
Sudhir Aggarwal and Shiva Houshmand
and Randy Flood
Florida State University
Department of Computer Science
E-Crime Investigative Technologies Lab
Tallahassee, Florida 32306

August 5-7, 2015

L6
Details: Training and Cracking

© Copyright 2015 E-Crime Investigative Technologies at FSU. All rights reserved

Password Cracking
University of Jyväskylä
Summer School August 2015

The Next Function
• Generates all possible different probability values

of terminals for a given base structure without any
duplication.

• A child node will never have probability higher than
its parent.

• In order to generate terminals in probability order:
A child node should never be popped from the
priority queue before all its parents have been
pushed into the queue.

• We needed efficient
next function
algorithms to generate
guesses in probabilistic
order. Our first function
was called a pivot
function. Basically we
limited which node
would create children.

• Note that the structure
to the right in not a
priority queue!

The Pivot Next Function

Priority Queue
max heap

Operations: Insert, Maximum, Extract-Max, Increase Key
Complexity of these operations?

The “Next” Function
• The pivot value (or position) is an index value of a component

starting from left to right in the node: it helps determine which new
pre-terminal structures should be inserted into the priority queue
next.

• Goal: create children pre-terminal structures in a systematic way,
without creating duplicates. Need only insert 1 level descendants
for each node popped as each child has smaller or equal
probability to the parent in one component based on the pivot
position.

• A node need only push those children nodes whose components
change in the node’s pivot position or greater.

The “Next” Function
1°,1,1

2°,1,1
1,2°,1

1,1,2°

1,3°,1 1,2,2° 1,1,3°
2,1,2°

2,2°,13°,1,1

3,1,2°
3,2°,1

2,2,2°
2,3°,1 2,1,3° 1,3,2° 1,2,3°

1,3,3°2,2,3°2,3,2°3,1,3°3,2,2°
3,3°,1
3,3,2° 3,2,3° 2,3,3°

3,3,3°

!! L3 1 !

@@ L3 1
! !! L3 2 !

!! L3 1
@

° pivot S2L3D1S1

!!L31! 0.135
!! L32! 0.09

@@L31! 0.081
!!L31@ 0.0675

Consider base structure S2L3D1S1

Generating Guesses in probability
order

D1  1 0.45
2 0.3
3 0.25

S1  ! 0.6
@ 0.3
0.1

S2  !! 0.5
@@ 0.3
0.2

• Push the highest probability pre-terminal into the queue: !! l3 1!
• Pop the top value from the priority queue and print the guesses :
• !! cat1! , !!dog1!
• Create children of popped: (@@ l3 1 !), (!! l3 2 !), (!! L3 1 @)

and push them into the priority queue.
• Pop the next top value.
• Continue until queue is empty

Deadbeat dad algorithm

1,1,1

1,2,1

1,2,2

1,1,2

0.135

0.09 0.067
5

0.045

1

2 3

4

When node 1 is popped nodes 2,3 are pushed. In the previous
Next algorithm, when 2 is popped, its child node 4 is pushed.
In the deadbeat dad algorithm however, 4 is not pushed since 2
knows there is another dad (3) responsible for 4 and therefore
abandons 4 for 3 to take care of it.

Container
A structure to optimize computations related to a set of
terminals of similar type that all have identical probabilities.

451
006
584
392
943

Prob = 0.04

bird
pass
time
ball
tree
wind

Prob = 0.01

D3 123 0.37

D3 222 0.33

D3 987 0.06

D3 451 0.04

D3 006 0.04

D3 584 0.04

D3 392 0.04

D3 943 0.04

D3 144 0.03

D3 155 0.01

The Cracking Code

ntContainerType
typedef struct ntContainerStruct {
list <string> word;
double probability; //the probability of this group
bool isBruteForce;
int bruteForceType;
//1=digits, 2=special, 3=letters
int bruteForceSize;
ntContainerStruct *next;
ntContainerStruct *prev;
}ntContainerType;

Type Name

List of string Word

Double Probability

Bool isBruteForce

Int bruteForceType

Int bruteforceSize

ntContainerType
• numWords[1] 1: length of the digits

Prob = 0.35
List of
words:

1

Prob = 0.11
List of
words:

4
5
6

Prob = 0.125
List of
words:

2
3

Prob =
0.0125
List of
words:

isbruteForce
= true

ntContainerType
• numWords[2] 2: length of the digits

Prob = 0.07
List of
words:

11
12
14
99

Prob = 0.02
List of
words:

88
77
44

Prob = 0.01
List of
words:

00
90
64
90
10

Prob = 0.006
List of
words:

isbruteForce
= true

processProbFromFile
(specialWords, Special)

• S1 ! 0.4 | # 0.3 | $ 0.3

• specialWords[1]:

Prob = 0.4
List of
words:

!

Prob = 0.3
List of
words:

#
$

processProbFromFile
(specialWords, Special)

• S2 !@ 0.4 | ## 0.2 | %% 0.1 | !! 0.1 | #! 0.1 |
&& 0.05 | !& 0.05

• specialWords[2]:

Prob = 0.4
List of
words:

!@

Prob = 0.2
List of
words:

##

Prob = 0.1
List of
words:

%%
!!
#!

Prob = 0.05
List of
words:

&&
!&

Cracker code

processBasicStruct()

• Read in all the base structures

• Pushes the highest probability pre-terminal into
the queue

• The data structure used for this is
pqReplacementType

pqReplacementType
typedef struct pqReplacementStruct {

double probability; //preterminal

double base probability; //base structure

int pivotPoint;

deque <ntContainerStruct *> replacement;

}pqReplacementType;

pqReplacementType

Type Name

Double probability

Double Base probability

Int pivotPoint

Deque <ntContainerStruct *> replacement

pqReplacementType: example
L5D3S1 with probability 0.6

Probability = 0.00144

Base probability = 0.6

Pivot point =1

ntContainer * replacement

Prob = 0.4

List of words:
lllll

(capitalization)

Prob = 0.3
List of words:

Ulllll
lllllU

Replacement[0]:

Prob = 0.2
List of words:

shiva
susan
trees
proud
wired

Replacement[1]:

• This is actually the first
element that gets
pushed into the
pqueue

Prob = 0.2
List of words:

123

Prob = 0.05
List of words:

999
888
777

Replacement[2]:

Prob =0.065
List of words:

467 976
985 561
010 000
900 876
901 333

Prob = 0.15
List of words:

!
&
*

@

Prob = 0.1
List of
words:

#
$
%
(

Replacement[3]:

Cracker Code

GenerateGuesses()

• pqueue->pop();
• createTerminal(); print the actual guesses for this pre-

terminal
• pushDeadbeat();

The Training Code

Arrays of ItemInfo

• public class ItemInfo {
public String value;
public int number;
public double percentage;
public int length;

}

Some Arrays

• grammarArray: contains the base structures

• KeyboardShapeArray: contains “rrr” stuff
KeyboardPatternArray: “qwerty” and such
DigitArray
SpecialArray
MultiwordArray
DoubleWordArray
CapArray

	L6�Details: Training and Cracking
	The Next Function
	The Pivot Next Function
	Priority Queue�max heap
	The “Next” Function
	The “Next” Function
	Generating Guesses in probability order
	Deadbeat dad algorithm
	Container
	The Cracking Code
	ntContainerType
	ntContainerType
	ntContainerType
	processProbFromFile (specialWords, Special)
	processProbFromFile (specialWords, Special)
	Cracker code
	pqReplacementType
	pqReplacementType
	pqReplacementType: example L5D3S1 with probability 0.6
	Slide Number 20
	Cracker Code
	The Training Code
	Arrays of ItemInfo
	Some Arrays

