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Languages
Definitions

• Any finite, nonempty set of symbols is an alphabet
or vocabulary. 

Σ = {A, B, C, D, …, Z}
Σ = {0, 1}
Σ = { ☐, if, then, else}
Σ = { S, L1, …, L20, D1, …, D20, S1, …, S20, alice, Bob, 427,….}

• A finite sequence of symbols from the alphabet is 
called a string or a word or a sentence. 

w = ALPHA
w = 0100011101
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Languages
Definitions

• Two strings can be concatenated to form another 
string:   

v = ALPHA,   w = BETA
Concat(v, w) = vw = ALPHABETA

• The length of a string w, denoted by |w| is the 
number of symbols in the string.

|ALPHA| = 5

• The empty string is denoted by λ or ε and its length 
is 0.        

|λ| = 0
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Languages
Definitions

• If Σ is the alphabet, Σ* is the set of all strings over 
Σ, including the empty string.

• Σ* is obtained by concatenating zero or more 
symbols from Σ.

Σ+ = Σ* - {λ}

Let Σ = {a, b, c, d}, what is Σ* ?
Can you specify a procedure to generate Σ* ?
What is |Σ*| ? 
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Languages
Definitions

• A language over Σ is a subset of Σ*. 
L ⊆ Σ*

Example: Σ = {a, b}
L1 = { a, aa, aba}            a finite language
L2 = { anbn : n ≥ 1}  an infinite language 
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Ways to represent languages

1. Recognition point of view

2. Generation point of view
– Systematically generate (enumerate) all sentences 

of the language

Mw
Yes (accepted)
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Automata

• An automaton is an abstract model of a digital 
computer. 

• Reads the input (string over the alphabet)
• Has a control unit which can be in any of the 

finite number of internal states and can 
change state in some defined manner. 

• Given an input string, it outputs yes or no 
meaning that it either accepts the string or 
rejects it. 
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Grammars
Definitions

• A grammar is a method to describe and 
generate the sentences of a language. 

• A grammar G is defined as a quadruple
G = (V, T, S, P)

V is a finite set of variables
T is a finite set of terminal symbols
S ∈ V is a special variable called start symbol
P is a finite set of production rules of the form

x  y
where x ∈ (V∪T)+ ,  y ∈ (V∪T)* 8



Grammars
Example

S  <noun phrase> <verb phrase>
<noun phrase>  <article> <noun>
<article>  the
<noun>  dog
<verb phrase>  is <adjective>
<adjective>  happy

S => <noun phrase><verb phrase> => <article><noun><verb phrase>
=> the <noun><verb phrase> => the <noun> is <adjective> => 
the dog is <adjective> => the dog is happy
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Grammars
Definitions

• We say that w derives z if w = uxv , and z = uyv
and x y ∈ P 

w => z
• If w1 => w2 => … => wn we say w1 =>* wn

(derives in zero or more steps)
• The set of sentential forms is 

S(G) =  {α ∈(V∪T)* | S =>* α}
• The language generated by grammar G is

L(G) = { w ∈ T* | S =>* w } 
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Grammars
Example

G = (V, T, P, S)          V = {S, B, C}         T = {a, b, c}
P:

S  aSBC bB bb
S  aBC bC bc
CB  BC cC cc
aB ab

S =>* aaBCBC sentential form

What is L(G) ?      L(G) = { anbncn | n ≥ 1}
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Grammars
Example

G = ({S}, {a, b}, S, P)
Productions:

S  aSb
S  λ

What is the L(G)? L = {anbn : n ≥ 0}
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Grammars
Example

Find a grammar that generates 
L = { anb2n : n ≥ 0 }

S  aSbb | λ
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Summary

• An automaton recognizes (or accepts) a 
language

• A grammar generates a language
• For some grammars, it is possible to build an 

automaton MG from the grammar G so that 
MG recognizes the language L(G) generated by 
the grammar G. 
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Regular Languages
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Context-Free Languages
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Example 1

G = ({S} , {a, b} , S, P)
S  aSb
S  λ

S => aSb => aaSbb => aaaSbbb => aaaabbbb
S => aSb => aaSbb => aabb
Derivations:
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We write:      S => aaabbb

Instead of:
S => aSb => aaSbb => aaaSbbb => aaabbb

for zero or more derivation steps

Notation
*
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Example 

Grammar: Possible Derivations:
S  aSb S => λ
S  λ S => ab

S => aaaSbbb => aaaaabbbbb

*

*

* *
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Language of a Grammar

• For a grammar G with start variable S

L(G) = { w: S => w,  w ∈ T*}*
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Example

Grammar:
S  aSb
S  λ

Language of the grammar:

}0:{ ≥= nbaL nn
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Context-Free Grammar

• A grammar G=(V, T, S, P) is context-free if all 
productions in P have the form:

where               and    

• A language L is a context-free language iff there 
is a context-free grammar G such that L = L(G)

Sequence of 
terminals and variables
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Context-Free Language

L = {anbn : n ≥ 0} is a context-free language since 
the context-free grammar:  

S  aSb | λ generates L(G) = L 
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Another Example

Context-free grammar G: 
S  aSa |  bSb | λ

A derivation:  S => aSa => abSba => abba
L(G) = { wwR : w ∈ {a,b}* } 
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Another Example

Context-free grammar G: 
S  (S) | SS | λ

A derivation:  
S => SS => (S)S => ((S))S => (())(S) => (())()

L(G) : balanced parentheses
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Example 2

L = { an bm : n ≠ m}

S1 → aS1b | λ
S   → AS1

A → aA|a

n > m

aaaaaaaabbbbb

n < m

aaaaabbbbbbbbb

S1 → aS1b | λ
S   → S1B

B  → bB|bS  → AS1 | S1B
S1 → aS1b | λ
A → aA|a
B  → bB|b 25



Derivations

26



Derivations

• When a sentential form has a number of 
variables, we can replace any one of them at 
any step. 

• As a result, we have many different 
derivations of the same string of terminals. 
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Derivations

Example: 1.  S → aAS 2. S → a
3. A → SbA 4.  A → SS     5. A → ba

S => aAS => aAa => aSbAa => aSbSSa => aSbSaa

=> aSbaaa => aabaaa

1 2 3 4 2

2 2

S => aAS => aSbAS => aSbAa => aSbSSa => 

aabSSa => aabSaa => aabaaa

1 3 2 4 2

2 2
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Leftmost Derivation

A derivation is said to be leftmost if in each step 
the leftmost variable in the sentential form is 
replaced. 
Example: S → aAS |  a

A → SbA | SS | ba

S => aAS => aSbAS => aabAS => aabSSS => 
aabaSS => aabaaS => aabaaa Leftmost
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Rightmost Derivation

A derivation is said to be rightmost if in each step the 
rightmost variable is replaced.
Example: 1.  S → aAS 2. S → a

3. A → SbA 4.  A → SS        5. A → ba

Rightmost

S => aAS => aAa => aSbAa => aSbSSa => aSbSaa

=> aSbaaa => aabaaa

1 2 3 4 2

2 2
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S => aAS => aSbAS => aSbAa => aSbSSa => 
aabSSa => aabSaa => aabaaa

Neither

Leftmost and Rightmost Derivation

Example: 1.  S → aAS 2. S → a
3. A → SbA 4.  A → SS         5. A → ba
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Derivation Trees
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ABS ⇒
S

BA

ABS → λ|aaAA→ λ|BbB →
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aaABABS ⇒⇒

a a A

S

BA

ABS → λ|aaAA→ λ|BbB →
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aaABbaaABABS ⇒⇒⇒
S

BA

a a A B b

ABS → λ|aaAA→ λ|BbB →
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aaBbaaABbaaABABS ⇒⇒⇒⇒
S

BA

a a A B b

λ

ABS → λ|aaAA→ λ|BbB →
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aabaaBbaaABbaaABABS ⇒⇒⇒⇒⇒

yield
aaλλb = aab

S

BA

a a A B b

λ λ

Derivation Tree
(parse tree)

ABS → λ|aaAA→ λ|BbB →
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• Derivation trees are trees whose nodes are labeled 
by symbols of a CFG. 

• Root is labeled by S (start symbol).
• Leaves are labeled by terminals T ∪ {λ}
• Interior nodes are labeled by non-terminals V.
• If a node has label A ∈ V, and there is a production 

rule A →α1α2…αn then its children are labeled 
from left to right α1, α2, … ,αn.

• The string of symbols obtained by reading the 
leaves from left to right is said to be the yield. 

Derivation Trees
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Partial Derivation Tree

A partial derivation tree is a subset of the 
derivation tree (the leaves can be non-terminals 
or terminals.

ABS → λ|aaAA→ λ|BbB →

S

BA

Partial 
derivation tree
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Partial Derivation Tree

aaABABS ⇒⇒

a a A

S

BA

yield aaAB

sentential formPartial 
derivation tree
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CFG Theorem 

1) If there is a derivation tree with root labeled 
A that yields w, then A =>*lm w.
2) If A =>*lm w, then there is a derivation tree 
with root A that yields w. 
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Ambiguity
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E → E + E
E → E * E a * b + b + a
E → a | b

Ambiguous grammars
Example

E

E E+

E * E E + E

a b b a

E

E E*

+ Ea

a

E

E + E

b b

Two derivation trees
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Example

E → E + E               E → E * E E → a | b

E => E + E => E * E + E  => a * E + E => a * b + E
=>
a * b + E + E => a * b + b + E => a* b + b + a

E => E * E => a * E => a * E + E => a *  E + E + E 
=> a * b + E + E => a * b + b + E => a* b + b + a

Leftmost derivation

Leftmost derivation44



Ambiguous grammars

• A context-free grammar G is ambiguous if 
there exist some w ∈ L(G) that has at least 
two distinct derivation trees. 

• Or if there exists two or more leftmost 
derivations (or rightmost).
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Why do we care about ambiguity?

Grammar for mathematical expressions:
E → E + E               E → E * E E → a

E

E E+

a E * E

a a

E

E E*

a

a

a + a * a

+ EE

a 46



Why do we care about ambiguity?

Compute expressions result using the tree

E

E E+

3 E * E

3 3

E

E E*

3

3

3 + 3 * 3 =?

+ EE

3

93

12

36

18
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Why do we care about ambiguity?

John saw the boy with a telescope.
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Ambiguity

• In general, ambiguity is bad for programming 
languages and we want to remove it

• Sometimes it is possible to find a non-
ambiguous grammar for a language

• But in general it is difficult to achieve this
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Ambiguous Grammars

• If L is a context-free language for which there 
exists an unambiguous grammar, then L is said 
to be unambiguous. If every grammar that 
generates L is ambiguous, then the language is 
called inherently ambiguous. 

• In general it is very difficult to show whether 
or not a language is inherently ambiguous. 
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Probabilistic Context-free 
Grammars
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Assigning Probabilities

• Example:
S → NP VP
NP → the man
NP → the book
VP → Verb NP
Verb→ took

• Where can we assign probabilities?
– Rules are nondeterministic 
– We have parse trees that are generated
– We have terminals (strings) of a language that are 

generated
52



Example 1

• Example:
S → NP sleeps  (1.0)
S → John sleeps (0.7)
NP → John (0.3)

• What can be derived?
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Tree probabilities ok but
rules probabilities not ok

54

John

S

sleepsNP

(1.0)

(0.3)

Tree probability: 
0.3

S

sleepsJohn

(0.7)

Tree probability: 
0.7



Fixing the probabilities

• Example:
S → NP sleeps  (0.3)
S → John sleeps (0.7)
NP → John (1.0)
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Example 2
• Example:

S → S S (0.7) = p
S → a      (0.3) = (1 – p)

• What can be derived? Let xh be total probability of all 
parses of height ≤ xh.
a: h1 = (0.3)
a + aa: h2 = (0.3 + .7 x .3 x .3)
a + aa + aaa: h3 = ( 0.3 + .7 x h2 x h2)

• It can be shown that if p > ½ then the total probability 
of all parses is less than 1.
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Probability of a Parse Tree

• Let P be the set of production rules in the 
grammar, and let A  α be a rule. Let τ be a 
parse tree. For a rule A  α, let f(A  α ; τ) be 
the frequency of the rule in τ.

• Then:

Note that for a proper distribution the sum of 
all parse trees should sum to one.
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Example 3
S → L5 D3 S1 0.8
S → D3 L5 0.2
L5 → alice (0.5) | carol (0.5)
D3 → 111 (.3) | 123 (.3)  | 999 (.25) | 007 (.15) 
S1 → !                     0.6
S1 → #                     0.4

• Maximum likelihood estimation assigns proper 
probabilities to PCFGs if one uses the full 
observations case (knows all the parse trees). 
Also termed relative frequency estimation. See 
Chi and Geman (1998)
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