
Sudhir Aggarwal and Shiva Houshmand
Florida State University
Department of Computer Science
E-Crime Investigative Technologies Lab
Tallahassee, Florida 32306
August 5-7, 2015

L2:
Hashing, Cryptographic Hashes, and
Password Hashing

© Copyright 2015 E-Crime Investigative Technologies at FSU. All rights reserved

Password Cracking
University of Jyväskylä
Summer School August 2015

Common Data Structures: Hash
Tables

• Dynamic set of elements. Want to support insert,
search (find), delete.

• Sometimes called a dictionary
• A hash table is useful for this

– hash tables often use chaining
• Analysis

– search: expected time (under reasonable assumptions)
is O(1). Worst case is Θ(n)

– insert: O(1)
– delete: similar to search or O(1)

2

Hashing with chaining
(using linked lists)

3

Using a hash function
• Universe of possible keys U is large
• set of actual keys stored K is small

compared to this (storage is Θ(K))
• Use a hash function:

h: U → {0, 1, …, m-1}
– k hashes to slot h(k)
– two or more keys could hash to same slot called a collision
– collision resolution by chaining. (One could also do open

addressing for collision resolution)

4

Analysis of Search operation
using hash table with chaining

• n = # of elements in the table
• m = # of slots in the table
• load factor α = n/m
• Worst case: all n keys hash to same slot and

is thus Θ(n)
• Average case depends on how the hash

function distributes the keys

5

Assumption: simple uniform hashing
• That is, any element is equally likely to hash into any of the m

slots.
• For j = 0, 1, …, m -1, let the length of the list T[j] be nj. Note

that nj is a random variable.
• The expected value of this r.v. is E[nj] = α = n/m
• So the expected time of an unsuccessful search is simply Θ(1 +

α)
• Successful search requires a more complex analysis since we

must figure out how many elements were inserted into the list
after the searched element. But it turns out to still be Θ(1 + α)

• If n = O(m), then we get that search takes O(1)
• Note that insert take O(1) since we insert at head of queue, and

if we have a pointer to the element, then delete takes O(1) also.

6

Typical classes of hash functions
(assuming keys are natural numbers)

• Division or “mod” method
h(k) = k mod m

• Multiplication method
let A be a constant 0 < A < 1
h(k) = m(kA mod 1)
note that here mod 1 means get the fractional

part of kA.

7

Example hash function

• Let U be the set of all strings.
• We map a string into an 8 bit ASCII value

as follows:
s → sum of ASCII character values Mod 256

• alpha → (97 + 108 + 112 + 104 + 97) mod 256
= 518 mod 256 = 6

• Note: h: U → {0, 1, …, 255}

8

9

Cryptographic hash functions

• A hash function is a mathematical, efficiently
computable function that has fixed size output:
– F : {0, 1}N → {0,1}n , where N > n
– F: {0, 1}* → {0,1}n

• In cryptography, the first type of hash function is
often called a compression function, with the
name hash function reserved for the unbounded
domain type.

• Note: a hash function does not have a key and
anyone can compute the same hash from the same
message. However keyed hashes do use a key

10

Checksums and CRCs

• Used to provide integrity checks against random faults.
• Not sufficient for protection against malicious or

intentional modification.
– Easy to make changes and re-compute the CRC to match.

• In the past, it was believed that the use of CRCs within
encryption was sufficient to provide integrity. However,
that is no longer considered adequate:
– Example: The use of CRCs in the WEP protocol resulted in a

serious vulnerability, allowing for powerful active attacks.

11

Cryptographic hash functions
(also called message digests)

• The security of hash functions is defined empirically, if
the following problems are found to be computationally
infeasible:
– One way:

• Given y, find x such that h(x) = y
– Second pre-image resistant:

• Given x, find y≠ x such that h(x) = h(y)
– Collision-resistant:

• Find y, x, with y≠ x such that h(x) = h(y)

– Can you prove that collision resistant (also called strong
collision resistant implies second pre-image resistant (also
called weak collision resistant)?

12

One way function: what is
computationally infeasible?

• Given y, find x such that h(x) = y
– An inverse problem
– If it is a cryptographic hash function with 128

bit digest, need to try about half of the
messages to find a message that maps to y.

– Need to try about 2127 messages
– This should be computationally infeasible.

13

Second pre-image resistant -
computational cost

• Given x, find y≠ x such that h(x) = h(y)
– Try messages to find some y that maps to

the same value as x.
– For a 128 bit digest, the expected number

of messages to try is again about 2127

messages for a 0.5 probability of success

14

Collision resistant - computational
cost

• Find y, x, with y≠ x such that h(x) = h(y)
– We can show that for a cryptographic hash

function, this requires solving the birthday
problem, which is about 264 messages for a 128
bit message digest

– Note that collision resistant
⇒ second pre-image resistant

– Use (A⇒B is the same as ¬B ⇒ ¬ A)

15

Constructing hash functions

• Since constructing secure hash functions is a
difficult problem, the following approach has been
taken in practice:
– Construct a good compression function. Since the

domain of compression functions are “small” they are
easier to test for the desired properties.

• Use the MD construction (next) to turn a one-way,
collision-resistant compression function into a
hash function with similar properties.

16

Merkle-Damgard (MD)

Here F() is a compression function, and the MD construction
transforms it into a hash function on larger blocks:
H(M_1) = F(IV, M_1), H(M_1 || M_2) = F(H(M_1),M_2) =
F(F(IV, M_1), M_2), and so forth

17

Applications of Hash Functions

• System integrity protection:
• For password verification, eliminating the

need to keep passwords
• As building blocks for message

authentication codes (MACs) and digital
signature algorithms.

18

Integrity Protection without MAC
(can still do so if you are careful)

• h(K || m) for integrity (know m and h())
– Concatenate a secret key K with a message m

and then use a cryptographic hash function
• h(m || K) (know m and h())

– Concatenate the secret key K at the end
• Which is better? The first one is subject to

the message extension attack, so the second
strategy turns out to be better

19

Using MACs

MAC

Sender

MAC

Receiver

K

M

M, T

M

T T’

The verification succeeds if the re-computed
tag T’ equals the original tag T.

20

Password authentication

• User authenticates by entering a password -- this is
checked against the server’s database
– Pros:

• Supported by almost every system
• Users familiar with the process

– Cons:
• Good password management is crucial
• Storing passwords securely can be a problem

21

Printing bytes & ASCII characters
• ASCII is a 7 bit character set (0-127)

– fits into a byte, remaining bit could be set to 0 or used
as a parity bit

– 95 printable characters, 33 non-printing
• Some printable encodings

– quoted-printable encoding (QP encoding)
• printable characters as is
• non printable characters represented as =hex1hex2

– Base64 encoding (used in Privacy Enhanced Mail)
• use character set of 26 = 64 (A-Z, a-z, 0-9, +, /)
• = is used as a special suffice for termination conditions
• 3 bytes are converted into 4 sets of 6 bit characters
• the 6 bit value of each set indexes into the character set
• note that 3 bytes encoded as 4 bytes
• result (due to termination rules) is output that is a multiple of 4

bytes
– Read about utf-8 and unicode

22

Unix Password System

• The hash algorithm varies. In
early systems, the bit-string for
the password is treated as a key
for (a variant of) DES. The salt
is used to indicate which DES
variant to use (a salt all of its
bits 0 results in DES being
selected).

• In modern systems, the hash is
based on many different
modern hash function such as
MD5, SHA1. Blowfish block
cipher, etc.

• User-entered passwords are
converted into bit strings.

• A salt (set by the system during
user account creation and stored in
the account database) is also used
as input.

• A hash / ciphertext of the password
(using only 64 bits of result) and a
12 bit salt are computed, the value
encoded in printable ASCII
characters, and stored in the
account database.

– ellen1 (user name)
– ri (salt)
– ri79KNd7V6.Sk (encrypted password)

23

Example: salt + hashing
User id Salt value Password hash

Bob 5b7 h(5b7 || passwordBob)
Alice f3c h(f3c || passwordAlice)
Trudy 33a h(33a || passwordTrudy)

The hash function encodes the output into a printable
string of characters

Note: the salt value is in the open; without salt, someone
could simply hash a dictionary and compare against all
hashed entries

24

Features of Unix passwords

• The user must know the password to authenticate
himself/herself

• That creates problems for remote authentication---the
password must be sent over the network connection. This
requires extraneous methods to protect the connection.

• If the hashed password and salt are obtained (say, by
compromising the user database), it is possible to perform
brute force or dictionary attacks to recover the password.

MD4, MD5

• Creates a 128 bit digest = 4 × 32 bits (4 words)
• Invented by Ron Rivest
• Main invention is the compression function:

{0, 1}640 bits → {0, 1}128 bits

• The input string is padded by a 1 followed by 0’s
until the length is 448 mod 512. Then the length of
the input string is appended as a 64 bit value. The
input is now a multiple of 512 bits.

• The MD construction is then used with the
compression function

25

MD4/MD5 Pictorial View

26

… 512 bits

constant 128 bit message + padding

Compression function

Compression function
.
.
.

MD 4/5 128 bit

512 bits

512 bits

Compression function
128 bits

128 bits

128 bits

The Compression Function
• Let the message length (in 32 bit words) be N.

Then there are N/16 rounds of use of the
compression function.

• A 4-word buffer (A, B, C, D) is used in each
round to change the bits of this buffer using the 16
word message bits, an auxiliary table and
operations such as xor, not, and, or, rotate. In each
round the 16 word message is manipulated to
create a new buffer entry.

• The last entry is the 4 word hash.
• https://tools.ietf.org/html/rfc1321

27

https://tools.ietf.org/html/rfc1321

LM or LANMAN

• LM – used by Microsoft Windows prior to
NT.

• User’s password is a max of 14 bytes.
• Result is a 16 byte value
• LM is consider broken and can easily be

inverted

28

The LM hash algorithm

• The user's password is converted to uppercase.
• The password is null-padded to 14 bytes.
• The modified password is split into two 7-byte halves.
• These values are used to create two DES keys (one from

each 7-byte half).
• Each of these keys is used to DES-encrypt the ASCII

string "KGS!@#$%“.
• The result is two 8-byte values which are concatenated to

form a 16-byte value - the LM hash

29

NTLM or NT LAN Manager

• Successor to LM, introduced for Windows NT
• NTLM is a challenge – response authentication

protocol to authenticate clients to servers
– The protocol does much more than simply store a hash

value to check against
• There is however also an actual stored hash

associated with it
• NTLM tries to be backward compatible with LM
• It is not advised to use either versions 1 or 2 of the

protocol. Instead Kerberos is recommended.
30

The NTLM hash algorithm

• The user’s password is first changed by adding the
null byte (all 0’s) after each byte of the password.

• The modified password is then hashed using MD4.
• The result is a 16 byte value – the NTLM hash.

31

LM, NTLM Storage and Hashes
• Stored in the Windows System + SAM files
• Example entry in a SAM file (text)
xxx:1010:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d1
6ae931b73c59d7e0c089c0:::
• Structure is:
Username:RID:LMHash:NTLMHash:::
• Note that the entry starting with aad3 (after second

semicolon) is the LM hash and the second entry
starting with 31 after the next colon is the NTLM
hash

• Can you figure out what these are hashes of?
32

Some example hashes of importance
Supported by John the Ripper

• afs - Kerberos AFS DES
• bf - OpenBSD Blowfish
• crypt
• hmac-md5
• nt – NT MD4
• raw-md4
• raw-md5
• pix-md5
• Versions of Sha-1, Sha-256, Sha-512 etc.
• What about RAR and Truecrypt?
• Etc., …., Etc.
http://pentestmonkey.net/cheat-sheet/john-the-ripper-hash-formats

33

http://pentestmonkey.net/cheat-sheet/john-the-ripper-hash-formats

Cisco-PIX or Not?

• Cisco PIX hashes consist of a 12 byte digest encoded as a
16 character HASH64-encoded string. The algorithm is:

1. The (enable) password should be truncated to 16 bytes, or the right
side NULL padded to 16 bytes, as appropriate.

2. Run the result of step 3 through MD5.
3. Discard every 4th byte of the 16-byte MD5 hash, starting with the 4th

byte.
4. Encode the 12-byte result using HASH64 (assume standard Base64)

What kind of hash is the following 16 byte string? Is it a
Cisco-PIX hash?
2/dBg7m+jWhQiZ==

34

	L2:�Hashing, Cryptographic Hashes, and Password Hashing
	Common Data Structures: Hash Tables
	Hashing with chaining �(using linked lists)
	Using a hash function
	Analysis of Search operation�using hash table with chaining
	Assumption: simple uniform hashing
	Typical classes of hash functions (assuming keys are natural numbers)
	Example hash function
	Cryptographic hash functions
	Checksums and CRCs
	Cryptographic hash functions�(also called message digests)
	One way function: what is computationally infeasible?
	Second pre-image resistant - computational cost
	Collision resistant - computational cost
	Constructing hash functions
	Merkle-Damgard (MD)
	Applications of Hash Functions
	Integrity Protection without MAC �(can still do so if you are careful)
	Using MACs
	Password authentication
	Printing bytes & ASCII characters
	Unix Password System
	Example: salt + hashing
	Features of Unix passwords
	MD4, MD5
	MD4/MD5 Pictorial View
	The Compression Function
	LM or LANMAN
	The LM hash algorithm
	NTLM or NT LAN Manager
	The NTLM hash algorithm
	LM, NTLM Storage and Hashes
	Some example hashes of importance�Supported by John the Ripper
	Cisco-PIX or Not?

