Basics of measurement and modeling of MEG

Simo Monto, PhD Center for Interdisciplinary Brain Research University of Jyväskylä

CIBA 130

7. 12. 2015

• Basics of MEG

- technology
- origins of the signal
- measurement and noise
- · Data analysis
 - source reconstruction
 - neuronal oscillations
 - connectivity

MEG components

- Magnetometer device
 - sensors
 - electronics
 - software
- Magnetically shielded room
- Electric signal amplifiers
- · Stimulus devices
- Response devices
- Monitoring etc. devices

System block diagram

SQUID readout principle

- Superconducting QUantum Intereference Device
- SQUIDs needed to detect this small magnetic fields

B_{ext}: the measured magnetic field

Trigger interface system

- Synchronization of external events to brain events
- Merged to MEG data stream
- 16 ch I/O

Noise in MEG signals

- Non-neuronal magnetic signals from the body
 - Heart
 - Retination
 - Muscles (ocular, scalp, neck, jaws, breathing)
 - Magnetized objects
- External noise sources
 - Traffic, electric lines, motors and devices, Earth, ...

Rejection of noise in MEG signals

Magnetically shielded room:

- layered mu-metal and aluminium
- High permeability
 - => "catches" and aligns magnetic field lines
- Works as Faraday's cage for EEG as well
- Shielding factors of ~106
- from DC to radio frequencies

Rejection of noise in MEG signals

Signal processing techniques

- spatial and frequency filtering methods
- Maxwell filtering ("SSS" by Elekta)
- Signal decomposition methods (PCA, ICA)

Reference sensors / compensation coils

• Internal active shielding, IAS

Rejection of noise in MEG signals

It is best to minimize noise in the first place:

- check the environment
- empty-room test measurement
- test measurement with the subject
- monitor signals during data acquisition

Concurrent EEG

- Simultaneous EEG possible
- Non-magnetic electrodes & leads required
- No additional interference from MEG
 - movement artifacts
 - size constraints
 - preparation time
- Also EOG, EKG, EMG, ...

Other device options at MEG

- · Stimulation devices
 - Visual, auditory, somatosensory
- Response devices
 - Finger pads, accelerometers,
- Monitoring devices
 - cameras, microphones, eye-tracking

Do we see a neuronal signal with MEG?

• Neurophysiology & physics

Neurophysiology

- Neurons
 - · Axon, soma and dendrites
- Synapses
- Electric phenomena
 - Action potentials
 - Post-synaptic potentials

Neurophysiology

- *lons* are the basis of electric phenomena in biology
 - K+, Na+, Cl-, Ca2+
- Electrically charged =>
 - o Generate an electric field
 - o movement = electric current
 ⇒ Magnetic field
- Physics of magnetic and electric fields known for 150 years
 - o Maxwell's equations

 $\nabla \cdot \mathbf{E} = \frac{\mathbf{r}}{\varepsilon_0}$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

 $\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

What is needed for a signal?

What is needed for a signal? • several cells: — Fields linearly additive • same location and direction => cumulation — Activation at the same time (synchronous) — Field geometry that decays slowly with distance • Dipolar rather than higher order fields — Large currents

to the field.

Cortical gray matter Layer 5 large pyramidal cells are considered important for generation of the MEG signal Roughly speaking, order of 10000s of cells needed for a signal

MEG or EEG sees better? EEG measures the electric potential difference between two electrodes. The potential difference is due to extracellular volume currents flowing in a resistive medium (scalp). Volume currents are induced by intracellular primary currents. MEG measures the magnetic field generated by primary currents outside the head. Secondary volume currents usually contribute

• In EEG we have the *reference* problem; MEG is reference-free

EEG signal depends on the conductivity geometry highly, MEG signal somewhat

Source modeling of MEG data

- Channel-level analysis reveals effect timing
- Anatomically specific findings require transforming the channel-space data to source-space data
- Requires knowledge of the system and understanding of electromagnetic field theory

Source reconstruction, a.k.a. inverse modeling

- Relates the channel information to activity in actual brain regions
- A bunch of different approaches / practices used; even more proposed for use
 - None of these is the correct one!
 - No unique solution exists
- Highly affects the relevance of further analyses!
 - can be dangerous if done wrong

Forward or inverse problem?

- forward: what kind of field is generated by a given source?
- inverse: what kind of source configuration may generate the measured magnetic field?

Topographies of a current dipole in three orientations

EEG

Methods for inverse modeling • dipole models - specify 1-4 dipoles; fixed, moving, rotating, ... • distributed current solutions - Minimum norm estimates (MNE) - LORETA (low resolution tomography) • beamformers - adaptive estimates for source strength per voxel - not real/complete inverse solutions; properties unknown • signal decomposition methods - explain the data with interpretable components - do not go to source space at all

Source modeling in a sphere For MEG sphere model, we need: Origin of the sphere Sensor information Theory, e.g. the field of a current dipole

Source modeling in evoked response studies

Traditionally, (single) dipole modeling has prevailed

Distributed source models estimate source current strength all over the cortex

- Helps interpret the findings
- May work as a sanity check
- A straightforward way to MEG/EEG data fusion

Source modeling in realistic anatomy

We first need

- The anatomy
- Potential signal sources
- Electric model of tissue properties
- Measurement geometry & forward model
- Inverse modeling theory (a priori assumptions)

This will take a while...

Forward model

Based on head model, device geometry, and the relationship between these two

- Segmented MRI
- Realistic tissue conductivities
- Cortically constrained source locations
- Field computations using boundary element method (BEM)
- Sensor information
- Head position information (HPI)

Linear forward and inverse problem

M/EEG problems are linear => matrices

Gx = v

G is the forward model x are the source activations y is the measurement result (when forgetting noise)

We are looking for

$$X = G^{-1}GX = G^{-1}y$$

 G^{-1} or inverse of G is a matrix for which $G^{-1}G=1$

Unluckily, such a matrix does not exist in this case.

Forward and inverse problem

Typically in MEG: 306 channels
Typical source model: ~6000 sources

• More unknowns than data points => infinite number of "correct" solutions

Which one should we choose?

The minimum norm estimate

We impose *a priori* information to select only one of the infinite correct solutions

MNE supposes that:

- Source amplitudes are normally distributed with known co-variance
- The measurement includes normally distributed noise with a known co-variance
- (Sources are located in the cortical gray matter)

A priori information could be something else ⇒ different (perhaps equally correct) solution

Problems: difficult to validate sensitive to noise

Minimum norm estimate

MNE is the solution with the smallest total source energy; in mathematical terms, the minimum L^2 -norm:

 $|x| = \operatorname{sqrt}(x_1^2 + x_2^2 + \dots + x_n^2)$

cf. Pythagoras: $h = \operatorname{sqrt}(a^2 + b^2)$

Such solutions are generally found using the pseudoinverse of G, G^+ :

 $x = G^+ y = G^T (GG^T)^{-1} y$

We more often use a regularized solution:

MNE: $x = RG^T(GRG^T + \lambda^2C)^{-1}y$

R source covariance (often diagonal => sources *a priori* independent) G gain matrix (forward solution)

Noise covariance matrix – statistics of non-interesting signals Is needed for the inverse model Is used to give the noisiest signals the lowest significance Noise covariance matrix for 102 magnetometers from an empty-room MEG measurement

Unmodeled noise in MEG

- = sensor noise components not included in noise covariance
- Bioelectric sources of the subject: EKG, EOG. EMG
- Clothing, dental work, jewelry, surgery, ...
- Head movements
- Radio frequency interference
- Stimulator devices
- Transient external noise

MNE models these as currents in the cortex!

• So clean up your data first

MEEG data preprocessing Data include several artifacts that might cause unpredictable errors in source localization and affect response size and shape, destroying it all Getting rid of non-neuronal MEEG signal components using ICA: • low-frequency components (blinks, movements, heart) • high-frequency components (saccades, muscles) - several rejection criteria for ICs: • scalp topography • frequency content • time courses wrt. experiment • correlation with EOG/EKG • higher-order statistical properties

