

Functional and molecular neuroimaging *in vivo*

Lauri Nummenmaa Aalto University and Turku PET Centre

Established by the European Commission

Why do we need to understand brain function?

- To aid in clinical diagnosis
- To understand physiology of the CNS
- To develop drugs that target CNS
- To understand 'higher' mental functions such as emotions and memory

Neuroscientist's three main problems

Figure 45-5 Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

Traditional cognitive neuroscience

Year

Part 1: Principles of magnetic resonance imaging

Magnetic resonance imaging

- Based on magnetic resonance of hydrogen nuclei omnipresent in human tissue
- By measuring RF signals emitted by hydrogen nuclei excited in a strong magnetic field we can study multiple tissue types in vivo
- By altering the excitation sequence we can highlight different tissues and their properties

EMI central laboratories

Coronal

0.5 mm isotropic voxels

MRI in a nutshell

Strong No magnetic field magnetic field RF pulse

Magnetic resonance

T₁ Relaxation

Proton density, relaxation time and contrast

- Proton Density (PD) = number of hydrogen atoms in a volume
 - High in watery tissue such as CSF, low in bone
- Spin-lattice relaxation time (T1)
 - Long in fluids, medium in water-based, short in fat-based tissue
- Spin-spin relaxation time (T2); always shorter than T1 in tissue
 - Long in fluids, medium in water-based, short in fat-based tissue
- Image contrast determined (primarily) by PD, T1 and T2 and their weighting in the pulse sequence

T1-weighting

1 mm isotropic voxel

1 mm isotropic voxel

T2-weighting

T2*-weighting (EPI)

3 mm isotropic voxel

Blood oxygenation dependent (BOLD) contrast

Heeger & Ress 2002 NRN

Neuronal activity

Metabolism

Pathways to BOLD contrast

Blood flow

dHb

Blood volume

Martin (2014 Front Neurosci)

Part 2: Statistical analysis in fMRI

Cognitive subtraction and boxcar design

20-second face block

AIM Localize brain regions that are more sensitive to faces versus non-face objects

DESIGN Blocked experiment using cognitive subtraction assuming pure insertion

20-second house block

20-second face block

Cognitive subtraction and boxcar design

20-second

Acquiring one 3D functional volume takes about 1.5 seconds We can distinguish events ~100ms apart, yet their actual timing can be resolved with about 2-s accuracy

Canonical double gamma HRF

Martin (2014 Front Neurosci)

First-level model

Estimates task-induced activation in single subject. However effects are not fixed across subjects. For population-level inference, need to account for between-subjects variance

STATISTICAL SIGNIFICANCE AT 1^{ST} LEVEL = RELIABILITY OF EXPERIMENTAL MANIPULATION ON BRAIN ACTIVITY IN THIS PARTICULAR SUBJECT

First and second level models

EPI DATA

UNIVARIATE MODEL FOR EACH VOXEL

Predictor variable

STATISTICAL SIGNIFICANCE AT 2^{ND} LEVEL = RELIABILITY OF EXPERIMENTAL MANIPULATION ON BRAIN ACTIVITY ACROSS SUBJECTS

VOXELWISE EFFECTS (BETAS)

2nd LEVEL MODEL (T-IMAGE)

Part 3: Experimental designs for functional MRI

Boxcar design

Smirnov, Glerean, Lahnakoski, ..., & Nummenmaa (2014 Neurospychologia)

Analysing free-ranging behaviour

Winning activates the stratal reward circuit

Kätsyri, Ravaja, Hari & Nummenmaa (2013 Cereb Cortex)

Connectivity analysis

Nummenmaa et al (J Neurosci, 2015)

Nummenmaa et al (2014 Neuroimage)

Sub-voxel resolution with pattern recognition?

Sharifan, Nummenmaa & Vanni (unpublished work)

Rees & Haynes (2006 Nat Rev Neurosci)

Sub-voxel resolution with pattern recognition?

- Orientation preferences are systematically mapped in V1
- Regions with different orientation tuning separated by 0.5 mm and cannot thus be discriminated by conventional EPI imaging
- Due to slight irregularities in the orientation specific maps, different voxels contain uneven distribution of orientation-specific cells
- Differences are small, but when taken into account together they allow estimation of orientation selectivity

Rees & Haynes (2006 Nat Rev Neurosci)

Feature selection

CLASSIFIER learns to associate emotions with brain states

Test data

???

???

???

???

Classifier is tested with a novel dataset it has never seen before

Task begins

Exp 1 Induction

Task begins

Exp 2 Cued Imagery

1 second

Saarimäki et al (Cereb Cortex 2015)

Movie

ITI

14 seconds 10 seconds

Emotion word

2 seconds

14 seconds

Saarimäki et al (Cereb Cortex 2015)

Movies

Saarimäki et al (Cereb Cortex 2015)

Imagery

Crossmodal

Intersubject synchronisation

y = -8

0.2

Dorsal

Left

x = −15

z = 2

0.4

ISC

Nummenmaa et al (2012 Proc Natl Acad Sci U.S.A)

5 seconds

15 seconds

Fixation cross

Text describing the Movie clip general context of the upcoming movie

Nummenmaa et al (2012 Proc Natl Acad Sci USA)

29 to 132 seconds 5 seconds

Fixation cross cross, next trial

Emotions make brains tick together

Francis Ford Coppola: *The Godfather* Paramount Pictures (1972)

Nummenmaa et al (2012 Proc Natl Acad Sci USA)

0.2 Intersubject synchronisation

Nummenmaa et al (2012 Proc Natl Acad Sci USA)

Default mode network

Dorsal attention network z = 60

Summary - MRI

- Noninvasive method for imaging soft tissue
- Can be used for quantifying Hb / dHb ratio from blood
- Indirect measure of brain activity
- Full-volume, high bandwidth, high spatial resolution
- Slow, unspecific, does not measure neural activity directly

Part 4: Principles of Positron Emission Tomography

Synaptic connections

Neurotransmitters

PET camera

Positron Emission Tomography allows in vivo quantification of the distribution of specific chemical compounds. It can thus be used for studying specific neurotransmitter systems.

Coincedence detection

Reconstructed image

Isotope production [¹¹C¹⁸F¹³N¹⁵O]

Image of ligand distribution in brain

Radiochemistry

- Radioligands: Biologically active, unstable isotopes
- Decay via positron emission
- Short half-life required for sufficient SNR and reasonable scan duration
- Need to be synthesised close to PET camera
- Radiochemistry allows investigation of any biological circuit as long as it can be radiolabeled
- Radiochemistry is the "pulse sequence design for PET"

What makes a good radioligand?

- Optimal target density and ligand affinity: Density x Affinity ≈5
- High brain uptake
- Optimal lipophilicity (LogP=2.5–4); sufficiently high to cross bloodbrain barrier but not too high to cause non-specific binding
- Not substrate for efflux transporters at BBB (e.g., P-gp)

- High pharmacological selectivity
- No brain-penetrant radiometabolites
- Quantifiable plasma protein binding
- Amenability to rapid labelling with high specific activity
- Fast enough kinetics to allow measurement in a few hours

18 MeV CC18/9 Cyclotron at the Turku PET Centre

[11C] carfentanil MOR tracer

[11C] MADAM SERT tracer

[11C] raclopride D2R tracer

Some common PET tracers

Stable molecule	Isotope	Half-life	
Fluoride [F]	[18F]	118 min	
Carbon [C]	[11C]	20 min	
Nitrogen [N]	[13N]	10 min	
Oxygen [O]	[015]	2 min	

Typical tracer

Target molecule / system

[18F]FDG

glucose analogue

[11C]carfentanil

MOR / KOR / DOR -receptor

[13N] ammonia

perfusion

H2O15

perfusion

Positron emission

Image reconstruction

Coincidence

Sinogram

Reconstructed slice

tors Corresponding location in sinogram

Colorado, Anschutz Medical Campus, Aurora, Colorado, USA

Modelling

- Modelling transforms radioactivity concentration into biologically relevant pharmacokinetic information
 - **No modeling** ('raw' radioactivity)
 - Standardised uptake value (SUV; control for injection and weight)
 - **Kinetic modeling** (arterial plasma as input)
 - **Reference tissue model** (reference tissue as input; not always possible as e.g. with H2O)

Fitting a function to the data

 $y=-(x-30)^2 + 50$

 $y = K_1 e^{-k2t} + k_3 e^{-k4t}$

Part 5: Experimental designs for PET

Between-groups design

Group 1

Voxelwise comparison with mass univariate tests

Berridge & Kringelbach (2013 CiN)

Karlsson et al (2015 J Neurosci)

Brain region
Longitudinal design

Lag typically tens of days

Scan 2

Voxelwise comparison with mass univariate tests

Non-obese [¹¹C]carfentanil [¹¹C]raclopride

Karlsson et al (2015 Mol Psych)

Functional PET (challenge paradigm) Temporal resolution tens of minutes

Decay break

Statistical comparison (cognitive subtraction)

Challenge paradigm

Zubieta (2001 Science)

Agonist decreased grooming and grooming calls

HO

HO

Antagonist
lincreased
grooming and
grooming calls

Suvilehto, Glerean, Dunbar Hari & Nummenmaa (2015; Proc Natl Acad Sci USA)

T score

Suvilehto, Glerean, Dunbar Hari & Nummenmaa (2015; Proc Natl Acad Sci USA)

Social touch

Nummenmaa et al (in revision; Neurolmage)

Baseline

Nummenmaa et al (in revision; Neurolmage)

Manninen et al (in preparation)

Correlational design

Baseline scan

Low anxiety

Secure attachment

High avoidance

High anxiety

Low avoidance

Nummenmaa et al (2015 Hum Brain Mapp;)

ECR avoidance

Summary - PET

- Based on radiolabeled tracers
- radiolabeled
- Excellent chemical resolution
- Spatial resolution limited due to positron scattering
- Temporal resolution depends on tracer kinetics; typically from

• Allows quantification of any biological system as long as it can be

minutes to hours and often not relevant (no functional imaging)

