L4:
Overview of Languages, Grammars and Probabilistic Context-free Grammars

Sudhir Aggarwal and Shiva Houshmand
Florida State University
Department of Computer Science
E-Crime Investigative Technologies Lab
Tallahassee, Florida 32306
August 5-7, 2015

Password Cracking
University of Jyväskylä
Summer School August 2015

Languages
 Definitions

- Any finite, nonempty set of symbols is an alphabet or vocabulary.

$$
\begin{aligned}
& \Sigma=\{A, B, C, D, \ldots, Z\} \\
& \Sigma=\{0,1\} \\
& \Sigma=\{\square, \text { if, then, else }\} \\
& \Sigma=\left\{S, L_{1}, \ldots, L_{20}, D_{1}, \ldots, D_{20}, S_{1}, \ldots, S_{20}, \text { alice, Bob, } 427, \ldots .\right\}
\end{aligned}
$$

- A finite sequence of symbols from the alphabet is called a string or a word or a sentence.

$$
\begin{aligned}
& w=A L P H A \\
& w=0100011101
\end{aligned}
$$

Languages
 Definitions

- Two strings can be concatenated to form another string:

$$
\begin{aligned}
& v=\operatorname{ALPHA}, \quad w=\text { BETA } \\
& \operatorname{Concat}(v, w)=v w=\text { ALPHABETA }
\end{aligned}
$$

- The length of a string w, denoted by $|w|$ is the number of symbols in the string.

$$
|\mathrm{ALPHA}|=5
$$

- The empty string is denoted by λ or ε and its length is 0 .

$$
|\lambda|=0
$$

Languages Definitions

- If Σ is the alphabet, Σ^{*} is the set of all strings over Σ, including the empty string.
- Σ^{*} is obtained by concatenating zero or more symbols from Σ.

$$
\Sigma^{+}=\Sigma^{*}-\{\lambda\}
$$

Let $\Sigma=\{a, b, c, d\}$, what is Σ^{*} ?
Can you specify a procedure to generate Σ^{*} ?
What is $\left|\Sigma^{*}\right|$?

Languages
 Definitions

- A language over Σ is a subset of Σ^{*}.
$\mathrm{L} \subseteq \Sigma^{*}$

Example: $\Sigma=\{a, b\}$

$$
\begin{array}{ll}
L_{1}=\{a, a a, a b a\} & \text { a finite language } \\
L_{2}=\left\{a^{n} b^{n}: n \geq 1\right\} & \text { an infinite language }
\end{array}
$$

Ways to represent languages

1. Recognition point of view

2. Generation point of view

- Systematically generate (enumerate) all sentences of the language

Automata

- An automaton is an abstract model of a digital computer.
- Reads the input (string over the alphabet)
- Has a control unit which can be in any of the finite number of internal states and can change state in some defined manner.
- Given an input string, it outputs yes or no meaning that it either accepts the string or rejects it.

Grammars
 Definitions

- A grammar is a method to describe and generate the sentences of a language.
- A grammar G is defined as a quadruple

$$
G=(V, T, S, P)
$$

\mathbf{V} is a finite set of variables
T is a finite set of terminal symbols
$\mathbf{S} \in \mathrm{V}$ is a special variable called start symbol
\mathbf{P} is a finite set of production rules of the form

$$
\begin{gathered}
\mathrm{x} \rightarrow \mathrm{y} \\
\text { where } \mathrm{x} \in(\mathrm{~V} \cup \mathrm{~T})^{+}, \mathrm{y} \in(\mathrm{~V} \cup \mathrm{~T})^{*}
\end{gathered}
$$

Grammars

Example

$S \rightarrow$ <noun phrase> <verb phrase>
<noun phrase> \rightarrow <article> <noun>
<article> \rightarrow the
<noun> \rightarrow dog
<verb phrase> \rightarrow is <adjective>
<adjective> \rightarrow happy
S => <noun phrase><verb phrase> => <article><noun><verb phrase> => the <noun><verb phrase> => the <noun> is <adjective> => the dog is <adjective> => the dog is happy

Grammars Definitions

- We say that w derives z if $w=u x v$, and $z=u y v$ and $x \rightarrow y \in P$
w => z
- If $w_{1}=>w_{2}=>\ldots=>w_{n}$ we say $w_{1}=>^{*} w_{n}$ (derives in zero or more steps)
- The set of sentential forms is

$$
S(G)=\left\{\alpha \in(V \cup T)^{*} \mid S=>^{*} \alpha\right\}
$$

- The language generated by grammar G is

$$
L(G)=\left\{w \in T^{*} \mid S=>^{*} w\right\}
$$

Grammars

 Example$\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
P:

$$
\begin{aligned}
& S \rightarrow \mathrm{aSBC} \\
& S \rightarrow \mathrm{aBC} \\
& \mathrm{CB} \rightarrow \mathrm{BC} \\
& \mathrm{aB} \rightarrow \mathrm{ab}
\end{aligned}
$$

$V=\{S, B, C\}$
$T=\{a, b, c\}$

Grammars
 Example

$G=(\{S\},\{a, b\}, S, P)$
Productions:

$$
\begin{aligned}
& S \rightarrow \mathrm{aSb} \\
& \mathrm{~S} \rightarrow \lambda
\end{aligned}
$$

What is the $L(G)$? $\quad L=\left\{a^{n} b^{n}: n \geq 0\right\}$

Grammars Example

Find a grammar that generates

$$
L=\left\{a^{n} b^{2 n}: n \geq 0\right\}
$$

$s \rightarrow \operatorname{aSbb} \mid \lambda$

Summary

- An automaton recognizes (or accepts) a language
- A grammar generates a language
- For some grammars, it is possible to build an automaton M_{G} from the grammar G so that M_{G} recognizes the language $L(G)$ generated by the grammar G.

Context-Free Languages

$$
\left\{a^{n} b^{n}: n \geq 0\right\} \quad\left\{w w^{R}\right\}
$$

Regular Languages

$$
a^{*} b^{*} \quad(a+b)^{*}
$$

Example 1

$$
\begin{aligned}
G=(\{S\},\{a, b\}, & S, P) \\
& S \rightarrow a S b \\
& S \rightarrow \lambda
\end{aligned}
$$

Derivations:
S => aSb => aaSbb => aabb
S => aSb => aaSbb => aaaSbbb => aaaabbbb

Notation

We write: $\quad S \stackrel{*}{=}$ aaabbb
for zero or more derivation steps

Instead of:
$S=>a S b=>a a S b b=>$ aaaSbbb => aaabbb

Example

Grammar:

$\mathrm{S} \rightarrow \mathrm{aSb}$
$S \rightarrow \lambda$

Possible Derivations:

$S \stackrel{*}{=}>\lambda$
$S \stackrel{*}{>}$ ab
$S \stackrel{*}{*}$ aaaSbbb $\stackrel{*}{=}$ aaaaabbbbb

Language of a Grammar

- For a grammar G with start variable S

$$
L(G)=\left\{w: S \stackrel{*}{\Rightarrow}>w, w \in T^{*}\right\}
$$

Example

Grammar:

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow \lambda
\end{aligned}
$$

Language of the grammar:

$$
L=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

Context-Free Grammar

- A grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ is context-free if all productions in P have the form:

Sequence of
terminals and variables
$A \rightarrow \overbrace{x}$ where $A \in V$ and $x \in(V \cup T)^{*}$

- A language L is a context-free language iff there is a context-free grammar G such that $L=L(G)$

Context-Free Language

$L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is a context-free language since the context-free grammar:

$$
S \rightarrow \operatorname{aSb} \mid \lambda \quad \text { generates } L(G)=L
$$

Another Example

Context-free grammar G:

$$
\mathrm{S} \rightarrow \mathrm{aSa}|\mathrm{bSb}| \lambda
$$

A derivation: $S=>$ aSa => $a b S b a=>a b b a$ $L(G)=\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$

Another Example

Context-free grammar G:

$$
S \rightarrow(S)|S S| \lambda
$$

A derivation:
S => SS => (S)S => ((S))S => (())(S) => (())()

L(G) : balanced parentheses

Example 2

$$
L=\left\{a^{n} b^{m}: n \neq m\right\}
$$

$\mathrm{n}>\mathrm{m}$
aaaaaaaabbbbb
$\mathrm{S} \rightarrow \mathrm{AS}_{1}$
$\mathrm{S}_{1} \rightarrow \mathrm{aS}_{1} \mathrm{~b} \mid \lambda$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{a}$
$\mathrm{n}<\mathrm{m}$
aaaaabbbbbbbbb
$S \rightarrow S_{1} B$
$\mathrm{S}_{1} \rightarrow \mathrm{aS}_{1} \mathrm{~b} \mid \lambda$
$B \rightarrow b B \mid b$

Derivations

Derivations

- When a sentential form has a number of variables, we can replace any one of them at any step.
- As a result, we have many different derivations of the same string of terminals.

Derivations

Example: 1. $S \rightarrow$ aAS 2. $S \rightarrow$ a

$$
\text { 3. } \mathrm{A} \rightarrow \mathrm{SbA} \quad \text { 4. } \mathrm{A} \rightarrow \mathrm{SS} \quad \text { 5. } \mathrm{A} \rightarrow \mathrm{ba}
$$

$\underline{S} \stackrel{1}{=}>a A \underline{S} \stackrel{2}{=}>a \underline{a} \stackrel{3}{=}>a S b \underline{A} a \stackrel{4}{=}>a S b S \underline{S} a \stackrel{2}{=}>a S b S a a$
$\stackrel{2}{=}$ aSbaaa $\stackrel{2}{=}$ aabaaa
$\underline{S} \stackrel{1}{=}>a \underline{A S} \stackrel{3}{=}>a$ aSbAS $\stackrel{2}{=}>a S b A a \stackrel{4}{=}>a \underline{S} b S S a \stackrel{2}{=}>$
aabSSa $\stackrel{2}{=}>$ aabS $a a \stackrel{2}{=}>$ aabaaa

Leftmost Derivation

A derivation is said to be leftmost if in each step the leftmost variable in the sentential form is replaced.
Example:
$S \rightarrow$ aAS | a
$\mathrm{A} \rightarrow \mathrm{SbA}|\mathrm{SS}| \mathrm{ba}$
S) $=>$ (aAS $=>$ CSAAS $=>$ cab AS $=>$ aabSSSS $=>$ aab@Ss $=>$ aaba $@$ S $=>$ aabaa

Rightmost Derivation

A derivation is said to be rightmost if in each step the rightmost variable is replaced.
Example: 1. $\mathrm{S} \rightarrow$ aAS $\quad 2 . \mathrm{S} \rightarrow \mathrm{a}$ 3. $A \rightarrow S b A \quad$ 4. $A \rightarrow S S \quad$ 5. $A \rightarrow b a$

S $\stackrel{1}{=}$ aAS $\stackrel{2}{\Rightarrow}$ aAa $\stackrel{3}{\Rightarrow}$ aSbAa $\stackrel{4}{=}$ aSbSSa $\stackrel{2}{=}$ aSbSaa
$\stackrel{2}{=}$ aSbaaa $\stackrel{2}{=}$ aabaaa Rightmost

Leftmost and Rightmost Derivation

Example: 1. $\mathrm{S} \rightarrow \mathrm{aAS} \quad 2 . \mathrm{S} \rightarrow \mathrm{a}$

$$
\text { 3. } \mathrm{A} \rightarrow \mathrm{SbA} \quad \text { 4. } \mathrm{A} \rightarrow \mathrm{SS} \quad \text { 5. } \mathrm{A} \rightarrow \mathrm{ba}
$$

$\underline{S}=>$ aAS $=>$ aSbAS $=>$ aSbA $a=>$ aSbSSa $=>$ aabSSㅁ => aabSaa => aabaaa

Neither

Derivation Trees

$S \rightarrow A B \quad A \rightarrow a a A|\lambda \quad B \rightarrow B b| \lambda$

$S \rightarrow A B \quad A \rightarrow a a A|\lambda \quad B \rightarrow B b| \lambda$

$S \Rightarrow A B \Rightarrow a a A B$

$S \rightarrow A B \quad A \rightarrow a a A|\lambda \quad B \rightarrow B b| \lambda$

$S \Rightarrow A B \Rightarrow a a A B \Rightarrow a a A B b$

$S \rightarrow A B \quad A \rightarrow a a A|\lambda \quad B \rightarrow B b| \lambda$

$S \Rightarrow A B \Rightarrow a a A B \Rightarrow a a A B b \Rightarrow a a B b$

$S \rightarrow A B \quad A \rightarrow a a A|\lambda \quad B \rightarrow B b| \lambda$

$S \Rightarrow A B \Rightarrow a a A B \Rightarrow a a A B b \Rightarrow a a B b \Rightarrow a a b$
Derivation Tree (parse tree)

Derivation Trees

- Derivation trees are trees whose nodes are labeled by symbols of a CFG.
- Root is labeled by S (start symbol).
- Leaves are labeled by terminals $\mathrm{T} \cup\{\lambda\}$
- Interior nodes are labeled by non-terminals V .
- If a node has label $\mathrm{A} \in \mathrm{V}$, and there is a production rule $A \rightarrow \alpha_{1} \alpha_{2} \ldots \alpha_{n}$ then its children are labeled from left to right $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.
- The string of symbols obtained by reading the leaves from left to right is said to be the yield.

Partial Derivation Tree

A partial derivation tree is a subset of the derivation tree (the leaves can be non-terminals or terminals.

$$
S \rightarrow A B \quad A \rightarrow a a A|\lambda \quad B \rightarrow B b| \lambda
$$

Partial derivation tree

Partial Derivation Tree

$S \Rightarrow A B \Rightarrow a a A B$
Partial derivation tree

CFG Theorem

1) If there is a derivation tree with root labeled A that yields w, then $A=>^{*}{ }_{I m} w$.
2) If $A=>^{*}{ }_{\text {Im }} w$, then there is a derivation tree with root A that yields w.

Ambiguity

Ambiguous grammars

Example

Example

$$
\begin{aligned}
& E \rightarrow E+E \quad E \rightarrow E * E \quad E \rightarrow a \mid b \\
& \underline{E} \Rightarrow+\underline{E}+E=>\underline{E}^{*} E+E \Rightarrow a^{*} \underline{E}+E=>a * b+\underline{E} \\
& => \\
& a * b+\underline{E}+E \Rightarrow a * b+b+\underline{E}=>a^{*} \underline{b+b+a} \\
& \text { Leftmost derivation } \\
& \underline{E}=>\underline{E}^{*} E=>a * \underline{E}=>a * \underline{E}+E=>a^{*} \underline{E}+E+E \\
& =>a+\underline{E}+E=>a * b+b+E=>a^{*} b+b+a \\
& \text { Leftmost derivation }
\end{aligned}
$$

Ambiguous grammars

- A context-free grammar G is ambiguous if there exist some $w \in L(G)$ that has at least two distinct derivation trees.
- Or if there exists two or more leftmost derivations (or rightmost).

Why do we care about ambiguity?

Grammar for mathematical expressions:
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
$E \rightarrow E * E$
$\mathrm{E} \rightarrow \mathrm{a}$

Why do we care about ambiguity?

Compute expressions result using the tree

Why do we care about ambiguity?

John saw the boy with a telescope.

Ambiguity

- In general, ambiguity is bad for programming languages and we want to remove it
- Sometimes it is possible to find a nonambiguous grammar for a language
- But in general it is difficult to achieve this

Ambiguous Grammars

- If L is a context-free language for which there exists an unambiguous grammar, then L is said to be unambiguous. If every grammar that generates L is ambiguous, then the language is called inherently ambiguous.
- In general it is very difficult to show whether or not a language is inherently ambiguous.

Probabilistic Context-free Grammars

Assigning Probabilities

- Example: $\mathbf{S} \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ the man
$N P \rightarrow$ the book
VP \rightarrow Verb NP
Verb \rightarrow took
- Where can we assign probabilities?
- Rules are nondeterministic
- We have parse trees that are generated
- We have terminals (strings) of a language that are generated

Example 1

- Example:
$\mathbf{S} \rightarrow$ NP sleeps (1.0)
S \rightarrow John sleeps (0.7)
NP \rightarrow John (0.3)
- What can be derived?

Tree probabilities ok but rules probabilities not ok

Tree probability:
0.7

Tree probability:
0.3

Fixing the probabilities

- Example:
$\mathbf{S} \rightarrow$ NP sleeps (0.3)
$\mathbf{S} \rightarrow$ John sleeps (0.7)
NP \rightarrow John (1.0)

Example 2

- Example:

$$
\begin{array}{ll}
\mathbf{S} \rightarrow \boldsymbol{S} \boldsymbol{S} & (0.7)=p \\
\mathbf{S} \rightarrow \mathrm{a} & (0.3)=(1-p)
\end{array}
$$

- What can be derived? Let x_{h} be total probability of all parses of height $\leq x_{h}$.
a: $h_{1}=(0.3)$
$a+a a: h_{2}=(0.3+.7 \times .3 \times .3)$
$a+a a+$ aaa: $h_{3}=\left(0.3+.7 \times h_{2} \times h_{2}\right)$
- It can be shown that if $p>1 / 2$ then the total probability of all parses is less than 1.

Probability of a Parse Tree

- Let P be the set of production rules in the grammar, and let $A \rightarrow \alpha$ be a rule. Let τ be a parse tree. For a rule $A \rightarrow \alpha$, let $f(A \rightarrow \alpha ; \tau)$ be the frequency of the rule in τ.
- Then:

$$
p(\tau)=\prod_{(A \rightarrow \alpha) \in P} p(A \rightarrow \alpha)^{f(A \rightarrow \alpha ; \tau)}
$$

Note that for a proper distribution the sum of all parse trees should sum to one.

Example 3

$$
\begin{array}{ll}
\mathrm{S} \rightarrow \mathrm{~L}_{5} \mathrm{D}_{3} \mathrm{~S}_{1} & 0.8 \\
\mathrm{~S} \rightarrow \mathrm{D}_{3} L_{5} & 0.2 \\
L_{5} \rightarrow \text { alice (0.5) } & \text { carol (0.5) } \\
\mathrm{D}_{3} \rightarrow 111(.3) \mid & 123(.3)|999(.25)| 007(.15) \\
\mathrm{S}_{1} \rightarrow! & 0.6 \\
\mathrm{~S}_{1} \rightarrow \# & 0.4
\end{array}
$$

- Maximum likelihood estimation assigns proper probabilities to PCFGs if one uses the full observations case (knows all the parse trees). Also termed relative frequency estimation. See Chi and Geman (1998)

