
Sudhir Aggarwal and Shiva Houshmand
and Matt Weir
Florida State University
Department of Computer Science
E-Crime Investigative Technologies Lab
Tallahassee, Florida 32306

August 5-7, 2015

L5:
Basic Grammar Based
Probabilistic Password Cracking

© Copyright 2015 E-Crime Investigative Technologies at FSU. All rights reserved

Password Cracking
University of Jyväskylä
Summer School August 2015

Assist Law Enforcement and Security
Agencies

Develop better ways to model how people
actually create passwords

Develop better ways to crack passwords

Incorporate targeted attack features

Improve attack dictionaries

Continuously extend capabilities with new
techniques

Investigate how we can build better
passwords

Applications of our approach

Our Research

FORENSICS

CRACKING
PASSWORDS

I’M CRACKING PASSWORDS

Cracking Passwords
• Given a password hash or file of hashes, guess a

password, compute the hash, and check against the
given hashes

• There are many password hashes used: MD5, Sha1,
multiple hashings such as done by TrueCrypt, etc.
These last are done to increase the time to compute
the hash

• Our focus is on the guessing part. Given a hash
algorithm, we can always use the best implementation
if possible – we have not focused on collecting a set
of best implementations

Online

- The system is still operational and you are allowed only a few
guesses

Offline

- You grabbed the password hash(s) and want to crack as many
as possible within a reasonable amount of time available

Our interests

- Would like to be good at both, but we focus on the offline case

Two Types of Password Cracking of
Cracking of Interest

Cracking Passwords
Generate a password guess

- password123

Hash the guess MD5 (128 bits), Sha1, etc.

- A5732067234F23B21

Compare the hash to the password hash you are
trying to crack

Access Data’s PRTK (commercial)

John the Ripper (open source)

Hashcat (open source)

Cain & Able (old)

L0phtcrack (old)

Specifically for Microsoft passwords

Password crackers systems are
proliferating

Types

Micro Rules

Markov approaches

Probabilistic Context-free grammars

• Open source free password cracking system
• Runs on many different platforms
• Runs against many different hash types
• Can run in a number of modes

• Single crack mode, wordlist mode, incremental mode

• Incremental mode is the most powerful

• Most popular cracking system and the best to test
against
• Basic approach is mangling rules and dictionaries
• Brute force and some Markov modeling
• Used by law enforcement

Example: John the Ripper

Our research in this area has focused on how to make
better password guesses

- Hash neutral. Aka you would create the same guesses regardless if
you are attacking a Truecrypt or a WinRAR encrypted file

We have also explored implementing faster hashing
algorithms using GPUs. This can be explored further.

- Target program specific. Aka the hashing that Truecrypt and WinRAR
uses is different

- Prefer to use existing systems to actual compute hashes

Focus of Our Research

Password-cracking dictionaries may contain entries that
are not natural language words, e.g., ‘qwerty’

No consensus on how to use dictionaries

Usual dictionary based attacks derive multiple password
guesses from a single dictionary entry by application of
fixed rules, such as ‘replace a with @’ or ‘add any two
digits to the end’

Often could get stuck in certain types of rule such as add
6 digits to the end

Dictionaries sometimes contain actual passwords rather
than potential words that can be modified

Dictionary Based Attacks

1.Try to obtain some Data-sets

2.Explore using Probabilistic
Password Cracking

3.Better guess generation

4.Focus on Pass-Phrase
Cracking

The Original Plan

Originally we were concerned that one of the main
problems with our research would be collecting valid
data-sets to train/test against

Obtaining Real
Passwords

Obtaining the Datasets

In reality, that hasn’t been much of a
problem for web-based passwords

Hacker Like to brag in Forums:

Note: The site darkc0de.com is no longer operational as it
was hacked itself back in July 2010 by a group of Albanian
hackers

LinkedIn (2012) – 6.4 million Sha1 hashes

Yahoo (2012) – 453 K plaintext passwords

RockYou (2009) - 32 million plaintext passwords

MySpace – 62 K plaintext, 17 K MD5 hashes

Etc, etc, etc.

Some of ours
Lists

The vulnerability originally was publicly posted on the
website www.darkc0de.com

It appears that multiple hackers used it to break into the
site.

According to the security firm Imperva, many of the
webmail accounts associated with those passwords
have been taken over by spammers

The Soap Opera Around
the Rockyou Hack

http://www.darkc0de.com

One Slovakian hacker
named Igigi claimed credit
for the attack, and set up a
blog detailing other
website hacks

He also started giving
interviews to various news
publications

At one time he had a
Facebook fan page with
over 600 members...

The Soap Opera
(Continued)

Find the “correct order” in which to try the
passwords

Which should we try first?

p@ssword1234

password8732

Our Idea

Some words are more likely than others

- password, monkey, football

Some mangling rules are more likely than others

- 123, 007, $$$, Capitalize the first letter

Probabilistic Cracking

Probabilistic
Password
Cracking

vs.
Rule Based

Cracking

Rule Centric View of
Password Cracking

Rules

Dictionaries

Ad-hoc
Ideas

Years
Zip Codes

User
Behavior

Ad-hoc
Ideas

1.Append 4 Digits

Rule Based
Optimizations

Rules

User
Behavior

1.Append 1234

2.Append 4 Digits

Rule Based
Optimizations

Rules

1234

User
Behavior

1.Append 1234

2.Append 0000-1233

3.Append 1235-9999

Rule Based
Optimizations

Rules

1234

User
Behavior

Optimize

Exclude

1.Append 1234

2.Append 1950-2010

3.Append 0000-1233

4.Append 1235-9999

Rule Based
Optimizations

Rules

1234

User
Behavior

Optimize

Exclud
e

Dates

1.Append 1234

2.Append 1950-2010

3.Append 0000-1233

4.Append 1235-1949

5.Append 2011-9999

Rule Based
Optimizations

Rules

1234

User
Behavior

Optimize

Exclud
e

Dates

Exclude

John the Ripper’s Rule
Based Optimizations

1. Append 1234

2. Append 1950-2010

3. Append 0000-1233

4. Append 1235-1949

5. Append 2011-9999

6. Capitalize the first letter, Append 1234

7. Capitalize the first letter, Append 1950-2010

8. Capitalize the first letter, Append 0000-1233

9. Capitalize the first letter, Append 1235-1949

10. Capitalize the first letter, Append 2011-999

11. Replace ‘a’ with an ‘@’, Append 1234

12. Replace ‘a’ with an ‘@’, Append 1950-2010

13. Replace ‘a’ with an ‘@’, Append 0000-1233

14. Replace ‘a’ with an ‘@’, Append 1235-1949

15. Replace ‘a’ with an ‘@’, Append 2011-9999

16. Uppercase the last letter, Append 1234

17. Uppercase the last letter, Append 1950-2010

18. Uppercase the last letter, Append 0000-1233

19. Uppercase the last letter, Uppercase the last
letter, Append 1235-1949

20. Uppercase the last letter, Uppercase the last
letter, Append 2011-9999

Would like to try password guesses in highest
probability order!

Use the revealed password sets to determine the
probabilities of different guesses

We actually derive a grammar by training on the
revealed data sets

The grammar approach can be compared to the word
mangling rules that previous approaches used

Generate passwords in highest probability order

New Idea: Probabilities
should be the focus

Training: use revealed passwords sets to create a
context-free grammar that gives structure to the
passwords. The grammar rules derive strings
(passwords) with probabilities based on the
specific derivation

Cracking: how can one derive the passwords in
highest probability order based on the grammar

Patterns: what are the patterns that can be
effectively used?

PCFG Approach

Training

- Construct the grammar

Cracking

- Use the grammar to create password guesses

Two Stages

Very little available except revealed passwords and
revealed hashes

Information not available: how do individuals change
passwords, how do they store them if they are
difficult to remember, etc.

Information in the Datasets

Our password cracker is trained on known
password lists

We can use one or a set of appropriate training
lists

We train if possible on passwords similar to the
target profiles

What do we learn through the training? We
actually learn a probabilistic context free grammar!

Training our Cracker

Possibly, the most naive structure that can be
inferred from passwords is the sequence of the
character classes used

- Letters = L

- Digits = D

- Symbols = S

password12! --> LDS the “simple structure”

Password Structures

Context-free grammars lead to efficient algorithms,
but simple structures are “too lossy” to allow for
capturing sufficiently fine-grained human behavior in
password choice in a context-free way

“97” as a password element (a date) is more likely
than would be expected by the independent
probabilities of ‘9’ and ‘7’

Some password lengths are preferred

The Context-Free Assumption

Extend the character class symbols to
include length information

- password12 = L8S1D2S1

- Calculate the probabilities of all the
base structures

Base structures, while still very simple,
empirically capture sufficient information
to derive useful context-free grammar
models from password datasets

Learning the “Base structures”

The next step is to learn the probabilities of digits
and special characters

We record the probabilities of different length
strings independently

Picks up rules such as 007, 1234, !!, $$, !@#$

We learn about capitalization

We can also can learn about Keyboard
combination and the L structures

Learning the Grammar
(continued)

Capitalization
Case
Mask

Percentage of
Total

N6 93.206%

U1N5 3.1727%

U6 2.9225%

N3U3 0.1053%

U1N4U1 0.0078%

Probabilities of Top 5
Case Masks for Six
Character Words

By default we just assign a probability to each
dictionary word of 1/nk

nk is the number of dictionary words of length k

However, we can use multiple dictionaries with
different assigned probabilities to model different
probabilities of words

Assigning Probability to
Dictionary Words

Derive the production rules from the training set

Derive the probabilities from the training set

A Simple Example of the Learned
Probabilistic Context-free Grammar

S → L4D2 .50
S → D1L3D1 .25
S → L4D1S1 .25
D2 → 99 .50
D2 → 98 .30
D2 → 11 .20
D1 → 1 .80
D1 → 2 .20
S1 → ! 1.0
L4 → pass .10
S →* pass11 with probability .5 x .1 x .2 = .01

Training Demo

After training, the grammar can be distributed for
purposes of password cracking (e.g., base structures
can be distributed and the replacement tokens also)

Size of grammar when trained on the MySpace set of
33,481 passwords

1,589 base structures (with probabilities)

4,410 digit components (with probabilities)

144 symbol components (with probabilities)

Now to the Cracking

Generate all possible guesses with no duplicates

Generate the guesses in probability order

Reasonable memory requirements

Comparable time requirements to existing methods

Able to support distributed password cracking

Requirements for the
Next Function

Essentially the base structure with all the
productions except for the dictionary words
replaced with terminals

Pre-Terminal Structures

S1 D2L3

$L399

D2
D2

Prob. S1
S1

Prob.

99 50% $ 60%

12 30% % 40%

33 20%

Pop the top value (30%) and
check the guesses: $dog99,
$cat99, etc.

Create children of the popped
value: $L312 (18%) and
%L399 (20%) and push them
into the p-queue

Pop the next top value

Continue until queue is empty

Generating Guesses

$L399 30%1

$L31 9% 1

L399$ 8% 1

L4 7% 1

L4$L4 7% 1

• We needed an efficient
next function
algorithms to generate
guesses in probabilistic
order. Our first function
was called a pivot
function. Basically we
limited which node
would create children

The Pivot Next Function

Example Tree for
Generating Guesses

We actually have a much better algorithm that we have
implemented and use: dead-beat dad

Better Algorithm:
Deadbeat Dad

When node 1 is popped nodes 2,3 pushed in the original pivot algorithm
(the children of 1). When 2 is next popped, its child node 4 is pushed. But
in the deadbeat dad algorithm, 4 is not pushed since 2 knows there is
another dad 3 responsible for 4 and will let 3 push 4 when 3 is popped.

Size of Potential Search
Space

Structure Number of Structure in the
MySpace Training Set

Base 1,589

Pre-Terminal 34 trillion

Pop the top value (30%) and
check the guesses: $dog99,
$cat99, etc.

Create children of the popped
value: $L312 (18%) and
%L399 (20%) and push them
into the p-queue

Pop the next top value

Continue until queue is empty

Generating guesses: we
use a priority queue

$L399 30% 1

$L51 9% 1

L399$ 8% 1

L4 7% 1

L4$L4 7% 1

• Training set may not have all possible values of some
type of set, say D3, with the value 732.

• Probability smoothing allows all non-used values to
have some probability of being chosen based on the
smoothing parameters.

• Consider values in K different categories (1000) in the
above example. Let Ni be the number in category i with
N = ∑ Ni. Smoothing parameter 0 ≤ α ≤ 1.

• Prob (i) = (Ni + α) / (N + K * α)

Smoothing – using the
Laplacian

• If many items have the same values (say a bunch
of smoothed values) we can aggregate them into
containers.

• In fact, each pre-terminal that we discussed
previously is actually a “container” with many
values having that exact probability.

• This permits many guesses to be tried without
stressing the priority queue.

Algorithm optimization –
Using Containers

The MySpace List

Split it into a training list and
a test list

-Training List: 33,561
-Test List: 33,481

Results: Original Grammar

Results: Original Grammar

Cracked as Many
Passwords as John the
Ripper

Real World Results -
MySpace List

Hackers broke into
several sites via
SQL injection

15,699 Plain Text

29,853 MD5 Hashes

The Finnish List

Finnish List

Cracking Demo

	L5:�Basic Grammar Based Probabilistic Password Cracking
	Our Research
	Cracking Passwords
	Two Types of Password Cracking of Cracking of Interest
	Cracking Passwords
	Password crackers systems are proliferating
	Example: John the Ripper
	Focus of Our Research
	 Dictionary Based Attacks
	The Original Plan
	Obtaining Real Passwords
	Obtaining the Datasets
	Hacker Like to brag in Forums:
	 Some of ours Lists
	The Soap Opera Around the Rockyou Hack
	The Soap Opera (Continued)
	Our Idea
	Probabilistic Cracking
	Probabilistic Password Cracking�vs. �Rule Based Cracking
	Rule Centric View of Password Cracking
	Rule Based Optimizations
	Rule Based Optimizations
	Rule Based Optimizations
	Rule Based Optimizations
	Rule Based Optimizations
	John the Ripper’s Rule Based Optimizations
	New Idea: Probabilities should be the focus
	PCFG Approach
	Two Stages
	Information in the Datasets
	Training our Cracker
	Password Structures
	The Context-Free Assumption
	Learning the “Base structures”
	Learning the Grammar (continued)
	Capitalization
	Assigning Probability to Dictionary Words
	A Simple Example of the Learned �Probabilistic Context-free Grammar
	Training Demo
	Now to the Cracking
	Requirements for the Next Function
	Pre-Terminal Structures
	Generating Guesses
	The Pivot Next Function
	Example Tree for Generating Guesses
	Better Algorithm: Deadbeat Dad
	Size of Potential Search Space
	Generating guesses: we use a priority queue
	Smoothing – using the Laplacian
	Algorithm optimization – Using Containers
	The MySpace List
	Results: Original Grammar
	Results: Original Grammar
	Real World Results -MySpace List
	The Finnish List
	Finnish List
	Cracking Demo

