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Talk plan

Information processing in the brain

EEG technique

What does EEG measure from the brain

EEG oscillations

Event-related potentials — typical components
Sources of the brain responses
Time-frequency measures of EEG

Recommended book:

Luck, Steven J. An introduction to the event-related potential
technique. MIT press, 2014.
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ERP measurement techniques for dyslexia
research - Central Hospital of Central

; Finland and Department of Psychology
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. EEG - electroencephalography
ERP- event related potentials
EEG and eye-tracking combined
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High density EEG recording
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Processing units and circuits of the brain

primary
secundary motor cortex

motor area somatosensory cortex

premotor area

o spatial association area

secundary
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angular
gyrus
verbal
association
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prefrontal cortex
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Processing units and circuits of the brain
- auditory system

Tonotopicity of the
auditory cortex

Corresponds to
base of cochlea

Corresponds to
apex of cochlea

Primary
Auditory Cortex
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Secondary
Auditory Cortex



Processing units and circuits of the brain
- visual system

Visual Cortices
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Light Extrastriate Cortex

.* Striate Cortex

Extrastriate Cortex

Sagittal Section |
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http://mikeclaffey.com/psyc170/notes/notes-vision.html

Measuring the brain
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Human Electroencephalogram

A Eye Opening
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Measuring EEG...

Electric fields affectingmeasurements:
1. Static electric current

| .
2. Electric noise WMWMMW
3. Brain activity '

Ground = difference between the

participant and the amplifier

=» Subtracted from the active and
reference electrode activity: A-G, R-G

=> is the reference point in
an electrical circuit from which
voltages are measured, a common
return path for electric current, or a
direct physical connection to
the Earth

Monopolar configuration =

voltage between active and a reference electrode
Bipolar configuration =

voltage between two active electrodes

Active
electrodes

Amplifier

electrode

Reference
electrode

EEG =

(Activity @ AE + noise) —
(Activity @ RE + noise) =
voltage @ AE — voltage @ RE


https://en.wikipedia.org/wiki/Electrical_circuit
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Earth
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EEG signal

= Signal quality and strength

Affected by the tissue outside the brain tissue

scall

cerebrospinal fluid (likvor)

volume conductancy in the tissue

resistance between the recording electrode and skin

= Spatial resolution

©)

mal-function (e.g. bad contact, high impedance and movement)
of several electrodes will reduce the spatial resolution

=>» results in different signal-to-noise ratio in some areas
high-density recordings can alleviate partly these problems and
Increase spatial resolution



Neuron types

Types of Neurons in Cerebral Cortex

Primary
motor cortex
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Origins of EEG activity at neuronal level
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From Martin, 1992 In: Kandel et al., Principles of Neural Science



Electrical activity of the brain

The neural electric fields
= electric fields and their ‘counterfields’, magnetic fields, are

dependent on several factors:
o geometry of the particles
o relation to each other
o Vvolume-conductancy
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Open fields

= generated in e.g. in pyramidal cells organized in columns in layers
» can be measured with distance electrodes

Closed fields

= e.g.In nuclei, can be measured only with electrodes near the
source

Jyvaskyla Centre for Interdisciplinary Brain Research (CIBR) ~



Open fields with spatial summation and
closed fields with no spatial summation

416 M. COLES, G. GRATTON, ANL  xABIANI
Open Field  Closed Field

Figure 13.3. Schematic representation of configuration of neurons whose simul-
taneous polarization does or does not result in potential detectable by distant
electrode. Electric fields generated by polarization of neurons organized in layers
(such as those shown in the left panel) add together to form powerful fields that
can be detected from distant (e.g., scalp) electrodes (‘open field"). Fields genera-
ted by neurons organized concentrically (such as those shown in right panel)
cancel each other to produce very small fields that cannot be detected by scalp elec-:
trodes (“closed field). (Copyright 1947, Alan R. Liss, Inc. Reprinted with permis-
sion of author and publisher from Lorente de No, 1947.) :
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Temporal
summation

Spatial
summation

Equivalent current
X dipole, ECD

FIGURE 50-10

Jyvaskyla Centre for Interdisciplinary Brain Research (CIB

Leppanen; adapted from Alho; and Martin, 1992 In: Kandel et al., Principles of Neural Science



Communication in the brain

Action potentials

Voltage-gated

Na* channels close
50 \

Depolarization

0 ©
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Communication in the brain - synapse
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Post-synaptic potentials

g * Presynaptic action potentials result

= in either Excitatory (EPSP) or

= B Inhibitory Post Synaptic potentials
B | EPsp < c (IPSP).
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Prerequisites for EEG/ERP

Temporal summation
» postsynaptic potentials slow enough for this
= EEG mostly reflects post-synaptic summated potentials
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= action potentials also affect indirectly

Spatial summation

= with large enough neuronal population, cortical patch, activated
= seen well in pyramidal cell activity

o pyramidal cells oriented parallel to one another
o oriented perpendicular to the surface of the cortex

» these form a dipolar activation pattern
* nucleic and interneurons oriented randomly
=» synaptic potentials cancel out themselves in recordings

Jyvaskyla Centre for Interdisciplinary Brain Research (CIBR) ~
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Electrophysiological Signals at Different

Scales

Single cell recording

Local filed potential (LFP)
Electrocorticogram (ECoG)
Electroencephalogram (EEG)

Slide material: Kaushik Majumdar,
Indian Statistical Institute Bangalore Center/
Buzsaki et al., Nat. Rev. Neurosci., 13: 407 — 420, 2012

Depth
(LFP)

Grid
(ECoQ)

Strip
(ECoG)

Strip
(ECoQ)

Scalp
EEG
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Neuronal Oscillation: Functions

Modulates synaptic plasticity.

Influence reaction time.

Correlates with attention.

Modulates perceptual binding.
Coordinate among brain regions far apart.
Consolidate memory.

Slide material: Kaushik Majumdar,
Indian Statistical Institute Bangalore Center/
Canolty et al., Science., 313: 1626 — 1628, 2006



Cortical Oscillation: Frequency Bands

Delta (0 —4 Hz)

Theta (4 — 8 Hz)

Alpha (8 =12 Hz), Mu (8 — 12 Hz)
Beta (12 — 30 Hz)

Gamma (30 — 80 Hz)

High gamma (80 — 150 Hz)

Jyvaskyla Centre for Interdisciplinary Brain Research (CIBR) = =l EEG Ko [ o]b]o)
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Synchronization of Inputs

At least three types of synchronies have their electrogenesis
In cortex.

1. Those created locally between neighboring columns produce high
frequency components above 30 Hz (gamma rhythms).

2. Intermediate or “regional” oscillations between cortical columns
separated by several centimeters produce intermediate frequency
components (high alpha/mu : > 10 Hz; and beta: 12-20 Hz).

3.  Global synchronies between cortical regions that are significantly
far apart, such as frontal and parietal or occipital and frontal regions.
=>» These are related to slow frequency components - delta (1-4 Hz),

theta (4-8 Hz), and low alpha/mu (8-10 Hz).

http://www.cogsci.ucsd.edu/~pineda/COGS260/cogs260%20lect3.ppt
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Local and Global Networks

Motor

Local network | |Local network

Visual

Mu rhythm | Classic alpha
N 13 I

Thalamus

Sensory Input

http://www.cogsci.ucsd.edu/~pineda/COGS260/cogs260%20lect3.ppt;
Choe, Y. IEEE Trans. Neural Net., 2003, 15(5): 1480-1485
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EEG — oscillations, examples

m Alpha-activity:
8-12 Hz
Observed e.g. in eyes-closed recordings and relaxed state
Alpha-activity a sign that thalamus is not communication information to
the cortex.
When the stimulus evokes information processing alpha activity
becomes suppressed and desyncronized
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m Beta-activity
12-30 Hz
Cortical
Can increase with increased brain activation
Observed in eyes-open recordings and awake arousal state

Jyvaskyla Centre for Interdisciplinary Brain Research (CIBR) ~



Gamma oscillation functions

SUMMARY POINTS

1. Transient cell assemblies may be organized into gamma-wave cycles.

BrainRead group

2. Perisomatic inhibition by PV basket cells is essential for gamma oscillations.

3. Gamma oscillations are short-lived and emerge from the coordinated interactions of
excitation and inhibition. Thus, LFP gamma can be used to identify active operations of
local circuits.

4. Network gamma oscillations may coexist with highly irregular firing of pyramidal
neurons.

5. Different sub-bands of gamma oscillations can coexist or occur in isolation.

. Long-range interneurons may be critical for gamma-phase synchrony in different brain
regions

7. Cross-frequency coupling is an effective mechanism for functionally linking active cor-
tical circuits.

8. Genuine gamma oscillations should be distinguished from mere increases of gamma-band
power and/or increased spiking activity.

Jyvaskyla Centre for Interdisciplinary Brain Research (CIBR
N

Buzsaki & Wang, 2012, Annu. Rev. Neurosci. 2012. 35:203-25
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Frequency (Hz)

0
0 20 40 60 80 100

Frequency (Hz) Frequency (Hz)

Hippocampus (reader)

" /\/\/\/\/\/\/\/\

Gamma phase-phase coupling between two cortical sites, whose powers are
modulated by the common theta rhythm. Both gamma coherence and gamma
power-power coupling are high

Buzsaki & Wang, 2012, Annu. Rev. Neurosci. 2012. 35:203-25



Brain event-related potentials (ERPS)

= electrical brain responses to events/ stimuli based on time-locked
EEG portions
= can measure the time course of processing in tens of ms
= can reveal brain areas related to cortical processing
o scalp current density and source modeling analyses
o time-frequency analyses
= allow us to observe how processing changes with development
and how it relates to later cognitive outcome
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Standard Deviant
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Adults (n = 12)

276 ms
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+5 | | |
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Averaged across 100
stimulus presentations
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Effect of nr of stimulus presentations on
the signal-to-noise ratio /SN

1 epoch, 7 epochs 381 epochs
22 epochs

Noise /fl\-l

ERP response
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ERP — mathematical modeling

ERP-averaging is based on the following assumtions:
(Regan, 1989)

1. The background EEG acts as noise for the ERP-signal

2. The signal waveform is generated by a process that stays stationary
from trial to trial

3. The noise, background EEG, is produced by a stationary random
process

4. The noise samples are uncorrelated from trial to trial

Possible problems:

= The background EEG is not always random in relation to stimuli.

« E. g.50 Hz electric current can create a regular rhythm to the
background EEG.

= A psychological process, reflected in ERP-signal, may not remain the
same during the entire measurement session, e. g. due to arousal
state effects
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ERP procedure

300 ms ISl block 300 ms
] - . [ ] B 7/00ms u -
: 70 ms
Tone pairs
« standard: 100 Hz - 100 Hz 75 dB 85% (708 trials)
 deviant: 100 Hz - 300 Hz 15% (125 trials)

 between-pair interval fixed for 700 ms

70 ms ISI block 70 ms
a | N -J N
Procedure

- EEG/ERP were recorded with EGI 62-channel sensor net
« Infants were seated at mother’s lap and entertained with toys
« ERPs were re-referenced to the averaged mastoids

P.H.T. Leppanen et al., Infancy Studies Lab, CMBN, Rutgers University



Adult example: ERPs to tone pairs with
different ISIs

Oddball
N N . | m |
300 ms 70 ms 10 ms
'ﬂé 5 = — Deviant
o — — Standard
V=
B 0 =
n=12 n=12 n=10 +5 =
Stimulus alone
m A |
Alone 300 ms 70 ms: Alone vs. MMN 10 ms: Alone vs. MMN
Deviant

Alone
jﬁw Silence

P.H.T. Leppanen et al., Infancy Studies Lab, CMBN, Rutgers University



Adult ERPs with scalp surface maps
In 300 ms ISI condition (N =12)

490 ms
120ms/
-5 — Ch. 4
uw —
0 —
S = | |
0 500 1000 ms

Standard: 100-100 Hz
Deviant: 100-300 Hz

ERPS TO DEVIANT ERPS TO STANDARD

o denote significant difference between deviant and standard responses (p < 0.01)

- 6.5 pv B +6.5 pV
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Mismatch negativity (MMN) — ERP-
component for regularity violations

(reviews: Naatanen et al 2012, Paavilainen et al 2013, Sussman et al 2014)

Memory trace explanation (Naatanen et al., 1984, 1992, 1997):
= The generation of MMN to a change in pitch:
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1. A neuronal population specific and sensitive to a certain frequency is in a
homogenous inhibition state upon an arrival of 1st stimulus signal - no
MMN is generated

= unlike afferent neurons (generating N1), which are sensitive to even
to 1st stimulus in a sequence

2. By repeating the same stimulus few times, the neurons specific to other
than the present stimulus’ frequencies are released from inhibition

3. The neurons specific to the stimulus frequency become refractory

4. Repeating the same stimulus increases stimulus specific refractoriness
as well as increases exitability elsewhere in the system.
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Mismatch negativity (MMN) ERP-component

Memory trace explanation/ cont. :

The state of selective inhibition is the basis for neural memory
trace for ca. 5-10 secs (Mantysalo & Naatanen, 1987), after which
the system returns to the general homogenous inhibition state

Interstimulus interval (ISI) by which MMN can be elicited does not

reflect the time-span of the memory trace, but
» it represents the time by which the process, underlying MMN, still considers
the preceeding standards as relevant context for the deviant
Several memory traces can exist at the same time
o This suggests separate memory traces for a part of sub-standards

o Suggests also the ecological validity of the MMN as a measure of sensory
memory
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Mismatch negativity (MMN) ERP-component

Alternative explanation for MMN generation

Cf. Naatanen, 1990, 1992:; Jaaskelainen et al 2004;: Naatanen et al 2005; Nelken et al
2007: Taaseh et al 2011

= MMN could be explained by sensoric adaptation (or refractoriness)

= MMN to a frequency deviation generated by the neuronal
population specific to the frequency of the deviant stimulus

= Neurons specific to the repeated standard stimulus become
refractory

= Because deviants occur rarely, the neurons specific to the
frequency of these stimuli would remain sensitive

* Thus, N1 and MMN would reflect — functionally — the same process

= More recently the idea of stimulus specific adaptation (Nelken et
al)



Mismatch negativity (MMN) ERP-component

Evidence for the memory trace explanation of MMN

(review: Naatanen et al 2005)
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= MMN is neither elicited by the first stimulus in a series (Cowan et al., 1993)

= MMN is not obtained with the very long ISIs (Mantysalo & Naatanen, 1987)

= MMN not generated when the deviant stimuli are presented alone without
intervening standard stimuli (Naatanen, 1985; Naatanen et al., 1987;
Lounasmaa et al., 1989; Sams et al., 1985)

= MMN can be elicited not only when stimulus intensity, duration, or ISI is
increased, but also when they are reduced (Ford & Hillyard, 1981; Naatanen
et al., 1989 a,b; 1993)

= MMN can be elicited by the omission of an element of a compound stimulus or
of the second of two paired stimuli if the within pair ISl is short (Yabe et al.,
1997)

= MMN latency and duration are relatively long for minor stimulus changes,
which is atypical to theafferent responses (Naatanen et al., 1989)

Jyvaskyla Centre for Interdisciplinary Brain Research (CIBR) ~



Measuring MMN

142 R. Nddtinen et al. / Clinical Neurophysiology 115 (2004) 140-144
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Fig. 1. Schematic illustration of the 3 stimulus conditions used: traditional Oddball (a), Optimum-1 (b), and Optimum-2 conditions (c). S denotes standard tone
and Dx tones of different deviant types. Note how D1 (grey area) is positioned in these sequences. Stimulus-onset-asynchrony (SOA) was 500 ms in (a) and (b),
and 300 ms in (c).
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MMN for auditory features

R. Ndidtinen et al. / Clinical Neurophysiology 115 (2004) 140-144 143

Duration MMN Location MMN

RM

BrainRead group

~

Amplitude (LV)

Time (ms)

Intensity MMN

rr,

it/

====Oddball

—— Optimum-1

! — Optimum-2

Fig. 2. Grand average difference waves (11 subjects) for 5 types of deviations recorded at a frontocentral (approximately FCz) and a right-mastoid electrode.
Overlaid are the MMNs for the same type of deviation in the different conditions. The dotted line indicates the MMN in the traditional Oddball condition, the
thin line that in Optimum-1 condition, and the thick line that in Optimum-2 condition. The data were referenced against the nose electrode.
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Neurodys WP7 ERP-paradigms

i i ifh-y i idifh-y iiifh-yi iiifh-y iii...
L iiiigey i1 iiigey iiigeyi iiigeyiii...
b ifray b ifr-y i fraynoiifray iioi..,

m ERP studies in different orthographies
Regular: Finland, Hungary
More irregular: Germany, France

m Stimuli:
Standard (82 %): euro-/i/
Deviants (18 %, 129 trials each) in separate blocks
s Finnish-Hungarian /y/
m German ly

s French /y/
Corresponding complex non-speech tones

m Age: range 8-11 years
m Grade level: 2-4th graders
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b Averaged ERP curves transformed into

current source density (CSD) curves

m improves the spatial and temporal resolution

ERPs CSDs
C5 C6 - C5 N
o v‘é = { S D > M |
3pv 500 ms i Ztg — 0spv! v 500ms |
|/ —
dif  — :p7
ERP Dev 160ms CSD Std 160ms

0.25 puV / step 0.02 pV / step
Lohvansuu et al 2013
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Children speech vs non-speech — LDN 400 ms

— y-fh-sp
y-fh-nsp
— y-fr-sp

— yfrnsp y-speech 400 ms y-non-speech 400 ms

arainRead group

Controls
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Voltage maps CSD
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Newborn ERPs to tone frequency change differ between
2nd grade typical control and dyslexic at-risk readers

= <=

Control typical
readers
(TRC, N=25)

Jyvaskyla Centre for Interdisciplinary Brain Research

Leppanen et al, 2010, Cortex

P3 P4 WAV,
A\ ~ JUL

S MMN-paradigm
3 Standard Deviant
& Ll Ll Ll [ Ll
g — Dev 1100Hz, 12 %, SOA 425 ms
— Std 1000Hz
EOGL / ~ EOGR EOGL . - / “ - EOGR
\ J . 3uv / N . 3uv
100ms 100ms
PCA components
' F3 ! !q! : F3 F4
T2l L3 < e O

| 1994-47-21 20:07:16 S:14105 [:855 I-kalld IS/ 1
BEP: TR I8 Std: 53 Dew: §

At-risk dyslexic
readers
(RDFR, N=8)

Quiet sleep
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Higher linguistic processing related ERPs

24-month-olds

KV F7

32-month-olds

- correct = incorrect

Adults

-10‘|uV ELAN =5V ELAN F7

04 08 1.2 1.6s

0.500..0.7C0 s

| __CEBERNE |

-6.0 uVv +6.0

24-month-olds

105 uV Pz

10

*

P600

0.400..0.600 s
L __CEREERE |

-0 Vv +6.0

32-month-olds

P600

0 04 08 12 16s

0.300 .. 0.500 5
| __LRERERE |

-3.0 nv +30

Adults

10 v pZ SqaV PZ
ml 4 J 4

P600

0

T T T T
04 08 12 16s

¥ L | 1 4 T
0 04 08 12

y
165

T T T T )
0 04 08 12 16s

Adapted from: Oberecker et al., 2005 and Oberecker & Friederici, 2006

Figure 2. Averaged Event-Related Brain Po-
tentials to Auditorily Presented Cormrect and
Syntactically Incorrect Sentences in 24-
Month-Olds, 32-Month-Olds, and Adults

Vertical line indicates the onset of the violat-
ing word. (A) ERPs at left anterior electrode
F7 for the early syntactic effect (ELAN). (B)
Distribution maps for the difference between
correct and incorrect sentences in the time
windows in which the ELAN effect is ex-
pected. Dark blue indicates negativity, which
is clearly present at left anterior site for 32-
month-olds and for adults. (C) ERPs at cen-
tro-parietal electrode PZ for the late syntactic
effect (P600).

ELAN = Early left
anterior negativity

P600 = Syntactic
positivity



Semantic processing and reading
comprehension at the brain level

3 sentences, the last word is

m congruent with the context: By the blue lake you’ll find a red sauna

m Incongruent: The car has four round legs

m |ahelld oikeaa daantbasultaan: The bright flash was caused by fighting
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Otto Loberg, picture adapted from Kutas & Federmeier 2011



BrainRead group

Jyvaskyla Centre for Interdisciplinary Brain Research (C

N400 — congruent: ‘pizza was too hot to eat’, incongruent:

Semantic processing related ERPs — N400

‘... too hot to sit’

—— CONgruous

— incongruous

A0 pV

A 12-month-olds 14-month-olds 19-month-olds Adults
N400 N4°° N400
-10quV Pz - - % uVv Y * p7
10+ T T 10 1 8 | Y T T 1
] D4 08 12 6s . 16s 0 4 0 8 1. 0 04 08 12 16s

19-month-olds
at Risk for SLI

PZ

10

0 04 08 1.2 165

Adapted from: Friedrich & Friederici, JOCN, 2004 and Friedrich & Friederici, NeuroReport, 2005

Figure 3. Averaged ERP for Spoken Words Congruous and Incongruous with a Picture Presented

Vertical line indicates the word onset. (A) ERPs of typically developing children and adults showing a semantic N400 effect except for the

youngest group. (B) ERPs of 19-month-old infants who were diagnosed with risk for SLI at the age of 2.5 years.



Processing stages of number comparison in

developmental dyscalculia
Soltész et al 2009 Cognitive Development 24 (2009) 473-485

2.2. Experimental setup
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The DE was investigated by an experimental paradigm requiring subjects to decide whether the
presented number is smaller or larger than 5. The distance of the target number from 5 was manipu-

m

o lated. Stimuli were the Arabic digits 1-4 and 6-9. Black stimuli on light yellow background appeared
S for 800 ms at the centre of a 17 inch computer monitor (800 x 600 pixels) positioned at about 1 m
§ from the subjects’ eyes. 480 stimuli were presented in two blocks, preceded by 72-72 practice stimuli.
£ Responses, counterbalanced across blocks, were given by either the left or right index finger. Reaction
= times and accuracy were also recorded.

g, Control DI Dyscalculia

£ D4

5 : W

)

=

5 C3 - w M

e _\M

<
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2

Fig. 1. ERPs for CG and DG in the two experimental conditions at frontal, central and parietal electrodes.



EEG and eye-tracking combined

BrainRead group

Jyvaskyla Centre for Interdisciplinary Brain Research (CIBF



Comparison of gaze trajectories between high
frequency words and nonwords

High frequency words vs Early deviating nonwords High frequency words vs Late deviating nonwords

Type

Type
500+ ? P [~ High frequency word 500 ) o —— High frequency word
| Early deviating —— Late deviating nonword
4754 .Ll nonword 475
a0 F 450
4257 Jﬁ 425
400 '?'\_ 400
375 "'-\‘\ 3754
.E. 350 \'\\\ Z 350
@ 325 s ]
g “ g 325
= 300 3'\\ = 300
275 =T 275+
250 —
225+ 225+ :
200 225-250 ms: 200 425-450 ms:
175 ; Type x Time, 175 Type X Time,
150+ 150 - *
F(1, 25) = 7.7* F(1,25) =59
T T T T T
7,50 -5,00 -2,50 00 2,50 250 o0 250 5,00 750 10,00
Mean Gaze Position at X-Axis Mean Gaze position at X-Axis

*p <.05, ** p < .001

- Response to early deviating nonwords begins at the same time point as in exp 1
- Response to late deviating nonwords is heavily delayed relative to exp 1 — result from
placing the anomaly to second last letter instead of last one?

Jyvaskyla Centre for Interdisciplinary Brain Research (CIBR) = =l EEG Ko [ o]b]o)

Thanks Otto Loberg
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Brain responses to written text —
visual word recognition

High frequency words vs Early deviating nonwords

Early deviating
nnnnnnn

BrainRead group
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eEEG-ET project, eSeek team
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ANT - attention network test
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incongruent - congruent target

Modified from Neuhaus 2010

Thanks Otto Loberg
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Preliminary results:

 Reaction times shorter
« Brain response larger for the congruent fish

b Y Y 4 4 332ms 332ms

INHIBITION
incongruent - congruent target

BrainRead group

838V 963y

Estimated Marginal Means of MEASURE_1
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Red: Incongruent
Blue: Congruent Thanks Otto Loberg
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Sources of the brain signal

Forward vs. inverse problem
Channel space vs. source space
Source analysis as a spatial filter

Example
Jyvaskyla Longitudinal Study of Dyslexia, ERPs of 9-year-olds
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ERP source localization

GFP

BrainRead group

61 3 RSt S

"0 %00 800 1200 1600 [ms]
m Eg. N1 has several sub-
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components:
1 supratemporal N1b e\ % &
1 T-complex (radial lateral SO

sources) _6_@ @ @u...

1 vertex potential (motor cortex)
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Banaschewski & Brandeis, 2007, Journal of Child
Psychology and Psychiatry, 48



Forward and inverse problem in EEG

m Forward problem/solution

Based on the active cortical areas, what is
the generated voltage topography?

Always has a unique solution
m Inverse problem/solution

Based on the voltage topography, what are
the underlying active cortical areas?

Mathematically ill-posed question: no unigue
solution

In practice there are several ways to limit the
number of solutions
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Forward solution
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Using source space waveforms as a spatial
filter - ERPs to non-speech sounds at 9 year

Q.
>
= Control typical readers
§ P1 N250 Control t_ypical readers, N=28
E II.."; I"-._ ey | le-l'
5 s
- Source
=Yg e 0 = = 7 waveform
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Khan, Hdmaldinen, Leppanen et al. 2011, Neuroscience Letters



