
Sudhir Aggarwal and Shiva Houshmand
Florida State University
Department of Computer Science
E-Crime Investigative Technologies Lab
Tallahassee, Florida 32306
August 5-7, 2015

L4:
Overview of Languages, Grammars and
Probabilistic Context-free Grammars

© Copyright 2015 E-Crime Investigative Technologies at FSU. All rights reserved

Password Cracking
University of Jyväskylä
Summer School August 2015

Languages
Definitions

• Any finite, nonempty set of symbols is an alphabet
or vocabulary.

Σ = {A, B, C, D, …, Z}
Σ = {0, 1}
Σ = { ☐, if, then, else}
Σ = { S, L1, …, L20, D1, …, D20, S1, …, S20, alice, Bob, 427,….}

• A finite sequence of symbols from the alphabet is
called a string or a word or a sentence.

w = ALPHA
w = 0100011101

2

Languages
Definitions

• Two strings can be concatenated to form another
string:

v = ALPHA, w = BETA
Concat(v, w) = vw = ALPHABETA

• The length of a string w, denoted by |w| is the
number of symbols in the string.

|ALPHA| = 5

• The empty string is denoted by λ or ε and its length
is 0.

|λ| = 0
3

Languages
Definitions

• If Σ is the alphabet, Σ* is the set of all strings over
Σ, including the empty string.

• Σ* is obtained by concatenating zero or more
symbols from Σ.

Σ+ = Σ* - {λ}

Let Σ = {a, b, c, d}, what is Σ* ?
Can you specify a procedure to generate Σ* ?
What is |Σ*| ?

4

Languages
Definitions

• A language over Σ is a subset of Σ*.
L ⊆ Σ*

Example: Σ = {a, b}
L1 = { a, aa, aba} a finite language
L2 = { anbn : n ≥ 1} an infinite language

5

Ways to represent languages

1. Recognition point of view

2. Generation point of view
– Systematically generate (enumerate) all sentences

of the language

Mw
Yes (accepted)

6

Automata

• An automaton is an abstract model of a digital
computer.

• Reads the input (string over the alphabet)
• Has a control unit which can be in any of the

finite number of internal states and can
change state in some defined manner.

• Given an input string, it outputs yes or no
meaning that it either accepts the string or
rejects it.

7

Grammars
Definitions

• A grammar is a method to describe and
generate the sentences of a language.

• A grammar G is defined as a quadruple
G = (V, T, S, P)

V is a finite set of variables
T is a finite set of terminal symbols
S ∈ V is a special variable called start symbol
P is a finite set of production rules of the form

x  y
where x ∈ (V∪T)+ , y ∈ (V∪T)* 8

Grammars
Example

S  <noun phrase> <verb phrase>
<noun phrase>  <article> <noun>
<article>  the
<noun>  dog
<verb phrase>  is <adjective>
<adjective>  happy

S => <noun phrase><verb phrase> => <article><noun><verb phrase>
=> the <noun><verb phrase> => the <noun> is <adjective> =>
the dog is <adjective> => the dog is happy

9

Grammars
Definitions

• We say that w derives z if w = uxv , and z = uyv
and x y ∈ P

w => z
• If w1 => w2 => … => wn we say w1 =>* wn

(derives in zero or more steps)
• The set of sentential forms is

S(G) = {α ∈(V∪T)* | S =>* α}
• The language generated by grammar G is

L(G) = { w ∈ T* | S =>* w }
10

Grammars
Example

G = (V, T, P, S) V = {S, B, C} T = {a, b, c}
P:

S  aSBC bB bb
S  aBC bC bc
CB  BC cC cc
aB ab

S =>* aaBCBC sentential form

What is L(G) ? L(G) = { anbncn | n ≥ 1}
11

Grammars
Example

G = ({S}, {a, b}, S, P)
Productions:

S  aSb
S  λ

What is the L(G)? L = {anbn : n ≥ 0}

12

Grammars
Example

Find a grammar that generates
L = { anb2n : n ≥ 0 }

S  aSbb | λ

13

Summary

• An automaton recognizes (or accepts) a
language

• A grammar generates a language
• For some grammars, it is possible to build an

automaton MG from the grammar G so that
MG recognizes the language L(G) generated by
the grammar G.

14

Regular Languages

}0:{ ≥nba nn }{ Rww

**ba *)(ba +

Context-Free Languages

15

Example 1

G = ({S} , {a, b} , S, P)
S  aSb
S  λ

S => aSb => aaSbb => aaaSbbb => aaaabbbb
S => aSb => aaSbb => aabb
Derivations:

16

We write: S => aaabbb

Instead of:
S => aSb => aaSbb => aaaSbbb => aaabbb

for zero or more derivation steps

Notation
*

17

Example

Grammar: Possible Derivations:
S  aSb S => λ
S  λ S => ab

S => aaaSbbb => aaaaabbbbb

*

*

* *

18

Language of a Grammar

• For a grammar G with start variable S

L(G) = { w: S => w, w ∈ T*}*

19

Example

Grammar:
S  aSb
S  λ

Language of the grammar:

}0:{ ≥= nbaL nn

20

Context-Free Grammar

• A grammar G=(V, T, S, P) is context-free if all
productions in P have the form:

where and

• A language L is a context-free language iff there
is a context-free grammar G such that L = L(G)

Sequence of
terminals and variables

21

Context-Free Language

L = {anbn : n ≥ 0} is a context-free language since
the context-free grammar:

S  aSb | λ generates L(G) = L

22

Another Example

Context-free grammar G:
S  aSa | bSb | λ

A derivation: S => aSa => abSba => abba
L(G) = { wwR : w ∈ {a,b}* }

23

Another Example

Context-free grammar G:
S  (S) | SS | λ

A derivation:
S => SS => (S)S => ((S))S => (())(S) => (())()

L(G) : balanced parentheses

24

Example 2

L = { an bm : n ≠ m}

S1 → aS1b | λ
S → AS1

A → aA|a

n > m

aaaaaaaabbbbb

n < m

aaaaabbbbbbbbb

S1 → aS1b | λ
S → S1B

B → bB|bS → AS1 | S1B
S1 → aS1b | λ
A → aA|a
B → bB|b 25

Derivations

26

Derivations

• When a sentential form has a number of
variables, we can replace any one of them at
any step.

• As a result, we have many different
derivations of the same string of terminals.

27

Derivations

Example: 1. S → aAS 2. S → a
3. A → SbA 4. A → SS 5. A → ba

S => aAS => aAa => aSbAa => aSbSSa => aSbSaa

=> aSbaaa => aabaaa

1 2 3 4 2

2 2

S => aAS => aSbAS => aSbAa => aSbSSa =>

aabSSa => aabSaa => aabaaa

1 3 2 4 2

2 2
28

Leftmost Derivation

A derivation is said to be leftmost if in each step
the leftmost variable in the sentential form is
replaced.
Example: S → aAS | a

A → SbA | SS | ba

S => aAS => aSbAS => aabAS => aabSSS =>
aabaSS => aabaaS => aabaaa Leftmost

29

Rightmost Derivation

A derivation is said to be rightmost if in each step the
rightmost variable is replaced.
Example: 1. S → aAS 2. S → a

3. A → SbA 4. A → SS 5. A → ba

Rightmost

S => aAS => aAa => aSbAa => aSbSSa => aSbSaa

=> aSbaaa => aabaaa

1 2 3 4 2

2 2

30

S => aAS => aSbAS => aSbAa => aSbSSa =>
aabSSa => aabSaa => aabaaa

Neither

Leftmost and Rightmost Derivation

Example: 1. S → aAS 2. S → a
3. A → SbA 4. A → SS 5. A → ba

31

Derivation Trees

32

ABS ⇒
S

BA

ABS → λ|aaAA→ λ|BbB →

33

aaABABS ⇒⇒

a a A

S

BA

ABS → λ|aaAA→ λ|BbB →

34

aaABbaaABABS ⇒⇒⇒
S

BA

a a A B b

ABS → λ|aaAA→ λ|BbB →

35

aaBbaaABbaaABABS ⇒⇒⇒⇒
S

BA

a a A B b

λ

ABS → λ|aaAA→ λ|BbB →

36

aabaaBbaaABbaaABABS ⇒⇒⇒⇒⇒

yield
aaλλb = aab

S

BA

a a A B b

λ λ

Derivation Tree
(parse tree)

ABS → λ|aaAA→ λ|BbB →

37

• Derivation trees are trees whose nodes are labeled
by symbols of a CFG.

• Root is labeled by S (start symbol).
• Leaves are labeled by terminals T ∪ {λ}
• Interior nodes are labeled by non-terminals V.
• If a node has label A ∈ V, and there is a production

rule A →α1α2…αn then its children are labeled
from left to right α1, α2, … ,αn.

• The string of symbols obtained by reading the
leaves from left to right is said to be the yield.

Derivation Trees

38

Partial Derivation Tree

A partial derivation tree is a subset of the
derivation tree (the leaves can be non-terminals
or terminals.

ABS → λ|aaAA→ λ|BbB →

S

BA

Partial
derivation tree

39

Partial Derivation Tree

aaABABS ⇒⇒

a a A

S

BA

yield aaAB

sentential formPartial
derivation tree

40

CFG Theorem

1) If there is a derivation tree with root labeled
A that yields w, then A =>*lm w.
2) If A =>*lm w, then there is a derivation tree
with root A that yields w.

41

Ambiguity

42

E → E + E
E → E * E a * b + b + a
E → a | b

Ambiguous grammars
Example

E

E E+

E * E E + E

a b b a

E

E E*

+ Ea

a

E

E + E

b b

Two derivation trees

43

Example

E → E + E E → E * E E → a | b

E => E + E => E * E + E => a * E + E => a * b + E
=>
a * b + E + E => a * b + b + E => a* b + b + a

E => E * E => a * E => a * E + E => a * E + E + E
=> a * b + E + E => a * b + b + E => a* b + b + a

Leftmost derivation

Leftmost derivation44

Ambiguous grammars

• A context-free grammar G is ambiguous if
there exist some w ∈ L(G) that has at least
two distinct derivation trees.

• Or if there exists two or more leftmost
derivations (or rightmost).

45

Why do we care about ambiguity?

Grammar for mathematical expressions:
E → E + E E → E * E E → a

E

E E+

a E * E

a a

E

E E*

a

a

a + a * a

+ EE

a 46

Why do we care about ambiguity?

Compute expressions result using the tree

E

E E+

3 E * E

3 3

E

E E*

3

3

3 + 3 * 3 =?

+ EE

3

93

12

36

18

47

Why do we care about ambiguity?

John saw the boy with a telescope.

48

Ambiguity

• In general, ambiguity is bad for programming
languages and we want to remove it

• Sometimes it is possible to find a non-
ambiguous grammar for a language

• But in general it is difficult to achieve this

49

Ambiguous Grammars

• If L is a context-free language for which there
exists an unambiguous grammar, then L is said
to be unambiguous. If every grammar that
generates L is ambiguous, then the language is
called inherently ambiguous.

• In general it is very difficult to show whether
or not a language is inherently ambiguous.

50

Probabilistic Context-free
Grammars

51

Assigning Probabilities

• Example:
S → NP VP
NP → the man
NP → the book
VP → Verb NP
Verb→ took

• Where can we assign probabilities?
– Rules are nondeterministic
– We have parse trees that are generated
– We have terminals (strings) of a language that are

generated
52

Example 1

• Example:
S → NP sleeps (1.0)
S → John sleeps (0.7)
NP → John (0.3)

• What can be derived?

53

Tree probabilities ok but
rules probabilities not ok

54

John

S

sleepsNP

(1.0)

(0.3)

Tree probability:
0.3

S

sleepsJohn

(0.7)

Tree probability:
0.7

Fixing the probabilities

• Example:
S → NP sleeps (0.3)
S → John sleeps (0.7)
NP → John (1.0)

55

Example 2
• Example:

S → S S (0.7) = p
S → a (0.3) = (1 – p)

• What can be derived? Let xh be total probability of all
parses of height ≤ xh.
a: h1 = (0.3)
a + aa: h2 = (0.3 + .7 x .3 x .3)
a + aa + aaa: h3 = (0.3 + .7 x h2 x h2)

• It can be shown that if p > ½ then the total probability
of all parses is less than 1.

56

Probability of a Parse Tree

• Let P be the set of production rules in the
grammar, and let A  α be a rule. Let τ be a
parse tree. For a rule A  α, let f(A  α ; τ) be
the frequency of the rule in τ.

• Then:

Note that for a proper distribution the sum of
all parse trees should sum to one.

57

Example 3
S → L5 D3 S1 0.8
S → D3 L5 0.2
L5 → alice (0.5) | carol (0.5)
D3 → 111 (.3) | 123 (.3) | 999 (.25) | 007 (.15)
S1 → ! 0.6
S1 → # 0.4

• Maximum likelihood estimation assigns proper
probabilities to PCFGs if one uses the full
observations case (knows all the parse trees).
Also termed relative frequency estimation. See
Chi and Geman (1998)

58

	L4:�Overview of Languages, Grammars and Probabilistic Context-free Grammars
	Languages�Definitions
	Languages�Definitions
	Languages�Definitions
	Languages�Definitions
	Ways to represent languages
	Automata
	Grammars�Definitions
	Grammars�Example
	Grammars�Definitions
	Grammars�Example
	Grammars�Example
	Grammars�Example
	Summary
	Slide Number 15
	Example 1
	 Notation
	Example
	Language of a Grammar
	Example
	Context-Free Grammar
	Context-Free Language
	Another Example
	Another Example
	Example 2
	Derivations
	Derivations
	Derivations
	Leftmost Derivation
	Rightmost Derivation
	Leftmost and Rightmost Derivation
	Derivation Trees
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Derivation Trees
	Partial Derivation Tree
	Partial Derivation Tree
	CFG Theorem
	Ambiguity
	Ambiguous grammars�Example
	Example
	Ambiguous grammars
	Why do we care about ambiguity?
	Why do we care about ambiguity?
	Why do we care about ambiguity?
	Ambiguity
	Ambiguous Grammars
	Probabilistic Context-free Grammars
	Assigning Probabilities
	Example 1
	Tree probabilities ok but� rules probabilities not ok
	Fixing the probabilities
	Example 2
	Probability of a Parse Tree
	Example 3

