
Sudhir Aggarwal and Shiva Houshmand

Florida State University
Department of Computer Science
E-Crime Investigative Technologies Lab
Tallahassee, Florida 32306

August 5-7, 2015

L8:
New Capabilities: Keyboard and
Multiword Patterns & Dictionaries

© Copyright 2015 E-Crime Investigative Technologies at FSU. All rights reserved

Password Cracking
University of Jyväskylä
Summer School August 2015

• Extensions
• Modeling Differences between Passwords
• Keyboard Combinations
• Better Identification of Alpha Strings
• Developing Better Attack Dictionaries
• LeetSpeak

• Summary

Outline

• Modeling Differences between
Passwords

• Keyboard Combinations
• Better Identification of Alpha

Strings
• Developing Better Attack Dictionaries
• LeetSpeak

Extensions

• I know a user’s password is alice123! and the user
has changed this password. How do I make use of
this information to crack the new password?

• Try developing a conditional probability distribution. But, we do
not have much data? And how does this help in defining a
grammar?

• Try using Edit distance (Levenshtein distance) to find passwords
close to the seed password. But how close is close?

• Try using transformational approach (s/1/2/, s/1/11/) where we
use a set of regular expressions. Simple transformation seem
ok but where do we draw the boundary?

Modeling Differences:
the problem

Levenshtein Distance 1 Algorithm

What is the corresponding
grammar for alice123!?

Base Base
Prob

Digits Digits
Prob

Symbols Symbols
Prob

L5D3S1 0.25 123 0.25 ! 0.2

L5S1D3 0.25 124 0.25 @ 0.2

L5D4S1 0.25 125 0.25 # 0.2

L5D3S2 0.25 133 0.25 $ 0.2

12 0.5 % 0.2

13 0.5 !! 0.33

1234 0.5 !# 0.33

1235 0.5 !@ 0.33

• Use the edit 1 grammar. But I want to generate
other guesses also. After all, the user might not
have made small changes and might even have
chosen a totally different password!

• This led us to the idea of merging probabilistic
context free grammars. We can actually combine
two different grammars and by extension any
number of grammars!

How should I generate
guesses?

• Let G1 and G2 be two probabilistic context-free grammars
based on our structures of base structures and
component structures. We construct a new grammar G3
that we define as the merge of G1 and G2 and we
represent it as:

G3 = α G1 + (1- α) G where 0 ≤ α ≤ 1

• Consider a grammar rule R in G1 or G2. Let the probability
of R in G1 be r1 and the probability of R in G2 be r2. (Note
that if R is not in a grammar its probability is viewed as 0.)
Then the probability r3 of R in G3 is:

r3 = α r1 + (1 - α) r2

The Merge of two grammars

L5D3S1 0.25

L5S1D3 0.25

L5D4S1 0.25

L5D3S2 0.25

123 0.25

124 0.25

125 0.25

133 0.25

12 0.5

13 0.5

1234 0.5

1235 0.5

! 0.2

@ 0.2

0.2

$ 0.2

% 0.2

!! 0.33

!# 0.33

!@ 0.33

L4D2S1 0.5

L3D3S2 0.3

L5D3S1 0.07

L6D4S2 0.05

L8D2S1 0.05

L5D3S2 0.03

999 0.6

111 0.3

123 0.1

88 0.5

11 0.5

5656 0.5

1234 0.3

0909 0.2

! 0.4

) 0.3

? 0.2

% 0.1

!! 0.3

0.3

$# 0.2

!# 0.2
Edit 1 Grammar
W1 = 0.8

Initial Grammar
W2 = 0.2

+ =

L5D3S1 0.214
L5D3S2 0.206
L5D4S1 0.2
L5S1D3 0.2
L4D2S1 0.1
L3D3S2 0.06
L6D4S2 0.01
L8D2S1 0.01
123 0.22
124 0.2
125 0.2
133 0.2
999 0.12
111 0.06
12 0.4
13 0.4
88 0.1
11 0.1
1234 0.46
1235 0.4
5656 0.1
0909 0.04
! 0.24
% 0.18
0.16
$ 0.16
@ 0.16
) 0.06
? 0.04
!! 0.324
!# 0.304
!@ 0.264
0.06
$# 0.04

• We now handle keyboard combinations and
multiwords when we want to consider edit distance
changes given a previous password

• We also consider semantic transformations to
entities such as dates incorporating possible
variations

• We are gathering data on developing attacks given
a password and a changed one. This is through a
series of surveys we have been conducting

Additional Research
Directions Explored

Demo Modeling Differences

Old
password1

Old
password2

New
password

Number of
Guesses

made to crack

Merged Or
Edit distance grammar

russell - RUSSELL 1 Edit distance
russell1 - russell 1 Edit distance
abc2009 - pm2009 4,334,388 Merged
maverick - maverick7 118 Edit distance
dreamhope - hopehope - Merged
hopeful - hopeful1 14 Edit distance
starwars - starwars1 17 Edit distance
sweetie - sweetie1 20 Edit distance
krishna - krishnap - Merged
hope77 - hope22 2,111 Merged
bland0608 - plat0608 136,066,042 Merged
milena - Milena 4 Edit distance
milena - milene - Edit distance
bluemoon1 bluemoon2 bluemoon3 1 Edit distance
moonlight - redmoonlight - Merged
1writer - writer 1 Edit distance
1blackcat - blackcat 1 Edit distance
starwars starwars5 starwars55 1 Edit distance
sweety - SWEETY 308 Merged
groove5721 - Katie5721 - Merged
171995 - may171995 47,881,797 Merged
skymoon7 - moon7sky - Merged
chomsky$po - po$chomsky - Merged
gamegreen - greendoc - Merged
d30023286 - 30023286 1 Edit distance
081983lori - 081983 1 Edit distance
243currier - 24378443 - Merged
19632439 - 19632007 - Merged
blackhawk - black7out - Merged

• Modeling Differences between
Passwords

• Keyboard Combinations
• Better Identification of Alpha

Strings
• Developing Better Attack Dictionaries
• LeetSpeak

Extensions

• What are keyboard combinations? How can we
define them?

• How useful are keyboard combinations

• How do we train for them

• How do we use them in cracking

Modeling Keyboard
Combinations

What is a Keyboard Pattern?

Classic example is “querty”
Intuitive idea is that that it is a shape on the keyboard
How do we define these shapes
How complex a model makes sense
Contiguity of characters is important

What is a shape?

u v
l c r
d e

qwerty: (q) rrrrr
zsdfvcs: (z) vrrell
1111222334: (1) cccrccrcr
Limited patterns to length 3 but allowed any case
Decided not to consider shapes which required skipping
some keys

Keyboard shapes and
patterns

Shapes Probability Patterns Probability

rrrrr 0.261 qwerty 0.182
ccccc 0.146 asdfgh 0.036
uceuc 0.038 aaaaaa 0.029
lcrlc 0.024 deedee 0.023

ueueu 0.016 poopoo 0.019
rlrlr 0.015 zxcvbn 0.016
rclrc 0.014 xxxxxx 0.014
eveve 0.013 1q2w3e 0.009

Shapes Patterns

• Keyboard combinations are physical combinations taken from the
keyboard such as qwerty

• Should we handle ambiguous grammars? Can the same string be
derived by two different parses

• This becomes a problem because the probability of each parse
must to summed to get the final probability. Eg. 23were is both
K6 and D2L4.

• Should we include keyboard combinations in the dictionaries?
Then this is not part of the grammar.

Keyboard Combinations:
Ambiguity

alice

S

NP VP

PP

S

NP VP

alice

saw

V

NPV

bob with a telescope

NP

saw NP PP

bob with a telescope

Derivation tree 1 Derivation tree 2

• The problem of ambiguity is that is we have two parse trees that
generate the same terminal string with probabilities p1 and p2, the
probability of the terminal string is the sum of these. So how do
we generate in highest probability order?

• Furthermore suppose we have alice1234. Is the 1234 a digit
string D4 or a keyboard pattern K4? Also do we really care?? And
can we tell what the password author intended?

• For example, if we have base structures L5D4 or L5K4 we would
eventually generate either one. Does it makes sense to worry
about what was intended?

Problems with Ambiguity

• The first rule is that if a substructure is purely digits
or purely special symbols, we will classify it as Di
or Si.

• The second rule is that any substring of at least 3
characters in length that does not fall under the first
rule will be classified as a Ki if it is a keyboard
pattern and is of maximal length. For example
e4e458 would be K5D1 as the maximal length
keyboard substring must be used.

Decisions about Ambiguity

Modifying the Grammar:
K structures

Password Original Keyboard

asdf L4 K4

q1q1 L1D1L1D1 K4

ASD1234QW L3D4L2 K3D4L2

$%^& S4 S4

qaz12zaq L3D2L3 K3D2K3

q1!2 L1D1S1D1 K4

• Note that “5querty” certainly has a keyboard
pattern. But “1sees” is not so clear that it is a D1K4.

• In the first case we know that querty is not really a
word (although for the specific choice that could be
argued!) but in the second case it seems more
likely that it is a word.

• So we decided to find a way to experiment with
these choices: we introduced the notion of a
training dictionary that could help us decide.

A Problem with the Decision

• While training and looking for patterns detect a
keyboard pattern such as “were” and treat it as if it
was an L structure and not a K structure

• We can filter out such K patterns with the training
dictionary

• It turns out that a training dictionary also has many
other uses

• We sometimes call the dictionary used in cracking
an attack dictionary to clearly distinguish it from the
training dictionary if necessary

Training Dictionary

• We can find keyboard patterns as we defined with or without
using our training set.

• Suppose however we want to try keyboard patterns that we did
not find in the training set.

• Just as we did for digits, we decided to smooth over keyboard
patterns. But how should we do this.

• We decided to smooth based only on the shapes we found.
Furthermore we adjust the smoothing based on the probability of
the shapes encountered.

• This was a reasonable compromise between smoothing
everything and no smoothing at all.

Smoothing Keyboard Patterns

Prob(pattern) = Prob(s) (Ni + α) / (Σ Ni + C α)

• (pattern(i, s)) = pattern is the ith keyboard pattern of shape s.

• Prob(s) is the probability of the keyboard shape s (such as r5)
given the length of the keyboard pattern

• Ni is the number of times the ith keyboard pattern (of this shape)
was found

• α is the smoothing value

• Σ Ni is the sum of counts of the patterns found for shape s

• C is the total number of unique patterns for this shape.

Smoothing Implementation

• Combined Several lists: Size of training set
• RockYou – 0.5 million
• Myspace – 31 thousand
• Hotmail – 5 thousand

• A similar (independent) set used for cracking

Experiments:
Combined-set

Results using Combined-set

CSDN-set: Chinese language forum site

• Modeling Differences between
Passwords

• Keyboard Combinations
• Better Identification of Alpha

Strings
• Developing Better Attack Dictionaries
• LeetSpeak

Extensions

• We have previous simply replaced the L component by a
dictionary word of the relevant length

• What kinds of patterns can we find in the L – structures?

• What patterns are useful?

• Note that we have already defined keyboard patterns which
involve L – structures but also other structures

• Should we focus only on the L –component part?

L- component in Base
Structures

1. Dictionary words

2. Double dictionary words

3. Double patterns

4. Other

What are we missing? Note that we decided to look
only at patterns within only a specific L – structure
but not spanning beyond that.

Initial Focus

Classification of Alpha
Strings: A-structures

Classification Example

Dictionary Word -- L password

Double dictionary word -
-R

boatboat

Double pattern -- R xyzxyz

Multiword -- X Iloveyou

Other -- L ahskdi

Further Understanding Alpha
Strings

 Let’s look at the Combined Data Set
 It has a bit over 500,000 passwords, so it is pretty big
 These are the top 5 most probable base structures
 It turns out Multiwords are very common

• Many issues arise in determining if an L structure is
a multiword

• How do we develop an algorithm to break up the multiwords

• How do we use a training dictionary

• How efficient are the algorithms

• How effective are the algorithms

• Possibly several choices in the break

• It turns out that this problem, called “word breaking or word segmentation”
has been studied in other contexts

Finding Multiwords

• Special algorithms to break up the A – string into two or three
words. (Find the first word, starting from the left (or right or both)
and check the remainder

• Give preference to breaks that have fewer words

• Recursive algorithms that break words from the left or right.

• Finding all break ups versus only one breakup

• Scoring function to choose among breakups

• What kind of training dictionary to use for finding breakups – that
is what are appropriate component words

Algorithms Explored & Issues

Alternative Reductions

String Alternative Interpretations
americarules america rules, am eric a rules
gotohell go to hell, got oh ell
woodstock woods tock, wood stock
hairspray hair spray, hairs pray
ladiesman ladies man, la dies man
Thisisit This is it, this i sit

Adding New Variables to
the Grammar

L Letter (used for Dictionary
Words and Other)

D Digit

S Symbol

K Keyboard Pattern

X Multiword

R Repeated (used for double
words and double patterns)

Deriving the grammar:
single level approach

• From the start symbol, directly get new base
structures using the new variables.

S → R8D3
S → L8D2
S → X8S1

S → R8D3 → boatboatD3 → boatboat123
S → L8D2 → passwordD2→ password11
S → X8S1 → johnmaryS1 → johnmary#

Deriving the grammar:
two level approach

• From the start symbol, derive an A structure, then get
the new base structures using the new variables

S → A8D3 A8 → R8
S → A8D2 A8 → L8
S → A8S1 A8 → X8

S → A8D3→ R8D3 → boatboatD3 → boatboat123
S → A8D2→ L8D2 → passwordD2→ password11
S → A8S1→ X8S1 → johnmaryS1 → johnmary#

• The probabilities in the two approaches would not be the
same

• The training is different: The two level approach gives
many more base structures which can be good but in
some pathological cases is a real problem

• We have basically implemented the two level approach
but not in an obvious was and the resulting files look as
before but with the new variables

• Pathological example:

aa1aa2aa3aa4aa5aa6aa7aa8aa9

Effect of the Choices

Creating “Ground Truth” for multiwords

Breakdown Agreement Comments

pr.inc Not a multiword Shortened “prince”?

i.love.you Best breakdown

let.mein Not best breakdown let.me.in

a.ms Not a multiword

em.in.em Not a multtiword name

sair.ram Not a multiword Hindi name

a.did.as Not a multiword Sports brand

parol.a Not a multiword Spanish word

mo.mph.ali Not a multiword Hindi word

• Handling the new R structure

• Similar to L structures, these are derived from a dictionary

• Essentially, when we read in the dictionary, we create a double
word dictionary with the same probabilities as the single word
dictionary

• Substituting for an R – structure thus is done using a container
that has all double words of the specific length and probability
class.

• Note that the probability of a base structure with the R structure
is learned as before and that both double word and double
pattern are treated the same way

Modifications to cracking
system: R Structures

• Handling the new X structure

• Multiwords

• Similar to Keyboards, Digits and Symbols

• Find multiwords by length: Xn

• Assign probabilities to the various multiwords found

• For multiwords, we do not do smoothing at this time

Modifications to cracking
system: X Structures

Results with Combined-set

• Modeling Differences between
Passwords

• Keyboard Combinations
• Better Identification of Alpha

Strings
• Developing Better Attack Dictionaries
• LeetSpeak

Extensions

• There are many different ways that the term “dictionary”
has been used in password cracking so it is important to
be sure how it is used in any specific context.

• It could be the set of guesses themselves

• It could be as source of passwords as well as a base for
applying mangling rules

• It could be as a language based collection of words

• It could be a as some other collection of items

• Our use is as a source of replacements for our alpha strings
and the entries are generally words in a language

Attack Dictionaries

• Probabilities can be assigned to dictionaries. These are actually indicated as
relative weights for the dictionaries in the command line.

• Suppose a dictionary has |Li| = ni words of length i. Then the probability of
each Li word is 1/ni. Note that if the fewer the number of words, the greater is
the probability of each word.

• When using multiple dictionaries the weights of words of structures Li that
occur in multiple dictionaries increases by a complex formula based on the
dictionary weights and the word weights.

• Essentially, we divide the set of words of length i into a number of classes
(the same as the number of dictionaries) with each class having elements of
the same probability. The total probability of all words of length i is 1.

• This can be viewed generating a set of containers for each for each L
structure.

Multiple Dictionaries in PPC

• Attack dictionaries have been traditionally created
in a very ad-hoc manner

• Important wordlists of previously broken passwords
(golden dictionary) may be added

• Different sized dictionary of words in different
languages can be used, etc.

• Is there any way to measure the effectiveness of a
particular dictionary?

Comparing Attack Dictionaries

• How can we measure the effectiveness of a dictionary of words
W? Let the words be {w1 … wn}.

• We developed the notion of coverage and precision with respect
to a reference set of passwords R

• A word is found in R, with I(w, R) = 1, if w is found in some L-
structure of a password in R else I(w, R) = 0.

• The count C(w, p) of a password that has k A-structures and c
instances of w is c/k

• Let RL be the subset of R that have a least 1 A-structure

How to measure
effectiveness?

𝐶𝐶(𝑊𝑊,𝑅𝑅) = 1
|𝑅𝑅𝐿𝐿|

∑𝑖𝑖=1𝑛𝑛 𝐶𝐶(𝑤𝑤𝑖𝑖 ,𝑅𝑅)

𝑃𝑃(𝑊𝑊,𝑅𝑅) = 1
|𝑊𝑊|

∑𝑖𝑖=1𝑛𝑛 𝐼𝐼(𝑤𝑤𝑖𝑖 ,𝑅𝑅)

Coverage and Precision Definitions

• Coverage measures how useful the words in the
dictionary are for cracking the passwords in the
reference set.

• For an ideal coverage of 1, every word in an A-
structure of the reference set R would be a word in
the target dictionary.

• We define a perfect dictionary (DR) as a dictionary
that has exactly those words found in R. Note that
the perfect dictionary has both coverage and
precision equal to 1.

Coverage, Precision and
Perfect Dictionary

• Combined-training: ½ million Rockyou, 31 K
MySpace, 5 K Hotmail

• Combined-test: same numbers as combined-
training but excludes any passwords chosen for
combined-training.

• Yahoo-test: 143 K from Yahoo set.

• Rockyou-test: 143 K from Rockyou set (different
passwords from before)

Passwords sets in the
Experiments

• Dic0294: Often used in password cracking. Note
that digits and special symbols have been removed
from the original Dic0294. Size 728K.

• JtR_eng Dict: Created a similar sized dictionary
from JtR wordlist collection. Size 728K.

• Rockyou Dict: Created a similar sized dictionary
from 2.5 million Rockyou set by eliminating
duplicates when stripping out the words in the A-
structures. Size 728K.

Base Dictionaries in the
Experiments

DICTIONARY SIZE COVERAGE PRECISION

Rockyou dict 728,376 0.74 0.11

dic0294 728,216 0.55 0.06

Jtr_En dict 728,749 0.49 0.05

Dictionaries with reference set
Combined-test. Calculating Coverage
and Precision

Cracking Yahoo-test

• Goal: systematically improve a given dictionary

• Start with baseline dic0294 – improve Coverage
and or Precision

• First explored improving coverage while keeping
Precision fixed

• Then explored improving precision while keeping
coverage fixed

Improving Dictionaries

• Let D be baseline dic0294 with (C, P) = (0.55,
0.06). Let ct be the reference set combined-test.
Let Dct be the perfect dictionary for the reference
set.

• Add nr words from Dct (in highest coverage
order) to D. In order to maintain precision P also
add nn words not in Dct to D.

• Created dic0294_c70 and dic0294_c90 (P= 0.06)

• Can you figure out precisely how and how many
words to add?

Improving Coverage wrt
Reference Combined-test

• Let D be baseline dic0294 with (C, P) = (0.55, 0.06).
Let ct be the reference set combined-test. Let Dct be
the perfect dictionary for the reference set.

• We removed words not in ct from the dictionary D
to increase precision. Sizes of the dictionaries
decreased to 450K and 225K.

• Created dic0294_p10 and dic0294_p20 (C= 0.55)

• Can you increase both precision and coverage?

Improving Precision wrt
Reference Combined-test

coverage and precision of
improved dictionaries with
respect to target sets

YAHOO-TEST ROCKYOU-TEST

COVERAGE PRECISION COVERAGE PRECISION

dic0294 0.57 0.037 0.54 0.03

dic0294_c70 0.71 0.028 0.69 0.02

dic0294_c90 0.9 0.025 0.89 0.02

dic0294_p10 0.53 0.051 0.52 0.04

dic0294_p20 0.50 0.087 0.5 0.075

Actual cracking with
improved coverage

Fig A.
Target is
Yahoo-test

Fig B.
Target is
Rockyou-test

Actual cracking with
improved precision

Fig A.
Target is
Yahoo-test

Fig B.
Target is
Rockyou-test

• Improving coverage and precision can be done

• Reference set idea seems good and may
accurately reflect estimates of the utility of various
dictionaries on target sets.

• Coverage seems more important than precision

• We were able to improve the cracking substantially
by improving the dictionary.

Dictionaries Summary

• Modeling Differences between
Passwords

• Keyboard Combinations
• Better Identification of Alpha

Strings
• Developing Better Attack Dictionaries
• LeetSpeak

Extensions

Transformation of
Words - LeetSpeak

Dictionary Word Transformed Word

password p@ssword

password passw0rd

fool F0ol

will w1ll

facebook faceb00k

How common are such
replacements

Length #non-leet #leet probability of LeetSpeak
4 1520 1 0.0006574621959237344

5 30657 40 0.0013030589308401473

6 129172 482 0.003717586807965817

7 89089 399 0.004458698372966208

8 79261 261 0.003282110610900128

9 44927 88 0.0019549039209152503

10 28317 35 0.0012344808126410836

11 14775 1 6.76773145641581e-05

12 8869 1 0.00011273957158962796

14 3301 1 0.0003028467595396729

16 1288 1 0.0007757951900698216

Defining replacement
structure

Dictionary Word Potential Replacement
Structure

password asso
leet ee
sail ail
bail ail
fail ail
randy a
mars as

Specific Replacements

Potential
Replacement
Structure

Specific
Replacement
Structure

Probability

asso SaNsNsSo 0.2156

asso NaNsNsSo 0.7647

asso NaSsSsSo 0.0196

• Multiple replacements for the same character

• I and L can both be replaced by a “1”

• Is the password “111” a DDD or a EEE?

• ILL may also be in the dictionary

• Whole word replacements or partial

• Smoothing

Some Issues

Results using all the techniques

• We have added many enhancements to make
our approach much more effective and useful

• In particular, we have developed systematic
approaches for keyboard combinations and
identification of alpha strings

• We have defined a new approaches to modeling
differences and targeted attacks

• We have explored the use of training dictionaries
and attack dictionaries

Summary

M. Dell’Amico, P. Michiardi and Y. Roudier. 2010. Password strength: an empirical
analysis. Proceedings of IEEE INFOCOM 2010.
P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin,
L. F. Cranor, and J. Lopez. 2012. Guess again (and again and again): measuring
password strength by simulating password-cracking algorithms. Proceedings of the
2012 IEEE Symposium on Security and Privacy, pp 523-537.
Y. Zhang, F. Monrose, and M. K. Reiter. 2010. The security of modern password
expiration: an algorithmic framework and empirical analysis. Proceedings of ACM
CCS’10.
Ur, Blase, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass,
Michelle L. Mazurek, Timothy Passaro et al. "How does your password measure up?
The effect of strength meters on password creation." In Proc. USENIX Security. 2012.
Rao, Ashwini, Birendra Jha, and Gananand Kini. "Effect of grammar on security of
long passwords." Proceedings of the third ACM conference on Data and application
security and privacy. ACM, 2013.
Ari Juels and Ronald L. Rivest, “Honeywords: Making Password-Cracking Detectable,”
preprint MIT CSAIL, May 2, 2013. http://people.csail.mit.edu/rivest/pubs/JR13.pdf

Some references to our work

http://people.csail.mit.edu/rivest/pubs/JR13.pdf

Our work
M. Weir, Sudhir Aggarwal, Breno de Medeiros, Bill Glodek,
“Password cracking using probabilistic context free grammars,”
Proceedings of the 30th IEEE Symposium on Security and
Privacy, May 2009, pp. 391-405.

M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics
for password creation policies by attacking large sets of revealed
passwords,” Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS '10), October 4-8,
2010, pp. 163-175.

Shiva Houshmand, Sudhir Aggarwal, “Building better passwords
using probabilistic techniques,” Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC ’12),
December 2012, pp. 109-118.

Houshmand, S.; Aggarwal, S.; Flood, R., "Next Gen PCFG
Password Cracking," Information Forensics and Security, IEEE
Transactions on , vol.10, no.8, pp.1776,1791, Aug. 2015

Thanks!
Questions/Comments?

	L8:�New Capabilities: Keyboard and Multiword Patterns & Dictionaries
	Outline
	Extensions
	Modeling Differences: the problem
	Slide Number 5
	What is the corresponding grammar for alice123!?
	How should I generate guesses?
	The Merge of two grammars
	Slide Number 9
	Additional Research Directions Explored
	Demo Modeling Differences
	Slide Number 12
	Extensions
	Modeling Keyboard Combinations
	What is a Keyboard Pattern?
	What is a shape?
	Keyboard shapes and patterns
	Keyboard Combinations:�Ambiguity
	Slide Number 19
	Problems with Ambiguity
	Decisions about Ambiguity
	Modifying the Grammar:�K structures
	A Problem with the Decision
	Training Dictionary
	Slide Number 25
	Slide Number 26
	Smoothing Keyboard Patterns
	Smoothing Implementation
	Experiments: Combined-set
	Slide Number 30
	Slide Number 31
	Extensions
	L- component in Base Structures
	Initial Focus
	Classification of Alpha Strings: A-structures
	Further Understanding Alpha Strings
	Finding Multiwords
	Algorithms Explored & Issues
	Alternative Reductions
	Adding New Variables to the Grammar
	Deriving the grammar: single level approach
	Deriving the grammar: two level approach
	Effect of the Choices
	Slide Number 44
	Modifications to cracking system: R Structures
	Modifications to cracking system: X Structures
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Extensions
	Attack Dictionaries
	Multiple Dictionaries in PPC
	Comparing Attack Dictionaries
	How to measure effectiveness?
	Coverage and Precision Definitions
	Coverage, Precision and Perfect Dictionary
	Passwords sets in the Experiments
	Base Dictionaries in the Experiments
	Slide Number 59
	Cracking Yahoo-test
	Improving Dictionaries
	Improving Coverage wrt Reference Combined-test
	Improving Precision wrt Reference Combined-test
	coverage and precision of improved dictionaries with respect to target sets
	Actual cracking with improved coverage
	Actual cracking with improved precision
	Dictionaries Summary
	Extensions
	Transformation of Words - LeetSpeak
	How common are such replacements
	Defining replacement structure
	Specific Replacements
	Some Issues
	Results using all the techniques
	Summary
	Some references to our work
	Our work
	Thanks!�Questions/Comments?

