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Our Research

Assist Law Enforcement and Security
Agencies

Develop better ways to model how people

actually create passwords THE #1 —_ EXCUSE
y P FOR LEGITIMATELY SLACKING OFF:

Develop better ways to crack passwords © I'M CRACKING PASSWORDS

HEY! GETBACK.

Incorporate targeted attack features
TOWORK?

Improve attack dictionaries

Continuously extend capabillities with new
techniques

Investigate how we can build better
passwords

Applications of our approach




Cracking Passwords

« Given a password hash or file of hashes, guess a
password, compute the hash, and check against the
given hashes

e There are many password hashes used: MD5, Shal,
multiple hashings such as done by TrueCrypt, etc.
These last are done to increase the time to compute

the hash

* Our focus is on the guessing part. Given a hash
algorithm, we can always use the best implementation
if possible - we have not focused on collecting a set
of best implementations




Two Types of Password Cracking of
Cracking of Interest

¥ Online

- The system is still operational and you are allowed only a few
guesses

¥ Offline

- You grabbed the password hash(s) and want to crack as many
as possible within a reasonable amount of time available

% Our Interests

- Would like to be good at both, but we focus on the offline case




Cracking Passwords

Generate a password guess

- password123

Hash the guess MD5 (128 bits), Shal, etc.
- AB732067234F23B21

Compare the hash to the password hash you are
trying to crack




Password crackers systems are

proliferating

% Access Data’s PRTK (commercial)
% John the Ripper (open source)

% Hashcat (open source)

% Cain & Able (old)

% LOphtcrack (old)

% Specifically for Microsoft passwords

Types
% Micro Rules
% Markov approaches

% Probabilistic Context-free grammars




Example: John the Ripper

- Open source free password cracking system
Runs on many different platforms
Runs against many different hash types
- Can run in a number of modes

Single crack mode, wordlist mode, incremental mode

Incremental mode is the most powerful

- Most popular cracking system and the best to test
against
Basic approach is mangling rules and dictionaries
Brute force and some Markov modeling

Used by law enforcement




Focus of Our Research

% Our research In this area has focused on how to make
better password guesses

- Hash neutral. Aka you would create the same guesses regardless if
you are attacking a Truecrypt or a WInRAR encrypted file

* We have also explored implementing faster hashing
algorithms using GPUs. This can be explored further.

- Target program specific. Aka the hashing that Truecrypt and WInRAR
uses Is different

- Prefer to use existing systems to actual compute hashes




Dictionary Based Attacks

% Password-cracking dictionaries may contain entries that
are not natural language words, e.g., ‘gwerty’

% NoO consensus on how to use dictionaries

% Usual dictionary based attacks derive multiple password
guesses from a single dictionary entry by application of
fixed rules, such as ‘replace a with @’ or ‘add any two
digits to the end’

% Often could get stuck in certain types of rule such as add
6 digits to the end

* Dictionaries sometimes contain actual passwords rather
than potential words that can be modified




The Original Plan

1. Try to obtain some Data-sets

2. EXxplore using Probabillistic
Password Cracking

3. Better guess generation

| il
4.Focus on Pass-Phrase éa}ilfseé no way/inwhich this
Cracking carefullyJlaid planCould ever fail.




Obtaining Real
Passwords

Originally we were concerned that one of the main
problems with our research would be collecting valid
data-sets to train/test against




Obtalmng the Datasets

Brentwood

Kelvedon Hatch A 128
lIndustrial Estates

In reality, that hasn’'t been much of a
problem for web-based passwords




Hacker Like to brag in Forums:

darkEClde

{A)
-

- Forums - Profile - New topic - MyStats - Search - Members - ™ - IRC -

Statistics - Exat -
- Private Messages [0]

€ darkcode.com [ forom ] / Exploits & Vulnerabilities

1.2.%.4.5.-6.7.8.9.10 .. 44.45.>>

Topic

S0QLi cinestar.cz help

phpmyadmin EDU

WM Downloader v3.0.0.9 PLS PLA Exploit
(wwwsrv) phpMyadmin 2.11.5

china antomotive

blind =ql* -help

1000 email IDs and passwords dumped from site
Some Website Email+ Pass Login

site_address duomp

BooM Some WebSite

UK info checker

Note: The site darkcOde.com

Sorted by: New topics. Sort by: Most recent reply

Replies Views

i

Anthor
rezorcinol
12 Feb 2010 11:00
icemerc
10 Feb 2010 17:05
beenu
10 Feb 2010 1227
dnock
g Feb 2000 12:30
dnock
g Feb 2010 1116
xs86
g Feb 2000 o614
zion_rulz
8 Feb 2000 13:24
dnock
7Feb 2000 253:36
sphinx
= Feb 2000 07:01
dnock
5 Feb 2000 2206

yomistarzs
5 Feb 2000 ogrio

Latest reply

icemerc
i1 Feb 2010 08:17
kiddo
11 Feb 2010 18:05
metalica
10 Feb 2010 12:07
billyhill
g Feb 2010 13:96
VMwarg
g Feb 2000 o632
eliekhonryizg
8 Feb 2010 13:40
4183rt

g Feb 2000 008

icqg bomber
& Feb 2010 02102
inknbus

5 Feb 2000 10000

IS no longer operational as it
was hacked itself back in July 2010 by a group of Albanian
hackers



Some of ours
LIStS

% LinkedIn (2012) — 6.4 million Shal hashes

% Yahoo (2012) — 453 K plaintext passwords

% RockYou (2009) - 32 million plaintext passwords
* MySpace — 62 K plaintext, 17 K MD5 hashes

¥ Etc, etc, etc.




The Soap Opera Around
the Rockyou Hack

% The vulnerability originally was publicly posted on the
website www.darkcOde.com

% It appears that multiple hackers used it to break into the
site.

% According to the security firm Imperva, many of the
webmall accounts associated with those passwords
have been taken over by spammers



http://www.darkc0de.com

The Soap Opera
(Contlnued)

IGIGI fan site, hacker elite is on Facebook
Sign up for Facebook to connect with IGIGI fan site, hacker elite.

IGIGI fan site, hacker elite | 44 Join

Wwall Info

Matej Nenavidi Skolulgigi Zelina 4ewve
xD

6 hours ago - Report

Dakujeme Gprimne za vasu
spolupriacu a dovolujeme si vas
poprosit eSte o jednu laskavost -
rozoilite, prosim wvas, tato
skupinu vietkym osobdm vo
vasom adresari.

Matko Bob Je to macher, co by som a
Sun at 5:43am - Report

Sun at 4:29am - Report

Information

MiloZ Harmady preco si myslite ze igi
Sun at 2:02am - Report

Category:
Internet & Technology -
Cyberculture

Description:

Igigi je hacker, krory v
poslednych dioch pita na seba
vietku pozornost. Jeho pofinanie
pripomina odviZnu polovacku na
nedostatofne zabezpedend weby,
pricom jeho lov je mimoriadne
Uspesny. Enjoy!

Jakub Zabka len tak dalej..:D ddfam 3
Sat at 11:20am - Report

Tomas Tarcak No tak Igigi je
Inaksii pan,,ides ,drzim palce len tak ¢
Sat at 10:49am - Report

Privacy Type:
Open: All content is public.

% One Slovakian hacker
named Igigi claimed credit
for the attack, and set up a
blog detailing other
website hacks

% He also started giving
Interviews to various news
publications

% At one time he had a
Facebook fan page with
over 600 members...




Our lIdea

% Find the “correct order” in which to try the
passwords

% Which should we try first?

* p@ssword1234

% password8732




Probabilistic Cracking

% Some words are more likely than others
- password, monkey, football
% Some mangling rules are more likely than others

- 123, 007, $$%, Capitalize the first letter

o o B T




T T ™ 4 W
Distant, motionless stars =
el - !

Saturn

* Probabillistic
= Jupiter PaSSWOrd
‘/,‘//j“fﬁim Cracking
/ .E;::lhus VS.
{'} -Mercury Rule Based
Sun Cracking




User
Behavior

Rule Centric View of
Password Cracking




Rule Based
Optimizations

1. Append 4 Digits




Rule Based
Optimizations

1.Append 1234

2.Append 4 Digits




Rule Based
Optimizations

1.Append 1234
2.Append 0000-1233
3. Append 1235-9999




Rule Based
Optimizations

1.Append 1234

2.Append 1950-2010
3. Append 0000-1233
4.Append 1235-9999




Rule Based
Optimizations

1.Append 1234

2.Append 1950-2010
3. Append 0000-1233
4.Append 1235-1949
5.Append 2011-9999




10.

John the Ripper’s Rule
Based Optlmlzatlons

Append 1234 . Replace ‘a’ with an ‘@’, Append 1234
Append 1950-2010 12. Replace ‘a’ with an ‘@’, Append 1950-2010
Append 0000-1233 13. Replace ‘a’ with an ‘@’, Append 0000-1233
Append 1235-1949 14. Replace ‘a’ with an ‘@’, Append 1235-1949
Append 2011-9999 15. Replace ‘a’ with an ‘@’, Append 2011-9999
Capitalize the first letter, Append 1234 16. Uppercase the last letter, Append 1234

Capitalize the first letter, Append 1950-2010 17. Uppercase the last letter, Append 1950-2010

Capitalize the first letter, Append 0000-1233 18. Uppercase the last letter, Append 0000-1233

Capitalize the first letter, Append 1235-1949 19. Uppercase the last letter, Uppercase the last
letter, Append 1235-1949

Capitalize the first letter, Append 2011-999

20. Uppercase the last letter, Uppercase the last
letter, Append 2011-9999




New |ldea: Probabilities
should be the focus

% Would like to try password guesses in highest
probability order!

¥ Use the revealed password sets to determine the
probabilities of different guesses

% We actually derive a grammar by training on the
revealed data sets

% The grammar approach can be compared to the word
mangling rules that previous approaches used

% Generate passwords In highest probability order




PCFG Approach

% Training: use revealed passwords sets to create a
context-free grammar that gives structure to the
passwords. The grammar rules derive strings
(passwords) with probabillities based on the
specific derivation

% Cracking: how can one derive the passwords In
highest probability order based on the grammar

% Patterns: what are the patterns that can be
effectively used?




Two Stages

% Training
- Construct the grammar
% Cracking

- Use the grammar to create password guesses




Information In the Datasets

Very little available except revealed passwords and
revealed hashes

Information not available: how do individuals change
passwords, how do they store them If they are
difficult to remember, etc.




Training our Cracker

% Our password cracker is trained on known
password lists

% We can use one or a set of appropriate training
lists

% We train If possible on passwords similar to the
target profiles

% What do we learn through the training? We
actually learn a probabilistic context free grammar!




Password Structures

Possibly, the most naive structure that can be
iInferred from passwords Is the sequence of the
character classes used

- lLetters =L
- Digits =D
- Symbols =S
passwordl1?2! --> LDS the “simple structure”




The Context-Free Assumption

% Context-free grammars lead to efficient algorithms,
but simple structures are “too lossy” to allow for
capturing sufficiently fine-grained human behavior In
password choice in a context-free way

% “97” as a password element (a date) is more likely
than would be expected by the independent
probabillities of ‘9’ and ‘7’

% Some password lengths are preferred

T T 0




Learning the “Base structures”

% Extend the character class symbols to
iInclude length information

- password$12$ = LsS1D2S1

- Calculate the probabilities of all the
base structures

% Base structures, while still very simple,
empirically capture sufficient information
to derive useful context-free grammar
models from password datasets

Q? e Y@E




Learning the Grammar
(continued)

The next step Is to learn the probabillities of digits
and special characters

We record the probabilities of different length
strings independently

Picks up rules such as 007, 1234, !, $$, |@#%$
We learn about capitalization

We can also can learn about Keyboard
combination and the L structures
0o &




Capitalization

Case Percentage of
Mask Total
N 93.206%

UN:  [3.1727%

Ug 2.9225%

N,U,  |0.1053%

U,N,U, [0.0078%

Probabilities of Top 5
Case Masks for Six
Character Words




Assigning Probabillity to
Dictionary Words

% By default we just assign a probability to each
dictionary word of 1/nk

¥ Nk Is the number of dictionary words of length k

% However, we can use multiple dictionaries with
different assigned probabilities to model different
probabilities of words

T 7 LTS




A Simple Example of the Learned
Probabilistic Context-free Grammar

% Derive the production rules from the training set

% Derive the probabillities from the training set

S — _4D> 50
S — D1L3D1 25
S — _4D1S1 .25
D2 — 99 .50
D2 — 08 .30
D2 — 11 .20
D1 — 1 .80
D1 — 2 .20
S, — ! 1.0
La — pass .10
S —*passll with probability .5x.1x.2=.01




Training Demo

| L Florida State’s Probabilistic Password Cracker

File About
-

Flarida State University ECIT Lab
CP ﬁ) E-mail: sudhir@cs. fsu. adu

Train a New Rulesel | Password Cracker | General Options

Please type the name of the ruleset you want to create: Default

Please select the password list yvou wish to train on:

Use Training Dictionary
| Use Keyboard Patterns

| Remove Dictionary Words pragbability Smoothing: | gw
[w] Generate Alpha Grammar

Max Brute Force S5ize: = [ Iv-

Create Rulesat

Ruleset Statistics:




Now to the Cracking

% After training, the grammar can be distributed for
purposes of password cracking (e.g., base structures
can be distributed and the replacement tokens also)

% Size of grammar when trained on the MySpace set of
33,481 passwords

% 1,589 base structures (with probabilities)
¥ 4,410 digit components (with probabilities)

% 144 symbol components (with probabilities)

o IR




Requirements for the
Next Function

Generate all possible guesses with no duplicates
Generate the guesses In probabillity order
Reasonable memory requirements

Comparable time requirements to existing methods

Able to support distributed password cracking

®e
0 9FESYEm




Pre-Terminal Structures

% Essentially the base structure with all the
productions except for the dictionary words
replaced with terminals

D,

D, Prob.

Prob.

Sl L3 D2 50%| $ (60%

—_— $L399 12  (30%| % |40%

33 [(20%




Generating Guesses

% Pop the top value (30%) and
check the guesses: $dog99,
$cat99, etc.

% Create children of the popped
value: $L,12 (18%) and
%L,99 (20%) and push them
Into the p-queue

% Pop the next top value

% Continue until queue Is empty

0 9 w1t




The Pivot Next Function

- We needed an efficient
next function
algorithms to generate
guesses In probabilistic
order. Our first function
was called a pivot
function. Basically we
limited which node
would create children

® / \@

B{cat,hat}$5$ {cat,hat}4!

0.1575 004875
0« N0 Qr N
{5,6Hcat,hat}5S  4{cathat}**  {cat hat}{5,6} {cat,hat}d%

0.0525 0.0675 0.01625 0.0225
o |
{5,6}{cat,hat}** {cat,hat}{5,6}%
0.0225 0.0075




Example Tree for
Generating Guesses

I I
2,2

1,1,2
1

2,1,2 1,3,1 1,2,2 1,3
I I—I I—I I—I
2,1,3 1,3,2 1,2,3

3,2,1 3,1,2 2,3,1 2,2,2
I I I_I I_I
I I
3,3,1 3,2,2 3,1,3 2,3,2 2,2,3

2,3,3

We actually have a much better algorithm that we have
Implemented and use: dead-beat dad




Better Algorithm:
Deadbeat Dad

When node 1 is popped nodes 2,3 pushed in the original pivot algorithm
(the children of 1). When 2 is next popped, its child node 4 is pushed. But
In the deadbeat dad algorithm, 4 is not pushed since 2 knows there Is
another dad 3 responsible for 4 and will let 3 push 4 when 3 is popped.




Size of Potential Search
Space

Base 1,589

Pre-Terminal 34 trillion




Generating guesses: we
use a priority queue

% Pop the top value (30%) and
check the guesses: $dog99,
$cat99, etc.

% Create children of the popped
value: $L,12 (18%) and
%L.,99 (20%) and push them
Into the p-queue

% Pop the next top value

¥ Continue until gueue Is empty

° o 1% 1




Smoothing — using the
Laplacian

- Training set may not have all possible values of some
type of set, say D, with the value 732.

- Probability smoothing allows all non-used values to
have some probability of being chosen based on the
smoothing parameters.

- Consider values In K different categories (1000) in the
above example. Let N, be the number in category i with
N => N, Smoothing parameter 0 < a = 1.

« Prob()=(N;+a)/(N+K*a)




Algorithm optimization —
Using Containers

- |If many items have the same values (say a bunch
of smoothed values) we can aggregate them into

containers.

. In fact, each pre-terminal that we discussed
previously Is actually a “container” with many
values having that exact probability.

- This permits many guesses to be tried without

stressing the priority queue.

C%:}r -

-




The MySpace List

ﬂmyspace.com,:.

a place for friends

Cool New Videos

Minibike

Superman
The Chinoooo

< Books
Celebrity NEW!
o ChatRooms
5 Comedy
i Downloads
£ Filmmakers

Miss Piggy: A
Hog's Struggle
The Lost Nomads

Crazy Bridge
Explosion
Josh

g Cames NEW! i Movies NEW!
A Grade My Prof. & Music

J Horoscopes (] Music Videos
$ ImpactNEW!  Ga MySpacelM
= Jobs (=] Mews NEW!

Mobile T Profile Editor

WATCH

RULES OF THE GAME

Grand Archives
Raock
Seattle, WA

Ice Fishing

Cat
Complex Superhero

[ Ringtones
@, Schools
@ Sports

T, Latino

(2] MySpaceTV
-5 Weather

NOW!

[more music)]

Privacy | Help | SignUp

y Google”

BLACK
CURTAIN

SCREENINGS
02.14.08

E-Mail:

Password:

[ Remember Me

[Releiiy

Forgot your password?

' Check your Yahoo!, Hotmail, AIM and
AOL contacts and find them on
MySpace!

Cool New People
the 3rd!

Charlie

Split it into a training list and
a test list

-Training List: 33,561
-Test List: 33,481




Results: Original Grammar

Passwords Cracked

16000

14000

12000

10000

B000

6000

4000

2000

anee #ssass | Inl ock

"+|'ilfl-l
.

——— |ohn the

Ripper +
Bruteforce®

Pure
Bruteforce®

*Bruteforce uses
Miarkow Models

200 300
Number of Guesses [Millions)

100




Results: Original Grammar

o s mm s w= + == « Pyre

16000
Ccemsussssss ssssse Unlock

14000 ___...rﬂ*-'-"""'
5 12000
k- =
E 10000 e — |ohn the
o Ripper +
5 000 Bruteforce®*
D
& 6000
&

4000 Bruteforce®

~**Cracked as Many

2000 the

' *Bruteforce uses
) 100 Z00 200 Markov Models

Number of Guesses [Millions)




Real World Results -

MySpace List

12000

10000

8000

6000

4000

Passwords Cracked

2000

“ John the Ripper
W "Probablistic Method"




The Finnish List

Newbie channel

Ee * Hackers broke Into
= Ty - several sites via

north, south, e
=outheast, =sout

SQL injection
% 15,699 Plain Tex

¥ 29,853 MD5 Hashes




Finnish List

6000

5000

4000

3000

2000

Passwords Cracked

1000

% John the Ripper

® Terminal Prob




Cracking Demo
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