L5: Basic Grammar Based Probabilistic Password Cracking

- Sudhir Aggarwal and Shiva Houshmand and Matt Weir
- Florida State University
- **Department of Computer Science**
- E-Crime Investigative Technologies Lab
- Tallahassee, Florida 32306

August 5-7, 2015

Password Cracking University of Jyväskylä Summer School August 2015

© Copyright 2015 E-Crime Investigative Technologies at FSU. All rights reserved

Our Research

- Assist Law Enforcement and Security Agencies
- Develop better ways to model how people actually create passwords
- Develop better ways to crack passwords
- Incorporate targeted attack features
- Improve attack dictionaries
- Continuously extend capabilities with new techniques
- Investigate how we can build better passwords
- Applications of our approach

Cracking Passwords

- Given a password hash or file of hashes, guess a password, compute the hash, and check against the given hashes
- There are many password hashes used: MD5, Sha1, multiple hashings such as done by TrueCrypt, etc. These last are done to increase the time to compute the hash
- Our focus is on the guessing part. Given a hash algorithm, we can always use the best implementation if possible - we have not focused on collecting a set of best implementations

Two Types of Password Cracking of Cracking of Interest

* Online

- The system is still operational and you are allowed only a few guesses

* Offline

- You grabbed the password hash(s) and want to crack as many as possible within a reasonable amount of time available

* Our interests

- Would like to be good at both, but we focus on the offline case

Cracking Passwords

Generate a password guess

- password123
- Hash the guess MD5 (128 bits), Sha1, etc.
- A5732067234F23B21

Compare the hash to the password hash you are trying to crack

Password crackers systems are proliferating

- Access Data's PRTK (commercial)
- John the Ripper (open source)
- Hashcat (open source)
- Cain & Able (old)
- LOphtcrack (old)
- Specifically for Microsoft passwords

Types

- Micro Rules
- Markov approaches
- Probabilistic Context-free grammars

Example: John the Ripper

- Open source free password cracking system
 - Runs on many different platforms
 - Runs against many different hash types
 - Can run in a number of modes
 - Single crack mode, wordlist mode, incremental mode
 - Incremental mode is the most powerful
- Most popular cracking system and the best to test against
 - Basic approach is *mangling rules* and dictionaries
 - Brute force and some Markov modeling
 - Used by law enforcement

Focus of Our Research

- * Our research in this area has focused on how to make better password guesses
 - Hash neutral. Aka you would create the same guesses regardless if you are attacking a Truecrypt or a WinRAR encrypted file
- * We have also explored implementing faster hashing algorithms using GPUs. This can be explored further.
 - Target program specific. Aka the hashing that Truecrypt and WinRAR uses is different
 - Prefer to use existing systems to actual compute hashes

Dictionary Based Attacks

- Password-cracking dictionaries may contain entries that are not natural language words, e.g., 'qwerty'
- No consensus on how to use dictionaries
- Usual dictionary based attacks derive multiple password guesses from a single dictionary entry by application of fixed rules, such as 'replace a with @' or 'add any two digits to the end'
 - Often could get stuck in certain types of rule such as add
 6 digits to the end
- Dictionaries sometimes contain actual passwords rather than potential words that can be modified

The Original Plan

- 1. Try to obtain some Data-sets
- 2. Explore using Probabilistic Password Cracking
- 3. Better guess generation
- 4. Focus on Pass-Phrase Cracking

Obtaining Real Passwords

Originally we were concerned that one of the main problems with our research would be collecting valid data-sets to train/test against

Obtaining the Datasets

In reality, that hasn't been much of a problem for web-based passwords

Hacker Like to brag in Forums:

- Forums - Profile - New topic - MyStats - Search - Members - N - IRC - Advertise - Rules - Statistics - Exit - - Private Messages [0]				
C darkcode.com [forum] / Exploits & Vulnerabili	ities	Sorted	by: New topics. Sort l	oy: Most recent reply
.1.2.3.4.5.6.7.8.9.10 44.45.>> Topic	Replies	Views	Author	Latest reply
SQLi cinestar.cz help -	o	18	rezorcinol 12 Feb 2010 11:00	_
phpmyadmin .EDU •	4	100	icemerc 10 Feb 2010 17:05	icemerc 11 Feb 2010 08:17
WM Downloader v3.0.0.9 PLS PLA Exploit •	2	71	beenu 10 Feb 2010 12:17	kiddo 11 Feb 2010 18:03
(wwwsrv) phpMyadmin 2.11.5 -	3	122	dnock 9 Feb 2010 12:30	metalica 10 Feb 2010 12:07
china automotive -	2	67	dnock 9 Feb 2010 11:16	billybill 9 Feb 2010 13:36
blind sql* -help -	1	52	xs86 9 Feb 2010 06:14	VMw4r3 9 Feb 2010 06:32
1000 email IDs and passwords dumped from site	• 4	95	zion_rulz 8 Feb 2010 13:24	eliekhoury123 8 Feb 2010 13:40
Some Website Email+Pass Login -	2	122	dnock 7 Feb 2010 23:36	4183rt 9 Feb 2010 00:18
site_address dump •	o	78	sphinx 7 Feb 2010 07:01	-
BooM Some WebSite -	2	147	dnock 5 Feb 2010 22:16	icqbomber 6 Feb 2010 02:02
UK info checker -	1	99	yomistarz 5 Feb 2010 09:10	inkubus 5 Feb 2010 10:00

Note: The site darkc0de.com is no longer operational as it was hacked itself back in July 2010 by a group of Albanian hackers

Some of ours Lists

- * LinkedIn (2012) 6.4 million Sha1 hashes
- * Yahoo (2012) 453 K plaintext passwords
- * RockYou (2009) 32 million plaintext passwords
- MySpace 62 K plaintext, 17 K MD5 hashes
- # Etc, etc, etc.

The Soap Opera Around the Rockyou Hack

- * The vulnerability originally was publicly posted on the website <u>www.darkc0de.com</u>
- It appears that multiple hackers used it to break into the site.
- * According to the security firm Imperva, many of the webmail accounts associated with those passwords have been taken over by spammers

The Soap Opera (Continued)

facebook

Sign Up

IGIGI fan site, hacker elite is on Facebook Sign up for Facebook to connect with IGIGI fan site, hacker elite.

Ďakujeme úprimne za vašu spoluprácu a dovoľujeme si vás poprosiť ešte o jednu láskavosť – rozošlite, prosím vás, túto skupinu všetkým osobám vo vašom adresári.

Information

Category: Internet & Technology -Cyberculture

Description:

lgigi je hacker, ktorý v posledných dňoch púta na seba všetku pozornosť. Jeho počínanie pripomína odvážnu poľovačku na nedostatočne zabezpečené weby, pričom jeho lov je mimoriadne úspešný. Enjoy!

Privacy Type: Open: All content is public.

Matej Nenavidi Skolulgigi Zelir xD 6 hours ago - Report

Matko Bob Je to macher, co by som a Sun at 5:43am · Report

Miloš Čapičík Si number one!!!!! Sun at 4:29am · Report

Miloš Harmady preco si myslite ze igi Sun at 2:02am · Report

Jakub Žabka len tak ďalej..:D dúfam ž Sat at 11:20am · Report

Tomáš Tarčák No tak Igigi je Inaksii pán,,,ides ,drzim palce len tak Sat at 10:49am · Report * One Slovakian hacker named Igigi claimed credit for the attack, and set up a blog detailing other website hacks

- He also started giving interviews to various news publications
- At one time he had a
 Facebook fan page with
 over 600 members...

Our Idea

Find the "correct order" in which to try the passwords

* Which should we try first?

* p@ssword1234

* password8732

Probabilistic Cracking

Some words are more likely than others

- password, monkey, football
- * Some mangling rules are more likely than others
 - 123, 007, \$\$\$, Capitalize the first letter

Probabilistic Password Cracking VS. **Rule Based** Cracking

1. Append 4 Digits

1. Append 1234

2. Append 4 Digits

1. Append 1234

2. Append 0000-1233

3. Append 1235-9999

1. Append 1234

2. Append 1950-2010

3. Append 0000-1233

4. Append 1235-9999

- 1. Append 1234
- 2. Append 1950-2010
- 3. Append 0000-1233
- 4. Append 1235-1949
- 5. Append 2011-9999

John the Ripper's Rule Based Optimizations

1. Append 123411. Repla	ce 'a' with an '@', Append 1234
-------------------------	---------------------------------

- 2.
 Append 1950-2010
 12.
 Replace 'a' with an '@', Append 1950-2010
- 3. Append 0000-1233

13. Replace 'a' with an '@', Append 0000-1233

4. Append 1235-1949

14. Replace 'a' with an '@', Append 1235-1949

5. Append 2011-9999

7.

- 15. Replace 'a' with an '@', Append 2011-9999
- 6. Capitalize the first letter, Append 1234
- 16. Uppercase the last letter, Append 1234
 - Capitalize the first letter, Append 1950-2010 17. Uppercase the last letter, Append 1950-2010
- 8. Capitalize the first letter, Append 0000-1233 18
- 9. Capitalize the first letter, Append 1235-1949
- 10. Capitalize the first letter, Append 2011-999

- 18. Uppercase the last letter, Append 0000-1233
- 19. Uppercase the last letter, Uppercase the last letter, Append 1235-1949
- 20. Uppercase the last letter, Uppercase the last letter, Append 2011-9999

New Idea: Probabilities should be the focus

- Would like to try password guesses in highest probability order!
- Use the revealed password sets to determine the probabilities of different guesses
- We actually derive a grammar by training on the revealed data sets
- The grammar approach can be compared to the word mangling rules that previous approaches used
- Generate passwords in highest probability order

PCFG Approach

- * Training: use revealed passwords sets to create a context-free grammar that gives structure to the passwords. The grammar rules derive strings (passwords) with probabilities based on the specific derivation
- * Cracking: how can one derive the passwords in highest probability order based on the grammar
- * Patterns: what are the patterns that can be effectively used?

Two Stages

* Training

- Construct the grammar
- * Cracking
 - Use the grammar to create password guesses

Information in the Datasets

Very little available except revealed passwords and revealed hashes

Information not available: how do individuals change passwords, how do they store them if they are difficult to remember, etc.

Training our Cracker

- * Our password cracker is trained on known password lists
- We can use one or a set of appropriate training lists
- We train if possible on passwords similar to the target profiles
- What do we learn through the training? We actually learn a probabilistic context free grammar!

Password Structures

- Possibly, the most naive structure that can be inferred from passwords is the sequence of the character classes used
 - Letters = L
 - Digits = D
 - Symbols = S
- * password12! --> LDS

the "simple structure"

The Context-Free Assumption

- Context-free grammars lead to efficient algorithms, but simple structures are "too lossy" to allow for capturing sufficiently fine-grained human behavior in password choice in a context-free way
- "97" as a password element (a date) is more likely than would be expected by the independent probabilities of '9' and '7'
- Some password lengths are preferred

Learning the "Base structures"

- * Extend the character class symbols to include length information
 - password = $L_8S_1D_2S_1$
 - Calculate the probabilities of all the base structures
- Base structures, while still very simple, empirically capture sufficient information to derive useful context-free grammar models from password datasets

Learning the Grammar (continued)

- * The next step is to learn the probabilities of digits and special characters
- We record the probabilities of different length strings independently
- # Picks up rules such as 007, 1234, !!, \$\$, !@#\$
- We learn about capitalization
- We can also can learn about Keyboard combination and the L structures

Capitalization

Case	Percentage of
Mask	Total
N ₆	93.206%
U_1N_5	3.1727%
U ₆	2.9225%
N ₃ U ₃	0.1053%
$U_1N_4U_1$	0.0078%

Probabilities of Top 5 Case Masks for Six Character Words

Assigning Probability to Dictionary Words

- By default we just assign a probability to each dictionary word of 1/nk
- * nk is the number of dictionary words of length k
- However, we can use multiple dictionaries with different assigned probabilities to model different probabilities of words

A Simple Example of the Learned Probabilistic Context-free Grammar

- * Derive the production rules from the training set
- Derive the probabilities from the training set

$S \rightarrow$	L ₄ D ₂	.50	
$S \rightarrow$	$D_1L_3D_1$.25	
$S \rightarrow$	$L_4D_1S_1$.25	
$D_2 \rightarrow$	99	.50	
$D_2 \rightarrow$	98	.30	
$D_2 \rightarrow$	11	.20	
$D_1 \rightarrow$	1	.80	
$D_1 \rightarrow$	2	.20	
$S_1 \rightarrow$!	1.0	
$L_4 \rightarrow$	pass	.10	
$S \rightarrow^* pass11$ with probability .5 x .1 x .2 = .01			

Training Demo

🛃 😳	Florida State's Probabilistic Pas	\odot \odot \otimes	
File About			
Train a New Ruleset Password	d Cracker General Options	Florida State University ECIT I E-mail: sudhir@cs.fsu.edu	.ab
Please type the name of the r	uleset you want to create:	Default	
Please select the password list	you wish to train on:		
✓ Use Training Dictionary ✓ Use Keyboard Patterns			
Remove Dictionary Words pro Generate Alpha Grammar	obability Smoothing: Low		
Ma	ax Brute Force Size: 6		
Create Ruleset Ruleset Statistics:			

Now to the Cracking

- After training, the grammar can be distributed for purposes of password cracking (e.g., base structures can be distributed and the replacement tokens also)
- Size of grammar when trained on the MySpace set of 33,481 passwords
 - # 1,589 base structures (with probabilities)
 - # 4,410 digit components (with probabilities)
 - # 144 symbol components (with probabilities)

Requirements for the Next Function

- Generate all possible guesses with no duplicates
- Generate the guesses in probability order
- Reasonable memory requirements
- Comparable time requirements to existing methods
- * Able to support distributed password cracking

Pre-Terminal Structures

* Essentially the base structure with all the productions except for the dictionary words replaced with terminals

S ₁ L	_3D2
\$L	.399

D ₂	D ₂ Prob.	S ₁	S ₁ Prob.
99	50%	\$	60%
12	30%	%	40%
33	20%		

Generating Guesses

 Pop the top value (30%) and check the guesses: \$dog99, \$cat99, etc.

- Create children of the popped value: \$L₃12 (18%) and %L₃99 (20%) and push them into the p-queue
- Pop the next top value
- Continue until queue is empty

The Pivot Next Function

 We needed an efficient next function algorithms to generate guesses in probabilistic order. Our first function was called a pivot function. Basically we limited which node would create children

Example Tree for Generating Guesses

We actually have a much better algorithm that we have implemented and use: dead-beat dad

Better Algorithm: Deadbeat Dad

When node 1 is popped nodes 2,3 pushed in the original pivot algorithm (the children of 1). When 2 is next popped, its child node 4 is pushed. But in the deadbeat dad algorithm, 4 is not pushed since 2 knows there is another dad 3 responsible for 4 and will let 3 push 4 when 3 is popped.

Size of Potential Search Space

Structure	Number of Structure in the MySpace Training Set	
Base	1,589	
Pre-Terminal	34 trillion	

Generating guesses: we use a priority queue

\$L₃99	30%	1	*
\$L ₅ 1	9%	1	
L ₃ 99\$	8%	1	*
L4	7%	1	
L4\$L4	7%	1	*
			*

Pop the top value (30%) and check the guesses: \$dog99, \$cat99, etc.

Create children of the popped value: \$L₃12 (18%) and %L₃99 (20%) and push them into the p-queue

- Pop the next top value
- Continue until queue is empty

Smoothing – using the Laplacian

- Training set may not have all possible values of some type of set, say D₃, with the value 732.
- Probability smoothing allows all non-used values to have some probability of being chosen based on the smoothing parameters.
- Consider values in K different categories (1000) in the above example. Let N_i be the number in category i with $N = \sum N_{i}$. Smoothing parameter $0 \le \alpha \le 1$.

• **Prob (i) = (N_i +
$$\alpha$$
) / (N + K * α)**

Algorithm optimization – Using Containers

- If many items have the same values (say a bunch of smoothed values) we can aggregate them into containers.
- In fact, each pre-terminal that we discussed previously is actually a "container" with many values having that exact probability.
- This permits many guesses to be tried without stressing the priority queue.

The MySpace List

Split it into a training list and a test list

-Training List: 33,561 -Test List: 33,481

Results: Original Grammar

Results: Original Grammar

Real World Results -MySpace List

The Finnish List

 Hackers broke into several sites via
 SQL injection

- # 15,699 Plain Text
- * 29,853 MD5 Hashes

Finnish List

Cracking Demo

