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The Next Function
• Generates all possible different probability values 

of terminals for a given base structure without any 
duplication.

• A child node will never have probability higher than 
its parent.

• In order to generate terminals in probability order:  
A child node should never be popped from the 
priority queue before all its parents have been 
pushed into the queue.



• We needed efficient 
next function 
algorithms to generate 
guesses in probabilistic 
order. Our first function 
was called a pivot 
function. Basically we 
limited which node 
would create children.

• Note that the structure 
to the right in not a 
priority queue!

The Pivot Next Function



Priority Queue
max heap

Operations: Insert, Maximum, Extract-Max, Increase Key
Complexity of these operations?



The “Next” Function
• The pivot value (or position) is an index value of a component 

starting from left to right in the node: it helps determine which new 
pre-terminal structures should be inserted into the priority queue 
next.

• Goal: create children pre-terminal structures in a systematic way, 
without creating duplicates. Need only insert 1 level descendants 
for each node popped as each child has smaller or equal 
probability to the parent in one component based on the pivot 
position. 

• A node need only push those children nodes whose components  
change in the node’s pivot position or greater.



The “Next” Function
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!! L3 1 !

@@ L3 1 
! !! L3 2 !
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@

° pivot S2L3D1S1



!!L31! 0.135
!! L32! 0.09

@@L31! 0.081
!!L31@        0.0675

Consider base structure S2L3D1S1   

Generating Guesses in probability 
order

D1   1     0.45
2     0.3
3     0.25

S1    !        0.6
@      0.3
#        0.1

S2  !!         0.5
@@     0.3
##       0.2

• Push the highest probability pre-terminal into the queue:  !! l3 1!
• Pop the top value from the priority queue and print the guesses : 
• !! cat1! , !!dog1!
• Create children of popped: (@@ l3 1 !), (!! l3 2 !), (!! L3 1 @) 

and push them into the priority queue. 
• Pop the next top value. 
• Continue until queue is empty



Deadbeat dad algorithm
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When node 1 is popped nodes 2,3 are pushed. In the previous 
Next algorithm, when 2 is popped, its child node 4 is pushed. 
In the deadbeat dad algorithm however, 4 is not pushed since 2 
knows there is another dad (3) responsible for 4 and therefore 
abandons 4 for 3 to take care of it.



Container
A structure to optimize computations related to a set of 
terminals of similar type that all have identical probabilities. 

451
006
584
392
943

Prob = 0.04

bird
pass
time
ball
tree
wind

Prob = 0.01

D3 123 0.37

D3 222 0.33

D3 987 0.06

D3 451 0.04

D3 006 0.04

D3 584 0.04

D3 392 0.04

D3 943 0.04

D3 144 0.03

D3 155 0.01



The Cracking Code



ntContainerType
typedef struct ntContainerStruct { 
list <string> word;          
double probability;    //the probability of this group 
bool isBruteForce;          
int bruteForceType;          
//1=digits, 2=special, 3=letters
int bruteForceSize; 
ntContainerStruct *next;
ntContainerStruct *prev; 
}ntContainerType;

Type Name

List of string Word

Double Probability

Bool isBruteForce

Int bruteForceType

Int bruteforceSize



ntContainerType
• numWords[1] 1: length of the digits

Prob = 0.35
List of 
words:

1

Prob = 0.11
List of 
words:

4
5
6

Prob = 0.125
List of 
words:

2
3

Prob = 
0.0125
List of 
words:

isbruteForce
= true



ntContainerType
• numWords[2] 2: length of the digits

Prob = 0.07
List of 
words:

11
12
14
99

Prob = 0.02
List of 
words:

88
77
44

Prob = 0.01
List of 
words:

00
90
64
90
10

Prob = 0.006
List of 
words:

isbruteForce
= true



processProbFromFile
(specialWords, Special)

• S1 ! 0.4 | # 0.3 | $ 0.3

• specialWords[1]:

Prob = 0.4
List of 
words:

!

Prob = 0.3
List of 
words:

#
$



processProbFromFile
(specialWords, Special)

• S2 !@  0.4 | ## 0.2 | %% 0.1 | !! 0.1 | #! 0.1 | 
&& 0.05 |  !& 0.05

• specialWords[2]:

Prob = 0.4
List of 
words:

!@

Prob = 0.2
List of 
words:

##

Prob = 0.1
List of 
words:

%%
!!
#!

Prob = 0.05
List of 
words:

&&
!&



Cracker code

processBasicStruct()

• Read in all the base structures

• Pushes the highest probability pre-terminal into 
the queue

• The data structure used for this is 
pqReplacementType



pqReplacementType
typedef struct pqReplacementStruct {

double probability;      //preterminal

double base probability;  //base structure

int pivotPoint;

deque <ntContainerStruct *> replacement;

}pqReplacementType;



pqReplacementType

Type Name

Double probability

Double Base probability

Int pivotPoint

Deque <ntContainerStruct *> replacement



pqReplacementType: example 
L5D3S1 with probability 0.6

Probability = 0.00144

Base probability = 0.6

Pivot point =1

ntContainer * replacement

Prob = 0.4

List of words:
lllll

(capitalization) 

Prob = 0.3
List of words:

Ulllll
lllllU

Replacement[0]:

Prob = 0.2
List of words:

shiva
susan
trees
proud
wired

Replacement[1]:

• This is actually the first 
element that gets 
pushed into the 
pqueue



Prob = 0.2
List of words:

123 

Prob = 0.05
List of words:

999
888
777

Replacement[2]:

Prob =0.065 
List of words:

467 976
985 561
010 000
900 876
901 333

Prob = 0.15
List of words:

!
&
*

@

Prob = 0.1
List of 
words:

#
$
%
(

Replacement[3]:



Cracker Code

GenerateGuesses()

• pqueue->pop();
• createTerminal(); print the actual guesses for this pre-

terminal
• pushDeadbeat();



The Training Code



Arrays of ItemInfo

• public class ItemInfo {
public String value;
public int number;
public double percentage;
public int length;

}



Some Arrays

• grammarArray: contains the base structures

• KeyboardShapeArray: contains “rrr” stuff
KeyboardPatternArray:  “qwerty” and such
DigitArray
SpecialArray
MultiwordArray
DoubleWordArray
CapArray
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