L4:

Overview of Languages, Grammars and Probabilistic Context-free Grammars

Sudhir Aggarwal and Shiva Houshmand

Florida State University

Department of Computer Science

E-Crime Investigative Technologies Lab

Tallahassee, Florida 32306

August 5-7, 2015

Password Cracking University of Jyväskylä Summer School August 2015

• Any finite, nonempty set of symbols is an alphabet or vocabulary.

```
\Sigma = \{A, B, C, D, ..., Z\}

\Sigma = \{0, 1\}

\Sigma = \{ \Box, \text{ if, then, else} \}

\Sigma = \{ \textbf{S}, L_1, ..., L_{20}, D_1, ..., D_{20}, S_1, ..., S_{20}, \text{ alice, Bob, 427,....} \}
```

• A finite sequence of symbols from the alphabet is called a string or a word or a sentence.

```
w = ALPHA
w = 0100011101
```

• Two strings can be concatenated to form another string:

v = ALPHA, w = BETAConcat(v, w) = vw = ALPHABETA

- The length of a string w, denoted by |w| is the number of symbols in the string.
 |ALPHA| = 5
- The empty string is denoted by λ or ϵ and its length is 0.

$$|\lambda| = 0$$

- If Σ is the alphabet, Σ^{*} is the set of all strings over Σ, including the empty string.
- Σ^{*} is obtained by concatenating zero or more symbols from Σ.

$$\Sigma^+ = \Sigma^* - \{\lambda\}$$

Let $\Sigma = \{a, b, c, d\}$, what is Σ^* ? Can you specify a procedure to generate Σ^* ? What is $|\Sigma^*|$?

• A language over Σ is a subset of Σ^* . $L \subseteq \Sigma^*$

Example:
$$\Sigma = \{a, b\}$$

 $L_1 = \{a, aa, aba\}$
 $L_2 = \{a^n b^n : n \ge 1\}$

a finite language an infinite language

Ways to represent languages

1. Recognition point of view

- 2. Generation point of view
 - Systematically generate (enumerate) all sentences of the language

Automata

- An automaton is an abstract model of a digital computer.
- Reads the input (string over the alphabet)
- Has a control unit which can be in any of the finite number of internal states and can change state in some defined manner.
- Given an input string, it outputs yes or no meaning that it either accepts the string or rejects it.

Grammars Definitions

- A grammar is a method to describe and generate the sentences of a language.
- A grammar G is defined as a quadruple

G = (V, T, S, P)

V

V is a finite set of variables

- T is a finite set of terminal symbols
- $\bm{S} \in V$ is a special variable called **start symbol**
- **P** is a finite set of **production rules** of the form

$$\mathsf{x} extsfortheta \mathsf{y}$$
 vhere $\mathsf{x} \in (\mathsf{V} \cup \mathsf{T})^{*}$, $\mathsf{y} \in (\mathsf{V} \cup \mathsf{T})^{*}$

Grammars Example

 $S \rightarrow$ <noun phrase> <verb phrase> <noun phrase> \rightarrow <article> <noun> $\langle article \rangle \rightarrow$ the <noun $> \rightarrow dog$ $\langle verb phrase \rangle \rightarrow is \langle adjective \rangle$ $\langle adjective \rangle \rightarrow happy$

S => <noun phrase><verb phrase> => <article><noun><verb phrase> => the <noun><verb phrase> => the <noun> is <adjective> => the dog is <adjective> => the dog is happy

Grammars Definitions

• We say that w derives z if w = uxv, and z = uyvand $x \rightarrow y \in P$

- If w₁ => w₂ => ... => w_n we say w₁ =>* w_n (derives in zero or more steps)
- The set of sentential forms is $S(G) = \{ \alpha \in (V \cup T)^* \mid S =>^* \alpha \}$
- The language generated by grammar G is $L(G) = \{ w \in T^* \mid S = >^* w \}$

	Grammars Example	
G = (V, T, P, S)	V = {S, B, C}	T = {a, b, c}
P:		
$S \rightarrow aSBC$	$bB \rightarrow bb$	
$S \rightarrow aBC$	$bC \rightarrow bc$	
$CB \rightarrow BC$	$cC \rightarrow cc$	
aB \rightarrow ab		
S =>* aaBCBC	sentential form	
What is L(G) ?	L(G) = { a ⁿ b ⁿ c ⁿ r	ו \geq 1}

Grammars Example

Productions:

 $S \rightarrow aSb$ $S \rightarrow \lambda$

```
What is the L(G)? L = \{a^nb^n : n \ge 0\}
```

Grammars Example

Find a grammar that generates $L = \left\{ a^n b^{2n} : n \ge 0 \right\}$

$S \rightarrow aSbb \mid \lambda$

Summary

- An automaton recognizes (or accepts) a language
- A grammar generates a language
- For some grammars, it is possible to build an automaton M_G from the grammar G so that M_G recognizes the language L(G) generated by the grammar G.

Example 1

$$G = ({S}, {a, b}, S, P)$$
$$S \rightarrow aSb$$
$$S \rightarrow \lambda$$

Derivations:

S => aSb => aaSbb => aabb S => aSb => aaSbb => aaaSbbb => aaaabbbb

Notation

We write: $S \stackrel{*}{=} aaabbb$

for zero or more derivation steps

Instead of:

S => aSb => aaSbb => aaaSbbb => aaabbb

Example

Grammar:

 $S \rightarrow aSb$ $S \rightarrow \lambda$ Possible Derivations: $S \stackrel{*}{=} \lambda$ $S \stackrel{*}{=} ab$ $S \stackrel{*}{=} aaaSbbb \stackrel{*}{=} aaaaabbbbb$

Language of a Grammar

• For a grammar G with start variable S

$$L(G) = \{ w: S \stackrel{*}{=} w, w \in T^* \}$$

Example

Grammar:

$$S \rightarrow aSb$$

 $S \rightarrow \lambda$

Language of the grammar:

$$L = \{a^n b^n : n \ge 0\}$$

Context-Free Grammar

 A grammar G=(V, T, S, P) is context-free if all productions in P have the form:

Sequence of terminals and variables $A \rightarrow x$ where $A \in V$ and $x \in (V \cup T)^*$

• A language L is a context-free language iff there is a context-free grammar G such that L = L(G)

Context-Free Language

L = { $a^nb^n : n \ge 0$ } is a context-free language since the context-free grammar: S \rightarrow aSb | λ generates L(G) = L

Another Example

Context-free grammar G: S \rightarrow aSa | bSb | λ

A derivation: $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$ L(G) = { ww^R : w \in {a,b}* }

Another Example

Context-free grammar G: S \rightarrow (S) | SS | λ

A derivation:

S => SS => (S)S => ((S))S => (())(S) => (())()

L(G) : balanced parentheses

Example 2

$$L = \{a^{n} b^{m} : n \neq m\}$$

$$n > m$$

$$aaaaaaaaabbbbbb$$

$$S \rightarrow AS_{1}$$

$$S \rightarrow AS_{1}$$

$$S \rightarrow AS_{1} b \mid \lambda$$

$$A \rightarrow aA \mid a$$

$$S \rightarrow AS_{1} \mid S_{1}B$$

$$S_{1} \rightarrow aS_{1}b \mid \lambda$$

$$A \rightarrow aA \mid a$$

$$S \rightarrow AS_{1} \mid S_{1}B$$

$$B \rightarrow bB \mid b$$

$$S \rightarrow B \mid b$$

Derivations

Derivations

 When a sentential form has a number of variables, we can replace any one of them at any step.

• As a result, we have many different derivations of the same string of terminals.

Derivations

Example: 1. $S \rightarrow aAS$ 2. $S \rightarrow a$ $3. A \rightarrow SbA \quad 4. A \rightarrow SS$ 5. A \rightarrow ba $S \stackrel{1}{=} aAS \stackrel{2}{=} aAa \stackrel{3}{=} aSbAa \stackrel{4}{=} aSbSSa \stackrel{2}{=} aSbSaa$ $\stackrel{2}{=}$ aSbaaa $\stackrel{2}{=}$ aabaaa $S \stackrel{1}{=} aAS \stackrel{3}{=} aSbAS \stackrel{2}{=} aSbAa \stackrel{4}{=} aSbSSa \stackrel{2}{=}$ $aabSSa \stackrel{2}{=} aabSaa \stackrel{2}{=} aabaaa$

Leftmost Derivation

A derivation is said to be leftmost if in each step the leftmost variable in the sentential form is replaced.

Example: $S \rightarrow aAS \mid a$ $A \rightarrow SbA \mid SS \mid ba$

Rightmost Derivation

A derivation is said to be rightmost if in each step the rightmost variable is replaced.

Example:1. $S \rightarrow aAS$ 2. $S \rightarrow a$ $3. A \rightarrow SbA$ $4. A \rightarrow SS$ $5. A \rightarrow ba$

 $S \stackrel{1}{\Rightarrow} aAS \stackrel{2}{\Rightarrow} aAa \stackrel{3}{\Rightarrow} aSbAa \stackrel{4}{\Rightarrow} aSbSSa \stackrel{2}{\Rightarrow} aSbSaa$ $\stackrel{2}{\Rightarrow} aSbaaa \stackrel{2}{\Rightarrow} aabaaa$ Rightmost

Leftmost and Rightmost Derivation

Example:1. $S \rightarrow aAS$ 2. $S \rightarrow a$ $3. A \rightarrow SbA$ $4. A \rightarrow SS$ $5. A \rightarrow ba$

<u>S</u> => a<u>A</u>S => aSbA<u>S</u> => aSb<u>A</u>a => a<u>S</u>bSSa => aabS<u>S</u>a => aab<u>S</u>aa => aabaaa

Neither

Derivation Trees

 $S \to AB$ $A \to aaA \mid \lambda$ $B \to Bb \mid \lambda$

$S \to AB$ $A \to aaA \mid \lambda$ $B \to Bb \mid \lambda$

$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$

Derivation Trees

- Derivation trees are trees whose nodes are labeled by symbols of a CFG.
- Root is labeled by S (start symbol).
- Leaves are labeled by terminals $T \cup \{\lambda\}$
- Interior nodes are labeled by non-terminals V.
- If a node has label $A \in V$, and there is a production rule $A \rightarrow \alpha_1 \alpha_2 \dots \alpha_n$ then its children are labeled from left to right $\alpha_1, \alpha_2, \dots, \alpha_n$.
- The string of symbols obtained by reading the leaves from left to right is said to be the yield.

Partial Derivation Tree

A partial derivation tree is a subset of the derivation tree (the leaves can be non-terminals or terminals.

Partial Derivation Tree

CFG Theorem

1) If there is a derivation tree with root labeled A that yields w, then A => $*_{Im}$ w.

2) If $A =>^*_{Im} w$, then there is a derivation tree with root A that yields w.

Ambiguity

Example

 $E \rightarrow E + E \qquad E \rightarrow E^*E \qquad E \rightarrow a \mid b$ $E = E + E = E^*E + E = a^*E + E = a^*b + E$ $= a^*b + E + E = a^*b + b + E = a^*b + b + a$ Leftmost derivation

<u>E = E + E = a + E = a + E = a + E = a + E + E = a +</u>

Leftmost derivation

Ambiguous grammars

 A context-free grammar G is ambiguous if there exist some w ∈ L(G) that has at least two distinct derivation trees.

• Or if there exists two or more leftmost derivations (or rightmost).

Why do we care about ambiguity?

Grammar for mathematical expressions:

 $E \rightarrow E + E$ $E \rightarrow E * E$ $E \rightarrow a$

Why do we care about ambiguity?

Compute expressions result using the tree

Why do we care about ambiguity?

John saw the boy with a telescope.

Ambiguity

• In general, ambiguity is bad for programming languages and we want to remove it

 Sometimes it is possible to find a nonambiguous grammar for a language

• But in general it is difficult to achieve this

Ambiguous Grammars

 If L is a context-free language for which there exists an unambiguous grammar, then L is said to be unambiguous. If every grammar that generates L is ambiguous, then the language is called inherently ambiguous.

• In general it is very difficult to show whether or not a language is inherently ambiguous.

Probabilistic Context-free Grammars

Assigning Probabilities

- Example:
 - $\mathbf{S} \to \mathsf{NP} \; \mathsf{VP}$
 - $\rm NP \rightarrow the\ man$
 - $\mathrm{NP} \rightarrow \mathrm{the}\ \mathrm{book}$
 - $\mathsf{VP} \to \mathsf{Verb} \; \mathsf{NP}$
 - $Verb \rightarrow took$
- Where can we assign probabilities?
 - Rules are nondeterministic
 - We have parse trees that are generated
 - We have terminals (strings) of a language that are generated

Example 1

• Example:

 $\mathbf{S} \rightarrow \text{NP sleeps}$ (1.0) $\mathbf{S} \rightarrow \text{John sleeps}$ (0.7) $\text{NP} \rightarrow \text{John}$ (0.3)

• What can be derived?

Tree probability: 0.3

Fixing the probabilities

- Example:
 - $\mathbf{S} \rightarrow \mathsf{NP} \operatorname{sleeps} (0.3)$
 - $\mathbf{S} \rightarrow \text{John sleeps (0.7)}$
 - $NP \rightarrow John (1.0)$

Example 2

- Example: $S \rightarrow S S$ (0.7) = p $S \rightarrow a$ (0.3) = (1 - p)
- What can be derived? Let x_h be total probability of all parses of height $\leq x_h$. a: $h_1 = (0.3)$ a + aa: $h_2 = (0.3 + .7 \times .3 \times .3)$ a + aa + aaa: $h_3 = (0.3 + .7 \times h_2 \times h_2)$
- It can be shown that if p > ½ then the total probability of all parses is less than 1.

Probability of a Parse Tree

- Let P be the set of production rules in the grammar, and let A → α be a rule. Let τ be a parse tree. For a rule A → α, let f(A → α; τ) be the frequency of the rule in τ.
- Then:

$$p(\tau) = \prod_{(A \to \alpha) \in P} p(A \to \alpha)^{f(A \to \alpha; \tau)}$$

Note that for a proper distribution the sum of all parse trees should sum to one.

Example 3

$$\begin{split} & \textbf{S} \to \textbf{L}_5 \; \textbf{D}_3 \, \textbf{S}_1 & 0.8 \\ & \textbf{S} \to \textbf{D}_3 \, \textbf{L}_5 & 0.2 \\ & \textbf{L}_5 \to \text{alice (0.5)} \mid \text{carol (0.5)} \\ & \textbf{D}_3 \to 111 \, (.3) \mid 123 \, (.3) \mid 999 \, (.25) \mid 007 \, (.15) \\ & \textbf{S}_1 \to ! & 0.6 \\ & \textbf{S}_1 \to \# & 0.4 \end{split}$$

 Maximum likelihood estimation assigns proper probabilities to PCFGs if one uses the full observations case (knows all the parse trees). Also termed relative frequency estimation. See Chi and Geman (1998)