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Binary data with logistic link

Ï example:
Ï y = 0 or 1 (adhesion or no adhesion)
Ï explanatory variable

x = time of plasma etching
Ï n = 2 observations

Ï logistic regression model:

P(Yi = 1) = eβ0+β1xi

1+eβ0+β1xi

P(Yi = 0) = 1

1+eβ0+β1xi
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Likelihood

Ï likelihood function observation i

Li = P(Yi = yi) =
(

eβ0+β1xi

1+eβ0+β1xi

)yi ( 1

1+eβ0+β1xi

)1−yi

= eyi(β0+β1xi)

1+eβ0+β1xi

Ï log likelihood observation i

lnLi = lneyi(β0+β1xi) − ln(1+eβ0+β1xi)
= yi(β0 +β1xi)− ln(1+eβ0+β1xi)
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Information matrix

Ï general definition observation i:

Mi =−E

(
∂2 lnLi

∂θ∂θT

)
= E

((
∂ lnLi

∂θ

)(
∂ lnLi

∂θ

)T)
with θ the vector of model parameters

Ï total information matrix

M =
n∑

i=1

Mi
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Binary logistic regression

Ï Mi =−E

 ∂2 lnLi

∂β2
0

∂2 lnLi
∂β0∂β1

∂2 lnLi
∂β1∂β0

∂2 lnLi

∂β2
1


Ï lnLi = yi(β0 +β1xi)− ln(1+eβ0+β1xi)

Ï ∂ lnLi
∂β0

= yi − eβ0+β1xi

1+eβ0+β1xi

Ï ∂ lnLi
∂β1

= yixi − eβ0+β1xi xi

1+eβ0+β1xi
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Binary logistic regression

Ï ∂2 lnLi

∂β2
0

=−
(
1+eβ0+β1xi

)
eβ0+β1xi−eβ0+β1xi eβ0+β1xi(
1+eβ0+β1xi

)2

=− eβ0+β1xi(
1+eβ0+β1xi

)2

Ï ∂2 lnLi
∂β0∂β1

=−
(
1+eβ0+β1xi

)
eβ0+β1xi xi−eβ0+β1xi eβ0+β1xi xi(

1+eβ0+β1xi
)2

=− eβ0+β1xi xi(
1+eβ0+β1xi

)2 = ∂2 lnLi
∂β1∂β0

Ï ∂2 lnLi

∂β2
1

=−
(
1+eβ0+β1xi

)
eβ0+β1xi x2

i −eβ0+β1xi xie
β0+β1xi xi(

1+eβ0+β1xi
)2

=− eβ0+β1xi x2
i(

1+eβ0+β1xi
)2

6 / 25



Information matrix
Ï observation i

Mi =−E


−eβ0+β1xi(

1+eβ0+β1xi
)2

−xie
β0+β1xi(

1+eβ0+β1xi
)2

−xie
β0+β1xi(

1+eβ0+β1xi
)2

−x2
i eβ0+β1xi(

1+eβ0+β1xi
)2


Ï total information matrix M =

n∑
i=1

Mi

Ï the information matrix (and thus the amount
of information) on the unknown parameters
depends on the unknown parameters

Ï to maximize the information content of your
experiment, you need a guess for β0 and β1
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Information matrix
Ï observation i

Mi =


eβ0+β1xi(

1+eβ0+β1xi
)2

xie
β0+β1xi(

1+eβ0+β1xi
)2

xie
β0+β1xi(

1+eβ0+β1xi
)2

x2
i eβ0+β1xi(

1+eβ0+β1xi
)2


Ï total information matrix M =

n∑
i=1

Mi

Ï the information matrix (and thus the amount
of information) on the unknown parameters
depends on the unknown parameters

Ï to maximize the information content of your
experiment, you need a guess for β0 and β1
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Locally optimal design

Ï binary.xls
Ï 2 examples are given:{

parameterset 1 : β0 =−2 and β1 =+2

parameterset 2 : β0 =−2 and β1 =+3

Ï set 1 leads to:

{
x1 = 0.228

x2 = 1.772

Ï set 2 leads to:

{
x1 = 0.152

x2 = 1.181

these designs
are called locally

optimal
(optimal for just

one set of β’s)
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Bayesian approach
Ï problem with locally optimal designs: they

might not be very good for other β’s
Ï a Bayesian (D-)optimal design is a design that

performs well on average
Ï how?

for each βi :βi ∼ NORMAL ( a , b2 )

some density/distribution

I think βi is around a

I’m not that sure, I might be wrong

(small b: I’m pretty sure ↔ large b: unsure)
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Simple example

Ï β0 =−2,β1 =
{

2 (50% chance)

3 (50% chance)
instead of

normal
Ï construct information matrix for every set of
β’s

Ï calculate |M| for each set of β’s: |M|1, |M|2
Ï what you have to maximize is the Bayesian

D-criterion
0.5 |M|1 +0.5 |M|2 probability second set of β’s
probability first set of β’s

Ï example: Bayesian binary.xls

Bayesian D-optimal design:

{
x1 = 0.2

x2 = 1.573
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Implementation normal prior
distribution

Ï what if βi ∼ NORMAL?
Ï generate “a lot” of βi’s from the normal

distribution (R = number of draws)

Ï maximize the Bayesian D-criterion
R∑

j=1

1

R
|M|j

determinant for the jth set
of β’s you randomly drew from

the normal distributions for βi’s

Ï this is done to approximate
∫
Rk
|M|j π(β)dβ

joint probability distribution of βi’s
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Implementation normal prior
distribution

Ï usually, a Monte Carlo sample is drawn from
the prior distribution

Ï for this to work well, you need to draw a lot of
random samples

Ï this is computationally demanding
Ï solution: do not draw samples randomly but

systematically
Ï Halton sequences
Ï Sobol sequences
Ï Gaussian quadrature

Ï in that case, you need much fewer draws
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More on Bayesian optimal design

Ï no Bayesian design:
maximizing |M| and log |M| is the same thing

Ï Bayesian design:
maximizing

∑R
j=1

1
R |M|j and

∑R
j=1

1
R log |M|j is

NOT the same thing!
Ï see Bayesian binary (version 2).xls

Bayesian D-optimal design:

{
x1 = 0.179

x2 = 1.419
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Maximin designs

Ï designs that have the best possible worst case
performance

Ï how?
Ï for each set of β’s, there is a locally optimal design,

with determinant |M|∗j for parameter set j
Ï any other design will be worse than |M|∗j for that

set
Ï how bad? (∣∣M(set j)

∣∣
|M|∗j

)1/p

Ï we compute this quantity for every set of β’s
Ï we focus on the smallest / worst value and

maximize that value
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Our example

(locally) opt. determ.
β opt. design |M|∗j

set 1 β0 =−2 x1 = 0.228
β1 =+2 x2 = 1.772 |M|∗1 = 0.0501

set 2 β0 =−2 x1 = 0.152
β1 =+3 x2 = 1.181 |M|∗2 = 0.0223

find design with information matrix M that
maximizes

min

{( |M(−2,2)|
|M|∗1

)1/2

,

( |M(−2,3)|
|M|∗2

)1/2
}
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Our example

Ï maximin binary.xls

Ï maximin design

{
x1 = 0.18

x2 = 1.436
Ï this design is 94.4% efficient for both sets of β’s
Ï this means that( |M(−2,2)|

|M|∗1

)1/2

=
( |M(−2,3)|

|M|∗2

)1/2

= 0.944
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Sequential optimal design

Ï idea
1. start with a small design and collect some data
2. update your knowledge on model’s parameters
3. create a new design that uses improved knowledge
4. repeat steps 2 and 3 as often as possible/desirable

Ï avoids constructing a large design based on
poor prior knowledge

Ï this approach performs very well usually
Ï not always feasible
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Other considerations

Ï the logistic regression models belong to a class
of generalized linear models

Ï maximum likelihood estimation
Ï for some models, maximum likelihood theory

can not be used to derive an information
matrix

Ï this is what next slides are about
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Nonlinear regression models

Ï general model (just one θ)

Y = η(x,θ)+ε
E(Y ) = η(x,θ)

Ï Taylor series expansion

E(Y ) = η(x,θ)

= η(x,θ0)+ (θ−θ0)
∂η(x,θ)

∂θ

∣∣∣∣
θ=θ0

+ . . .
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Nonlinear regression models

Ï rewrite as

E(Y )−η(x,θ0)︸ ︷︷ ︸
some response

= (θ−θ0)︸ ︷︷ ︸
parameter

∂η(x,θ)

∂θ

∣∣∣∣
θ=θ0︸ ︷︷ ︸

function of exp. var.

Y ∗ =βf (x)

Ï nonlinear model with several θ’s

Y ∗ =βT f(x)
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Information matrix

Ï information matrix for such a model

M =
n∑

i=1

f(x)fT (x)

Ï here

f(x) = ∂η(x,θ)

∂θ

∣∣∣∣
θ=θ0

Ï so information matrix depends on unknown
parameters

Ï thus, optimal designs depend on the unknown
parameters
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An example: a chemical reaction

A
θ1−→ B

θ2−→ C

Yi = θ1

θ1 −θ2

(
e−θ2ti −e−θ1ti

)
Ï Yi = concentration of substance B
Ï ti = time = explanatory variable
Ï θ1 > θ2

Ï e.g. O2 → H2O2 → H2O
Ï suppose n = 4, so you have to choose 4 time

points t1, t2, t3, t4 at which to measure the
presence of substance B
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Model matrix X
Ï dimension 4×2
Ï what should be in the columns?

∂η

∂θ1
and

∂η

∂θ2

here:
∂Y

∂θ1
and

∂Y

∂θ2

Ï first column:
∂Y

∂θ1
= 1

(θ1 −θ2)2

(
(θ2 +θ1(θ1 −θ2)ti)e−θ1ti −θ2e−θ2ti

)
Ï second column:
∂Y

∂θ2
= 1

(θ1 −θ2)2

(
(θ1 +θ1(θ1 −θ2)ti)e−θ2ti −θ1e−θ1ti

)
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Locally optimal design

Ï you need some idea about θ1 and θ2 before
you can start

Ï e.g. θ1 = 0.7, θ2 = 0.2, so

∂Y

∂θ1
= (0.8+1.4ti)e−0.7ti −0.8e−0.2ti

∂Y

∂θ2
= (2.8+1.4ti)e−0.2ti −2.8e−0.7ti

Ï see nonlinear.xls
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