Optimal design of experiments
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H' Binary data with logistic link

» example:

» y=0or1 (adhesion or no adhesion)
» explanatory variable

x = time of plasma etching
» n =2 observations

» logistic regression model:

pPo+PB1xi
P(Y;=1) =

1 + ePo+Prix;
P(Y;=0) =

1 + ePo+Pix;
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|39 Likelihood

» likelihood function observation i

pPo+Prxi Vi 1 1-y;
1+ 3,30+,31xi) (1 + eﬁ0+.31xi)
eVilBo+p1x)

Li:P(Yi:yi):(

1 + ebotPixi

» log likelihood observation i

InL; = In eiPothrxd _1n(1 + ePo+hri)
= ¥i(Bo + P1x) — In(1 + ePorFrx)

3/25

H' Information matrix

» general definition observation i:

M - E(@ZlnL,-) _E((dlnLi)(GlnLi)T)
' “logae”) T\ 00 ]\ o6

with 0 the vector of model parameters

» total information matrix

M=) M;

n
=1
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H-' Binary logistic regression

InL; 0°InL;

_ dp;  0Podf
M;=-E ?InL; d¢*InL;
0p10fo B3

» InL; = y,(Bo + Br1x) —In(1 + ePo+Prxi)

o dlnL; _ ~ ePothix
00 ~ Yt 1+4ePotBix;
. dlnL; ePo+P1%;

9y Vi T T Povhin
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H' Binary logistic regression

o 9°InL; _ (1+€ﬁ0+ﬁ1xi)eﬁ0+ﬁ1xi—eﬂ0+/31xz'eﬁo+ﬁ1xi
aﬁ(z) (1+eﬁo+ﬁ1xi)2
- e:BO"':lei
(1+e/30+/51xi)2
62 lnLi (1+€ﬁ0+ﬁ1xi)eﬁO+:61xixl-—e,30+ﬁ1xieﬁ0+ﬂ1xixi
» e —
o0 (1+eﬁo+ﬁ1xi)2
___ébothitiy,  4%InLy
(1+eﬁ0+ﬁ1xi)2 d610Po
0°InL; (1+€ﬁ0+'61xi)eﬁ0+ﬁ1xix?—eﬁ0+ﬁ1xixiel30+,61xixi
» e —
L (1+eﬁo+ﬂlxz')2
eﬁo+ﬁ1xix12
B (1+eﬁ0+ﬁlxi)2
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H-' Information matrix

» observation i

_eBo+B1x —x;ePo+P1x; ]

(1+eﬁo+ﬂ1xz')2 (1+eﬁ0+l31xi)2

M;=-E _x;ePotB1x; _x12,eﬂo+ﬁ1xi
. (1+eﬁo+ﬁ1xi)2 (1+eﬁ0+ﬁ1xi)2 ,

n
> total information matrix M = ) M;
i=1
» the information matrix (and thus the amount

of information) on the unknown parameters
depends on the unknown parameters

» to maximize the information content of your
experiment, you need a guess for §, and p,
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H' Information matrix

» observation i

ePo+B1x; x;eP0Th1%i
(1+eﬁo+/31xi)2 (1+eﬂo+ﬁ1xi ’
M,;= x;ePotB1x; xfeﬁoﬂﬁxi
L (1+eﬁo+ﬁ1xi)2 (1+eﬁo+ﬁ1xi)2 4

n
> total information matrix M = ) M;
i=1
» the information matrix (and thus the amount

of information) on the unknown parameters
depends on the unknown parameters

» to maximize the information content of your
experiment, you need a guess for f, and (;
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Locally optimal design

binary.xls

2 examples are given:
{parameterset l: fp=—-2and f; =+2

parameterset2: [y=-2and f; =+3

(x, =0.228

set 1 leads to: < these designs
X =1.772 are called locally
% =0.152 optimal

set 2 leads to: ixz 1181 (optimal for just

one set of §’s)
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Bayesian approach

problem with locally optimal designs: they
might not be very good for other f’s

a Bayesian (D-)optimal design is a design that
performs well on average

how?

for each 8;: B; ~ NORMAL (a, ")
v
some density/distribution /
I think §;is around a

I’'m not that sure, I might be wrong

(small b: I'm pretty sure < large b: unsure)
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H-' Simple example

oy

>

>

2 (50% chance) .

—_2 B = instead of
Po pr { 3 (50% chance) normal

construct information matrix for every set of
p’s

calculate |[M| for each set of f’s: [M|;, IM|,
what you have to maximize is the Bayesian
D-criterion

0.5|MJ; +0.5|M|, probability second set of f’s
probability first set of (’s

example: Bayesian binary.xls

X1 = 0.2

Bayesian D-optimal design:
Y P 5 {Xz =1.573
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Implementation normal prior
distribution

what if 8; ~ NORMAL?

generate “alot” of ;s from the normal

distribution (R = number of draws)
R

maximize the Bayesian D-criterion Z —|M|;
~ R
]_
determinant for the jth set
of f’s you randomly drew from

the normal distributions for ;s

this is done to approximate f ) M|, z(p) dp
R
joint probability distribution of §;’s
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H-' Implementation normal prior
distribution

» usually, a Monte Carlo sample is drawn from
the prior distribution

» for this to work well, you need to draw a lot of
random samples

» this is computationally demanding

» solution: do not draw samples randomly but
systematically

» Halton sequences
» Sobol sequences
» Gaussian quadrature

» in that case, you need much fewer draws
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H' More on Bayesian optimal design

» no Bayesian design:

maximizing |M| and log|M| is the same thing
» Bayesian design:

maximizing %, % /Ml; and Y, £log|Ml; is

NOT the same thing!

» see Bayesian binary (version 2).xls
x1 =0.179

Bayesian D-optimal design:
Y P 5 {Xg =1.419
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H-' Maximin designs

» designs that have the best possible worst case
performance
» how?
» for each set of s, there is a locally optimal design,
with determinant IMI;.‘ for parameter set j

» any other design will be worse than IMI;.‘ for that
set

> how bad? y
( IM(set )| ) P
M
» we compute this quantity for every set of (’s

» we focus on the smallest / worst value and
maximize that value
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H’ Our example

(locally)  opt. determ.
B opt. design M|

setl [Bo=-2 x=0.228
Br=+2 x,=1.772 M|} =0.0501

set2 Po=-2 x =0.152
Bi=+3 x,=1.181 |M|;=0.0223

find design with information matrix M that
maximizes

. (|M(—2,2)|)”2 (|M(—2,3)|)”2
min ,
|M|’1" |M|;‘
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H' Our example

» maximin binary.xls

x =0.18

X, =1.436

» this design is 94.4% efficient for both sets of §’s
» this means that

(|M(—2,2)|)“2 ~ (|M(—2,3)|
M} R (s

» maximin design {

1/2
) =0.944
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H' Sequential optimal design

» idea
1. start with a small design and collect some data
2. update your knowledge on model’s parameters
3. create a new design that uses improved knowledge
4. repeat steps 2 and 3 as often as possible/desirable
» avoids constructing a large design based on

poor prior knowledge
» this approach performs very well usually
» not always feasible
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Other considerations

the logistic regression models belong to a class
of generalized linear models

maximum likelihood estimation

for some models, maximum likelihood theory
can not be used to derive an information
matrix

this is what next slides are about
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Nonlinear regression models

general model (just one 0)

Y=nx0)+e
E(Y) =n(x,0)

Taylor series expansion

E(Y) =n(x,0)

on(x.0
= (%, 00) + (0 — 0y) 210

00

0=0y
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H-' Nonlinear regression models

» rewrite as

on(x,0)
EO) s 00)= (0 00), 7=
e v 9299

some response parameter \ ~
function of exp. var.

Y" = Bf(x)

» nonlinear model with several @’s

Y* =g fx)
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H' Information matrix

» information matrix for such a model

M=) fxf x
i=1

» here
£x) = 0n(x,0)
00 |4,
» so information matrix depends on unknown
parameters

» thus, optimal designs depend on the unknown
parameters
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H-' An example: a chemical reaction

A% 8% ¢
6, o1 |
: 91—92( )

» Y; = concentration of substance B

» I; = time = explanatory variable

» 6,>0,

» e.g. 0, — H,O, — H,0

» suppose n =4, so you have to choose 4 time
points f, b, 3, t; at which to measure the
presence of substance B
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H' Model matrix X

» dimension 4 x 2
» what should be in the columns?

on on
1 oand 2L
50, ¢ 40,

oY oY
here: 0—91 and 0_92
» first column:
Yy 1
06, (61 —0,)?
» second column:
oy 1
00, (0, —0,)?

(02+01(0,—02)1) ' — 0,772

((61 46,0, —02)1) e 2l — Hle_gm)
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H-' Locally optimal design

» you need some idea about 0, and 0, before
you can start

» e.g.0,=0.7,0,=0.2, so

oY
o5 = (08+1.41) e V7li—0.8e7"%
1

oY
o, = 28+ 1.41) e V2li—28e "t
2

» seenonlinear.xls
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