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Assist Law Enforcement and Security 
Agencies

Develop better ways to model how people 
actually create passwords

Develop better ways to crack passwords

Incorporate targeted attack features

Improve attack dictionaries

Continuously extend capabilities with new 
techniques

Investigate how we can build better 
passwords 

Applications of our approach

Our Research

FORENSICS

CRACKING 
PASSWORDS

I’M CRACKING PASSWORDS



Cracking Passwords
• Given a password hash or file of hashes, guess a 

password, compute the hash, and check against the 
given hashes

• There are many password hashes used: MD5, Sha1, 
multiple hashings such as done by TrueCrypt, etc. 
These last are done to increase the time to compute 
the hash

• Our focus is on the guessing part. Given a hash 
algorithm, we can always use the best implementation 
if possible – we have not focused on collecting a set 
of best implementations



Online

- The system is still operational and you are allowed only a few 
guesses

Offline

- You grabbed the password hash(s) and want to crack as many 
as possible within a reasonable amount of time available

Our interests

- Would like to be good at both, but we focus on the offline case

Two Types of Password Cracking of 
Cracking of Interest



Cracking Passwords
Generate a password guess

- password123

Hash the guess MD5 (128 bits), Sha1, etc.

- A5732067234F23B21

Compare the hash to the password hash you are 
trying to crack



Access Data’s PRTK (commercial)

John the Ripper (open source)

Hashcat (open source)

Cain & Able (old)

L0phtcrack (old)

Specifically for Microsoft passwords

Password crackers systems are 
proliferating

Types

Micro Rules

Markov approaches

Probabilistic Context-free grammars



• Open source free password cracking system
• Runs on many different platforms
• Runs against many different hash types
• Can run in a number of modes

• Single crack mode, wordlist mode, incremental mode

• Incremental mode is the most powerful

• Most popular cracking system and the best to test 
against
• Basic approach is mangling rules and dictionaries
• Brute force and some Markov modeling
• Used by law enforcement

Example: John the Ripper



Our research in this area has focused on how to make 
better password guesses

- Hash neutral. Aka you would create the same guesses regardless if 
you are attacking a Truecrypt or a WinRAR encrypted file

We have also explored implementing faster hashing 
algorithms using GPUs. This can be explored further.

- Target program specific. Aka the hashing that Truecrypt and WinRAR 
uses is different

- Prefer to use existing systems to actual compute hashes

Focus of Our Research



Password-cracking dictionaries may contain entries that 
are not natural language words, e.g., ‘qwerty’

No consensus on how to use dictionaries

Usual dictionary based attacks derive multiple password 
guesses from a single dictionary entry by application of 
fixed rules, such as ‘replace a with @’ or ‘add any two 
digits to the end’

Often could get stuck in certain types of rule such as add 
6 digits to the end

Dictionaries sometimes contain actual passwords rather 
than potential words that can be modified

Dictionary Based Attacks



1.Try to obtain some Data-sets

2.Explore using Probabilistic 
Password Cracking

3.Better guess generation

4.Focus on Pass-Phrase 
Cracking

The Original Plan



Originally we were concerned that one of the main 
problems with our research would be collecting valid 
data-sets to train/test against

Obtaining Real 
Passwords



Obtaining the Datasets

In reality, that hasn’t been much of a 
problem for web-based passwords



Hacker Like to brag in Forums:

Note: The site darkc0de.com is no longer operational as it 
was hacked itself back in July 2010 by a group of Albanian 
hackers



LinkedIn (2012) – 6.4 million Sha1 hashes

Yahoo (2012) – 453 K plaintext passwords

RockYou (2009) - 32 million plaintext passwords

MySpace – 62 K plaintext, 17 K  MD5 hashes

Etc, etc, etc.

Some of ours 
Lists



The vulnerability originally was publicly posted on the 
website www.darkc0de.com

It appears that multiple hackers used it to break into the 
site.

According to the security firm Imperva, many of the 
webmail accounts associated with those passwords 
have been taken over by spammers

The Soap Opera Around 
the Rockyou Hack

http://www.darkc0de.com


One Slovakian hacker 
named Igigi claimed credit 
for the attack, and set up a 
blog detailing other 
website hacks

He also started giving 
interviews to various news 
publications

At one time he had a 
Facebook fan page with 
over 600 members... 

The Soap Opera 
(Continued)



Find the “correct order” in which to try the 
passwords

Which should we try first?

p@ssword1234

password8732

Our Idea



Some words are more likely than others

- password, monkey, football

Some mangling rules are more likely than others

- 123, 007, $$$, Capitalize the first letter

Probabilistic Cracking



Probabilistic 
Password 
Cracking

vs. 
Rule Based 

Cracking



Rule Centric View of 
Password Cracking

Rules

Dictionaries

Ad-hoc
Ideas

Years
Zip Codes

User 
Behavior

Ad-hoc
Ideas



1.Append 4 Digits

Rule Based 
Optimizations

Rules

User 
Behavior



1.Append 1234

2.Append 4 Digits

Rule Based 
Optimizations

Rules

1234

User 
Behavior



1.Append 1234

2.Append 0000-1233

3.Append 1235-9999

Rule Based 
Optimizations

Rules

1234

User 
Behavior

Optimize

Exclude



1.Append 1234

2.Append 1950-2010

3.Append 0000-1233

4.Append 1235-9999

Rule Based 
Optimizations

Rules

1234

User 
Behavior

Optimize

Exclud
e

Dates



1.Append 1234

2.Append 1950-2010

3.Append 0000-1233

4.Append 1235-1949

5.Append 2011-9999

Rule Based 
Optimizations

Rules

1234

User 
Behavior

Optimize

Exclud
e

Dates

Exclude



John the Ripper’s Rule 
Based Optimizations

1. Append 1234

2. Append 1950-2010

3. Append 0000-1233

4. Append 1235-1949

5. Append 2011-9999

6. Capitalize the first letter, Append 1234

7. Capitalize the first letter, Append 1950-2010

8. Capitalize the first letter, Append 0000-1233

9. Capitalize the first letter, Append 1235-1949

10. Capitalize the first letter, Append 2011-999

11. Replace ‘a’ with an ‘@’, Append 1234

12. Replace ‘a’ with an ‘@’, Append 1950-2010

13. Replace ‘a’ with an ‘@’, Append 0000-1233

14. Replace ‘a’ with an ‘@’, Append 1235-1949

15. Replace ‘a’ with an ‘@’, Append 2011-9999

16. Uppercase the last letter, Append 1234

17. Uppercase the last letter, Append 1950-2010

18. Uppercase the last letter, Append 0000-1233

19. Uppercase the last letter, Uppercase the last 
letter, Append 1235-1949

20. Uppercase the last letter, Uppercase the last 
letter, Append 2011-9999



Would like to try password guesses in highest 
probability order!

Use the revealed password sets to determine the 
probabilities of different guesses

We actually derive a grammar by training on the 
revealed data sets

The grammar approach can be compared to the word 
mangling rules that previous approaches used

Generate passwords  in highest probability order

New Idea: Probabilities 
should be the focus 



Training: use revealed passwords sets to create a 
context-free grammar that gives structure to the 
passwords. The grammar rules derive strings 
(passwords) with  probabilities based on the 
specific derivation

Cracking: how can one derive the passwords in 
highest probability order based on the grammar

Patterns: what are the patterns that can be 
effectively used?

PCFG Approach



Training

- Construct the grammar

Cracking

- Use the grammar to create password guesses

Two Stages



Very little available except revealed passwords and 
revealed hashes

Information not available: how do individuals change 
passwords, how do they store them if they are 
difficult to remember, etc.

Information in the Datasets



Our password cracker is trained on known 
password lists

We can use one or a set of appropriate training 
lists

We train if possible on passwords similar to the 
target profiles

What do we learn through the training?  We 
actually learn a probabilistic context free grammar!

Training our Cracker



Possibly, the most naive structure that can be 
inferred from passwords is the sequence of the 
character classes used

- Letters     = L

- Digits       = D

- Symbols   = S

password12! --> LDS        the “simple structure”

Password Structures



Context-free grammars lead to efficient algorithms, 
but simple structures are “too lossy” to allow for 
capturing sufficiently fine-grained human behavior in 
password choice in a context-free way 

“97” as a password element (a date) is more likely 
than would be expected by the independent 
probabilities of ‘9’ and ‘7’

Some password lengths are preferred

The Context-Free Assumption



Extend the character class symbols to 
include length information

- password$12$  =  L8S1D2S1

- Calculate the probabilities of all the 
base structures

Base structures, while still very simple, 
empirically capture sufficient information 
to derive useful context-free grammar 
models from password datasets

Learning the “Base structures”



The next step is to learn the probabilities of digits 
and special characters

We record the probabilities of different length 
strings independently 

Picks up rules such as 007, 1234, !!, $$, !@#$

We learn about capitalization 

We can also can learn about Keyboard 
combination and the L structures

Learning the Grammar 
(continued)



Capitalization
Case 
Mask

Percentage of 
Total

N6 93.206%

U1N5 3.1727%

U6 2.9225%

N3U3 0.1053%

U1N4U1 0.0078%

Probabilities of Top 5 
Case Masks for Six 
Character Words



By default we just assign a probability to each 
dictionary word of 1/nk

nk is the number of dictionary words of length k

However, we can use multiple dictionaries with 
different assigned probabilities to model different 
probabilities of words

Assigning Probability to 
Dictionary Words



Derive the production rules from the training set

Derive the probabilities from the training set

A Simple Example of the Learned 
Probabilistic Context-free Grammar 

S  → L4D2 .50
S  → D1L3D1 .25
S  → L4D1S1 .25
D2 → 99 .50
D2 → 98 .30
D2 → 11 .20
D1 → 1 .80
D1 → 2 .20
S1 → ! 1.0
L4  → pass .10
S  →* pass11 with probability  .5 x .1 x .2 = .01



Training Demo



After training, the grammar can be distributed for 
purposes of password cracking (e.g., base structures 
can be distributed and the replacement tokens also)

Size of grammar when trained on the MySpace set of 
33,481 passwords

1,589 base structures (with probabilities)

4,410 digit components (with probabilities)

144 symbol components (with probabilities)

Now to the Cracking



Generate all possible guesses with no duplicates

Generate the guesses in probability order

Reasonable memory requirements

Comparable time requirements to existing methods

Able to support distributed password cracking

Requirements for the 
Next Function



Essentially the base structure with all the 
productions except for the dictionary words 
replaced with terminals

Pre-Terminal Structures

S1 D2L3

$L399

D2
D2

Prob. S1
S1

Prob.

99 50% $ 60%

12 30% % 40%

33 20%



Pop the top value (30%) and 
check the guesses: $dog99, 
$cat99, etc.

Create children of the popped 
value: $L312 (18%) and 
%L399 (20%) and push them 
into the p-queue

Pop the next top value

Continue until queue is empty

Generating Guesses

$L399       30%1

$L31         9% 1

L399$       8% 1

L4 7% 1

L4$L4 7% 1



• We needed an efficient 
next function 
algorithms to generate 
guesses in probabilistic 
order. Our first function 
was called a pivot 
function. Basically we 
limited which node 
would create children

The Pivot Next Function



Example Tree for 
Generating Guesses

We actually have a much better algorithm that we have  
implemented and use: dead-beat dad



Better Algorithm: 
Deadbeat Dad

When node 1 is popped nodes 2,3 pushed in the original pivot algorithm 
(the children of 1). When 2 is next popped, its child node 4 is pushed. But 
in the deadbeat dad algorithm, 4 is not pushed since 2 knows there is 
another dad 3 responsible for 4 and will let 3 push 4 when 3 is popped.



Size of Potential Search 
Space

Structure Number of Structure in the 
MySpace Training Set

Base 1,589

Pre-Terminal 34 trillion



Pop the top value (30%) and 
check the guesses: $dog99, 
$cat99, etc.

Create children of the popped 
value: $L312 (18%) and 
%L399 (20%) and push them 
into the p-queue

Pop the next top value

Continue until queue is empty

Generating guesses: we 
use a priority queue

$L399       30% 1

$L51         9% 1

L399$       8% 1

L4 7% 1

L4$L4 7% 1



• Training set may not have all possible values of some 
type of set, say D3, with the value 732.

• Probability smoothing allows all non-used values to 
have some probability of being chosen based on the 
smoothing parameters.

• Consider values in K different categories (1000) in the 
above example. Let Ni be the number in category i with 
N = ∑ Ni. Smoothing parameter 0 ≤ α ≤ 1.

• Prob (i) = (Ni + α) / (N + K * α)

Smoothing – using the 
Laplacian



• If many items have the same values (say a bunch 
of smoothed values) we can aggregate them into 
containers.

• In fact, each pre-terminal that we discussed 
previously is actually a “container” with many 
values having that exact probability.

• This permits many guesses to be tried without 
stressing the priority queue.

Algorithm optimization –
Using Containers



The MySpace List

Split it into a training list and 
a test list

-Training List: 33,561
-Test List: 33,481



Results: Original Grammar



Results: Original Grammar

Cracked as Many 
Passwords as John the 
Ripper



Real World Results -
MySpace List



Hackers broke into 
several sites via 
SQL injection

15,699 Plain Text

29,853 MD5 Hashes

The Finnish List



Finnish List



Cracking Demo
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