general model (just one θ)

$$
\begin{aligned}
& Y=\eta(x, \theta)+\epsilon \\
& E(Y)=\eta(x, \theta)
\end{aligned}
$$

- Taylor series expansion

$$
\begin{aligned}
E(Y) & =\eta(x, \theta) \\
& =\eta\left(x, \theta_{0}\right)+\left.\left(\theta-\theta_{0}\right) \frac{\partial \eta(x, \theta)}{\partial \theta}\right|_{\theta=\theta_{0}}+\ldots
\end{aligned}
$$

Nonlinear regression models

- rewrite as

$$
\begin{aligned}
\underbrace{E(Y)-\eta\left(x, \theta_{0}\right)}_{\text {some response }} & =\underbrace{\left(\theta-\theta_{0}\right)}_{\text {parameter }} \underbrace{\left.\frac{\partial \eta(x, \theta)}{\partial \theta}\right|_{\theta=\theta_{0}}}_{\text {function of exp. var. }} \\
Y^{*} & =\beta f(x)
\end{aligned}
$$

- nonlinear model with several θ 's

$$
Y^{*}=\boldsymbol{\beta}^{T} \mathbf{f}(\mathbf{x})
$$

Information matrix

- information matrix for such a model

$$
\mathbf{M}=\sum_{i=1}^{n} \mathbf{f}(\mathbf{x}) \mathbf{f}^{T}(\mathbf{x})
$$

- here

$$
\mathbf{f}(\mathbf{x})=\left.\frac{\partial \eta(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right|_{\theta=\theta_{0}}
$$

- so information matrix depends on unknown parameters
- thus, optimal designs depend on the unknown parameters

An example: a chemical reaction

$$
\begin{gathered}
A \xrightarrow{\theta_{1}} B \xrightarrow{\theta_{2}} C \\
Y_{i}=\frac{\theta_{1}}{\theta_{1}-\theta_{2}}\left(e^{-\theta_{2} t_{i}}-e^{-\theta_{1} t_{i}}\right)
\end{gathered}
$$

- $Y_{i}=$ concentration of substance B
- $t_{i}=$ time $=$ explanatory variable
- $\theta_{1}>\theta_{2}$
- e.g. $\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
- suppose $n=4$, so you have to choose 4 time points $t_{1}, t_{2}, t_{3}, t_{4}$ at which to measure the presence of substance B

J Model matrix X

- dimension 4×2
- what should be in the columns?

$$
\frac{\partial \eta}{\partial \theta_{1}} \text { and } \frac{\partial \eta}{\partial \theta_{2}}
$$

here: $\frac{\partial Y}{\partial \theta_{1}}$ and $\frac{\partial Y}{\partial \theta_{2}}$

- first column:

$$
\frac{\partial Y}{\partial \theta_{1}}=\frac{1}{\left(\theta_{1}-\theta_{2}\right)^{2}}\left(\left(\theta_{2}+\theta_{1}\left(\theta_{1}-\theta_{2}\right) t_{i}\right) e^{-\theta_{1} t_{i}}-\theta_{2} e^{-\theta_{2} t_{i}}\right)
$$

- second column:

$$
\frac{\partial Y}{\partial \theta_{2}}=\frac{1}{\left(\theta_{1}-\theta_{2}\right)^{2}}\left(\left(\theta_{1}+\theta_{1}\left(\theta_{1}-\theta_{2}\right) t_{i}\right) e^{-\theta_{2} t_{i}}-\theta_{1} e^{-\theta_{1} t_{i}}\right)
$$

Locally optimal design

- you need some idea about θ_{1} and θ_{2} before you can start
- e.g. $\theta_{1}=0.7, \theta_{2}=0.2$, so

$$
\begin{aligned}
& \frac{\partial Y}{\partial \theta_{1}}=\left(0.8+1.4 t_{i}\right) e^{-0.7 t_{i}}-0.8 e^{-0.2 t_{i}} \\
& \frac{\partial Y}{\partial \theta_{2}}=\left(2.8+1.4 t_{i}\right) e^{-0.2 t_{i}}-2.8 e^{-0.7 t_{i}}
\end{aligned}
$$

- see nonlinear.xls

