IDENTIFYING PASSWORDS ON DISK

Shiva Houshmand Sudhir Aggarwal Umit Karabiyik

Florida State University

Department of Computer Science

E-Crime Investigative Technologies Laboratory

© 2015 Shiva Houshmand. All rights reserved

Introduction

 Passwords continue to be the primary mean of authenticating

 Sites have developed policies that require more complex passwords

 Recommendations to create unique passwords for different accounts

Users are increasingly turning to saving their passwords in some manner

Surveys

Means for storing passwords

Which method do you use to store passwords?

Our Aim

Investigators are interested to find possible stored passwords on the disk

• Given a disk :

Analyze the files and return a set of strings that are most probably passwords for the investigator

- Examining the disk and retrieve tokens
- Filtering techniques
- Identifying passwords

Examining the Disk

Where we look for files on disk:

- Allocated space
- Unallocated space
- Hidden through the operating system

Using different tools to retrieve files and tokens :

- Tsk_recover
- catdoc, docx2txt, xls2txt, unoconv and xls2txt, Unrtf, odt2txt, pdftotext

Extract whitespace separated (space, tab, and newline) strings from each file and keep an associated text file with each token written on a single line.

Initial Filtering

 Non-printing characters: not valid ASCII characters for passwords

◆ **Length**: 6 < Password length < 21

Floating point: xls files contain large number of floating point numbers [-+]? [0-9]* .? [0-9]+ ([eE][-+]?[0-9]+)?

 Repeated tokens: We keep one instance of each token in each file

Word punctuations: Tokens that seem to be part of a sentence; any alpha string ending with ;:.,!?)} or starting with (or {.

Specialized Filtering

An extremely prevalent class of tokens is the set of alpha strings

♦ All-alphas

 Based on password policies most passwords do not contain only alpha characters

Sentences

Detect sentences using OpenNLP

Capitalization

Filtering only all lowered-case alpha strings

Dictionary words

o Filtering those strings that appear in a dictionary

Multiword

Filtering those strings that are not multiword (passphrases) (ex. iloveyou)

Identifying Passwords

How to distinguish passwords from other strings

Construct a *probabilistic context-free grammar** from training on a set of revealed passwords

- Parse every password into base structures and count their frequency.
- Base structures consist of L (alpha sequences), D (digits), S (symbols), M(capitalization)
- Base structure also includes length information

 $\frac{\text{Password12\%}}{\text{L}_8(\text{M}_8)\text{D}_2\text{S}_1}$

* M. Weir, S. Aggarwal, B. De Medeiros, B. Glodek, Password cracking using probabilistic context free grammars, IEEE Symposium on Security and Privacy (2009)

Probabilistic password attack

Training Set		S→	L ₄ D ₂	0.5
		S→	$D_1L_4S_1$	0.25
tiny99		S→	$L_4D_1S_1$	0.25
1pass! this2!	L	$D_2 \rightarrow$	99	0.7
star99	Training	$D_2 \rightarrow$	11	0.3
		$D_1 \rightarrow$	1	0.8
		$D_1 \rightarrow$	2	0.2
tree99		$S_1 \rightarrow$!	1.0
burn1! 1star!		$L_4 \rightarrow$	alex	0.1
down11		S→* alex2 0.25 × 0.1	! With p × 0.2 × 1.0 =	probability = 0.005

Note: Alpha sequence probabilities come from dictionaries and are equal to $1/n_{\rm L}$, where $n_{\rm L}$ is the number of words in the dictionary of length L.

Prob	Probabilistic password attack				
Genera	iting the	guesses		alex 99 andy 99 beta 99 	0.035
S→	L_4D_2	0.5		1 alex ! 1 andy !	
S→	$D_1L_4S_1$	0.25			0.02
				alex 1 ! andy 1 !	0.02
S→	$L_4D_1S_1$	0.25			
$D_2 \rightarrow$	99	0.7		alex 11	
$D_2 \rightarrow$	11	0.3	Guessing	andy 11	0.015
$D_1 \rightarrow$	1	0.8			
$D_1 \rightarrow$	2	0.2		2 alex ! 2 andy !	
$S_1 \rightarrow$!	1.0		 alex 2 !	0.005
$L_4 \rightarrow$	alex	0.1		andy 2 !	0.000
	1	1			

Identifying Passwords

How to distinguish passwords from other strings

 Using a probabilistic context-free grammar trained on a set of real user passwords, we can calculate the probability of any string.

Ranking algorithms

Outputting the top N tokens as the potential password set

Top Overall:

The N highest probability tokens from the whole disk

Top percent:

o An equal percentage of the highest probability tokens of each file

• Top 1-by-1:

Choose the highest probability token from each file and sort them Choose the second highest probability token from each file and sort

Г	

File 1 File 2

File 3

File 4

Experiment 1

Data Disk Image Size	#Files Analyzed	# Passwords Added
1 GB	1194	1000
500 MB	571	500
250 MB	426	250
100 MB	143	100
50 MB	108	50

 Reveled password sets to choose passwords from: Yahoo (300 thousand)

Initial Filtering Experiment

Percentage reduction of tokens due to each filter

Disk Filter	50 MB	100 MB	250 MB	500 MB	1 GB
Non-printing	0	0	0	0.0015	0
Length	59.65	65.57	60.34	40.75	53.08
Floating point	1.05	0.45	20.71	46.87	28.21
Repeated token	85.04	82.79	73.78	75.63	70.10
Word punctuations	<mark>68.96</mark>	11.90	8.27	6.28	20.42
All-alphas	77.89	73.11	60.66	31.95	33.71

Initial Filtering Experiment

Reduction of tokens due to all filters

Disk	50 MB	100 MB	250 MB	500 MB	1 GB
# Before filtering (millions)	2.45	2.16	6.76	28.84	49.41
# After filtering (millions)	0.07	0.050	0.25	1.38	3.21
Total reduction (percent)	97.15	97.68	96.35	95.21	93.50

Experiment 2: Ranking Algorithms

Stored 5 and 15 passwords in our disks

Reveled password sets to choose passwords from:

- CSDN (300 thousand)
- Rockyou (1 million)

Returned N potential passwords when N =1000, 2000, 4000, 8000, 16000

Ranking Algorithms Storing 5 passwords from CSDN

	Alş	Disk gorithm	50 MB	100 MB	250 MB	500 MB	1 GB
		Top overall	1	2	0	0	2
	000	Top percent	2	3	1	1	2
	N=1000	Top 1-by-1	5	3	2	3	3
		Top overall	1	2	0	0	2
	000	Top percent	5	3	1	1	2
	N=2000	Top 1-by-1	5	4	2	3	4
		Top overall	5	2	0	0	2
Average	00	Top percent	5	3	2	1	2
Recall	N=4000	Top 1-by-1	5	5	3	4	4
40%		Top overall	5	3	0	0	2
40% ← 56% ← 92% ←	00	Top percent	5	3	2	1	3
92%←	N=8000	Top 1-by-1	5	5	4	4	5
	0	Top overall	5	4	0	0	2
	600	Top percent	5	4	2	3	3
	N=16000	Top 1-by-1	5	5	4	5	5

Ranking Algorithms Storing 15 passwords from CSDN

		Disk	50	100	250	500	1 GB
	Alg	orithm	MB	MB	MB	MB	
)	Top overall	1	7	0	2	2
	N=1000	Top percent	4	10	2	3	3
	N=	Top 1-by-1	11	12	7	8	9
		Top overall	1	9	0	2	2
	000	Top percent	9	10	2	4	5
	N=2000	Top 1-by-1	12	14	9	9	11
	(Top overall	11	10	0	2	2
Average	N=4000	Top percent	10	11	3	5	6
Recall	N=4	Top 1-by-1	15	15	12	10	12
37.3%←		Top overall	13	11	0	2	2
57.3% ←───	2000	Top percent	11	11	8	5	8
89.3%←	N=8000	Top 1-by-1	15	15	13	10	14
	0	Top overall	15	14	0	2	2
	600	Top percent	12	14	9	8	8
	N=16000	Top 1-by-1	15	15	13	11	14

Experiment 3: Specialized Filtering Storing 15 passwords from Rockyou

Alg	Filter orithm	No Filter (15)	Capitalization (11)	Multiwords (14)	Dictionary (14)	Sentences (15)	All-alphas (11)
	Top overall	0	2	0	0	0	5
8	Top percent	1	1	3	3	2	1
N=1000	Top 1-by-1	2	2	4	4	0	8
	Top overall	0	2	0	0	0	5
000	Top percent	1	2	3	3	2	2
N=2000	Top 1-by-1	2	2	4	5	0	10
	Top overall	0	2	0	0	0	5
00	Top percent	2	3	3	3	3	4
N=4000	Top 1-by-1	2	2	5	5	1	10
	Top overall	0	2	0	0	0	5
8	Top percent	4	4	5	5	3	7
N=8000	Top 1-by-1	2	2	7	7	1	10
•	Top overall	0	2	0	0	0	5
000	Top percent	4	4	5	5	3	7
N=16000	Top 1-by-1	4	5	8	8	7	10

Specialized Filtering 1-by-1 algorithm (several runs)

Specialized Filtering

Example of top 20 potential passwords

Potential passwords	Probability
charles1	6.384 E-6
include3	1.687 E-6
program4	1.610 E-6
carolina23	6.272 E-7
light20	1.112 E-7
program97	7.757 E-8
lyndsay1	7.739 E-8
decagon1	7.739 E-8
dogbloo1	7.739 E-8
example1	7.739 E-8
pdprog1	5.370 E-8
report1	5.370 E-8
cielo123	5.080 E-8
soldiers1	4.044 E-8
bluberry1	4.044 E-8
listeria1	4.044 E-8
compendia1	3.110 E-8
framework1	3.110 E-8
alpha1s	2.972 E-8

Conclusion

• We can successfully identify most of the passwords on disks with large number of tokens.

- We return a relatively small set of potential passwords to be tried based on the investigator's resources.
- The system can be adapted to work for cellphones and USB drives.