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• I know a user’s password is alice123! and the user 
has changed this password. How do I make use of 
this information to crack the new password?

• Try developing a conditional probability distribution. But, we do 
not have much data? And how does this help in defining a 
grammar?

• Try using Edit distance (Levenshtein distance) to find passwords 
close to the seed password. But how close is close?

• Try using transformational approach (s/1/2/, s/1/11/) where we 
use a set of regular expressions. Simple transformation seem 
ok but where do we draw the boundary?

Modeling Differences: 
the problem



Levenshtein Distance 1 Algorithm



What is the corresponding 
grammar for alice123!?

Base Base
Prob

Digits Digits
Prob

Symbols Symbols
Prob

L5D3S1 0.25 123 0.25 ! 0.2

L5S1D3 0.25 124 0.25 @ 0.2

L5D4S1 0.25 125 0.25 # 0.2

L5D3S2 0.25 133 0.25 $ 0.2

12 0.5 % 0.2

13 0.5 !! 0.33

1234 0.5 !# 0.33

1235 0.5 !@ 0.33



• Use the edit 1 grammar. But I want to generate 
other guesses also. After all, the user might not 
have made small changes and might even have 
chosen a totally different password!

• This led us to the idea of merging probabilistic 
context free grammars. We can actually combine 
two different grammars and by extension any 
number of grammars!

How should I generate 
guesses?



• Let G1 and G2 be two probabilistic context-free grammars 
based on our structures of base structures and 
component structures. We construct a new grammar G3
that we define as the merge of G1 and G2 and we 
represent it as:

G3 = α G1 + (1- α) G     where 0 ≤ α ≤ 1

• Consider a grammar rule R in G1 or G2. Let the probability 
of R in G1 be r1 and the probability of R in G2 be r2. (Note 
that if R is not in a grammar its probability is viewed as 0.) 
Then the probability r3 of R in G3 is:

r3 = α r1 + (1 - α) r2

The Merge of two grammars



L5D3S1 0.25

L5S1D3 0.25

L5D4S1 0.25

L5D3S2 0.25

123 0.25

124 0.25

125 0.25

133 0.25

12 0.5

13 0.5

1234 0.5

1235 0.5

! 0.2

@ 0.2

# 0.2

$ 0.2

% 0.2

!! 0.33

!# 0.33

!@ 0.33

L4D2S1 0.5

L3D3S2 0.3

L5D3S1 0.07

L6D4S2 0.05

L8D2S1 0.05

L5D3S2 0.03

999 0.6

111 0.3

123 0.1

88 0.5

11 0.5

5656 0.5

1234 0.3

0909 0.2

! 0.4

) 0.3

? 0.2

% 0.1

!! 0.3

## 0.3

$# 0.2

!# 0.2
Edit 1 Grammar
W1 = 0.8

Initial Grammar 
W2 = 0.2

+ =

L5D3S1 0.214
L5D3S2 0.206
L5D4S1 0.2
L5S1D3 0.2
L4D2S1 0.1
L3D3S2 0.06
L6D4S2 0.01
L8D2S1 0.01
123 0.22
124 0.2
125 0.2
133 0.2
999 0.12
111 0.06
12 0.4
13 0.4
88 0.1
11 0.1
1234 0.46
1235 0.4
5656 0.1
0909 0.04
! 0.24
% 0.18
# 0.16
$ 0.16
@ 0.16
) 0.06
? 0.04
!! 0.324
!# 0.304
!@ 0.264
## 0.06
$# 0.04



• We now handle keyboard combinations and 
multiwords when we want to consider edit distance 
changes given a previous password

• We also consider semantic transformations to 
entities such as dates incorporating possible 
variations

• We are gathering data on developing attacks given 
a password and a changed one. This is through a 
series of surveys we have been conducting

Additional Research 
Directions Explored



Demo Modeling Differences



Old
password1

Old
password2

New
password

Number of 
Guesses 

made to crack

Merged Or
Edit distance grammar

russell - RUSSELL 1 Edit distance
russell1 - russell 1 Edit distance
abc2009 - pm2009 4,334,388 Merged
maverick - maverick7 118 Edit distance
dreamhope - hopehope - Merged
hopeful - hopeful1 14 Edit distance
starwars - starwars1 17 Edit distance
sweetie - sweetie1 20 Edit distance
krishna - krishnap - Merged
hope77 - hope22 2,111 Merged
bland0608 - plat0608 136,066,042 Merged
milena - Milena 4 Edit distance
milena - milene - Edit distance
bluemoon1 bluemoon2 bluemoon3 1 Edit distance
moonlight - redmoonlight - Merged
1writer - writer 1 Edit distance
1blackcat - blackcat 1 Edit distance
starwars starwars5 starwars55 1 Edit distance
sweety - SWEETY 308 Merged
groove5721 - Katie5721 - Merged
171995 - may171995 47,881,797 Merged
skymoon7 - moon7sky - Merged
chomsky$po - po$chomsky - Merged
gamegreen - greendoc - Merged
d30023286 - 30023286 1 Edit distance
081983lori - 081983 1 Edit distance
243currier - 24378443 - Merged
19632439 - 19632007 - Merged
blackhawk - black7out - Merged
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• What are keyboard combinations? How can we 
define them?

• How useful are keyboard combinations

• How do we train for them

• How do we use them in cracking

Modeling Keyboard 
Combinations



What is a Keyboard Pattern?

Classic example is “querty”
Intuitive idea is that that it is a shape on the keyboard
How do we define these shapes
How complex a model makes sense
Contiguity of characters is important



What is a shape?

u  v
l  c  r
d  e

qwerty: (q) rrrrr
zsdfvcs: (z) vrrell
1111222334: (1) cccrccrcr
Limited patterns to length 3 but allowed any case
Decided not to consider shapes which required skipping 
some keys  



Keyboard shapes and 
patterns

Shapes Probability Patterns Probability

rrrrr 0.261 qwerty 0.182
ccccc 0.146 asdfgh 0.036
uceuc 0.038 aaaaaa 0.029
lcrlc 0.024 deedee 0.023

ueueu 0.016 poopoo 0.019
rlrlr 0.015 zxcvbn 0.016
rclrc 0.014 xxxxxx 0.014
eveve 0.013 1q2w3e 0.009

Shapes                    Patterns



• Keyboard combinations are physical combinations taken from the 
keyboard such as qwerty

• Should we handle ambiguous grammars? Can the same string be 
derived by two different parses

• This becomes a problem because the probability of each parse 
must to summed to get the final probability. Eg. 23were is both 
K6 and D2L4.

• Should we include keyboard combinations in the dictionaries? 
Then this is not part of the grammar.

Keyboard Combinations:
Ambiguity



alice

S

NP VP

PP

S

NP VP

alice

saw

V

NPV

bob with a telescope

NP

saw NP PP

bob with a telescope

Derivation tree 1 Derivation tree 2



• The problem of ambiguity is that is we have two parse trees that 
generate the same terminal string with probabilities p1 and p2, the 
probability of the terminal string is the sum of these. So how do 
we generate in highest probability order?

• Furthermore suppose we have alice1234. Is the 1234 a digit 
string D4 or a keyboard pattern K4? Also do we really care?? And 
can we tell what the password author intended?

• For example, if we have base structures L5D4 or L5K4 we would 
eventually generate either one. Does it makes sense to worry 
about what was intended?

Problems with Ambiguity



• The first rule is that if a substructure is purely digits 
or purely special symbols, we will classify it as Di
or Si.

• The second rule is that any substring of at least 3 
characters in length that does not fall under the first 
rule will be classified as a Ki if it is a keyboard 
pattern and is of maximal length. For example 
e4e458 would be K5D1 as the maximal length 
keyboard substring must be used.

Decisions about Ambiguity



Modifying the Grammar:
K structures

Password Original Keyboard 

asdf L4 K4

q1q1 L1D1L1D1 K4

ASD1234QW L3D4L2 K3D4L2

$%^& S4 S4

qaz12zaq L3D2L3 K3D2K3

q1!2 L1D1S1D1 K4



• Note that “5querty”  certainly has  a keyboard 
pattern. But “1sees” is not so clear that it is a D1K4.

• In the first case we know that querty is not really a 
word (although for the specific choice that could be 
argued!) but in the second case it seems more 
likely that it is a word.

• So we decided to find a way to experiment with 
these choices: we introduced the notion of a 
training dictionary that could help us decide.

A Problem with the Decision



• While training and looking for patterns detect a 
keyboard pattern such as “were” and treat it as if it 
was an L structure and not a K structure

• We can filter out such K patterns with the training 
dictionary

• It turns out that a training dictionary also has many 
other uses

• We sometimes call the dictionary used in cracking 
an attack dictionary to clearly distinguish it from the 
training dictionary if necessary

Training Dictionary







• We can find keyboard patterns as we defined with or without 
using our training set.

• Suppose however we want to try keyboard patterns that we did 
not find in the training set.

• Just as we did for digits, we decided to smooth over keyboard 
patterns. But how should we do this.

• We decided to smooth based only on the shapes we found. 
Furthermore we adjust the smoothing based on the probability of 
the shapes encountered.

• This was a reasonable compromise between smoothing 
everything and no smoothing at all.

Smoothing Keyboard Patterns



Prob(pattern) = Prob(s) (Ni + α) / (Σ Ni + C α)

• (pattern(i, s)) = pattern is the ith keyboard pattern of shape s.

• Prob(s) is the probability of the keyboard shape s (such as r5) 
given the length of the keyboard pattern

• Ni is the number of times the ith keyboard pattern (of this shape)
was found

• α is the smoothing  value

• Σ Ni is the sum of counts of the patterns found for shape s

• C is the total number of unique patterns for this shape.

Smoothing Implementation



• Combined Several lists: Size of training set
• RockYou – 0.5 million
• Myspace – 31 thousand
• Hotmail – 5 thousand

• A similar (independent) set used for cracking

Experiments: 
Combined-set



Results using Combined-set



CSDN-set: Chinese language forum site 
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• We have previous simply replaced the L component by a 
dictionary word of the relevant length

• What kinds of patterns can we find in the L – structures?

• What patterns are useful?

• Note that we have already defined keyboard patterns which 
involve L – structures but also other structures

• Should we focus only on the L –component part?

L- component in Base 
Structures



1. Dictionary words

2. Double dictionary words

3. Double patterns

4. Other

What are we missing? Note that we decided to look 
only at patterns within only a specific L – structure 
but not spanning beyond that.

Initial Focus



Classification of Alpha 
Strings: A-structures

Classification Example

Dictionary Word  -- L password

Double dictionary word -
-R

boatboat

Double pattern -- R xyzxyz

Multiword -- X Iloveyou

Other -- L ahskdi



Further Understanding Alpha 
Strings

 Let’s look at the Combined Data Set
 It has a bit over 500,000 passwords, so it is pretty big
 These are the top 5 most probable base structures
 It turns out Multiwords are very common



• Many issues arise in determining if an L structure is 
a multiword

• How do we develop an algorithm to break up the multiwords

• How do we use a training dictionary

• How efficient are the algorithms

• How effective are the algorithms

• Possibly several choices in the break 

• It turns out that this problem, called “word breaking or word segmentation” 
has been studied in other contexts

Finding Multiwords



• Special algorithms to break up the A – string into two or three 
words. (Find the first word, starting from the left (or right or both) 
and check the remainder

• Give preference to breaks that have fewer words

• Recursive algorithms that break words from the left or right.

• Finding all break ups versus only one breakup

• Scoring function to choose among breakups

• What kind of training dictionary to use for finding breakups – that 
is what are appropriate component words

Algorithms  Explored & Issues



Alternative Reductions

String Alternative Interpretations
americarules america rules, am eric a rules
gotohell go to hell, got oh ell
woodstock woods tock, wood stock
hairspray hair spray, hairs pray
ladiesman ladies man, la dies man
Thisisit This is it, this i sit



Adding New Variables to 
the Grammar

L Letter (used for Dictionary 
Words and Other)

D Digit

S Symbol

K Keyboard Pattern

X Multiword

R Repeated (used for double
words and double patterns)



Deriving the grammar: 
single level approach

• From the start symbol, directly get new base
structures using the new variables.

S → R8D3
S → L8D2
S → X8S1

S → R8D3 → boatboatD3 → boatboat123
S → L8D2 → passwordD2→ password11
S → X8S1 → johnmaryS1 → johnmary#



Deriving the grammar: 
two level approach

• From the start symbol, derive an A structure, then get
the new base structures using the new variables

S → A8D3 A8 → R8
S → A8D2 A8 → L8
S → A8S1 A8 → X8

S → A8D3→ R8D3 → boatboatD3 → boatboat123
S → A8D2→ L8D2 → passwordD2→ password11
S → A8S1→ X8S1 → johnmaryS1 → johnmary#



• The probabilities in the two approaches would not be the 
same

• The training is different: The two level approach gives 
many more base structures which can be good but in 
some pathological cases is a real problem

• We have basically implemented the two level approach 
but not in an obvious was and the resulting files look as 
before but with the new variables 

• Pathological example:

aa1aa2aa3aa4aa5aa6aa7aa8aa9

Effect of the Choices



Creating “Ground Truth” for multiwords

Breakdown Agreement Comments

pr.inc Not a multiword Shortened “prince”?

i.love.you Best breakdown

let.mein Not best breakdown let.me.in

a.ms Not a multiword

em.in.em Not a multtiword name

sair.ram Not a multiword Hindi name

a.did.as Not a multiword Sports brand

parol.a Not a multiword Spanish word

mo.mph.ali Not a multiword Hindi word



• Handling the new R structure 

• Similar to L structures, these are derived from a dictionary

• Essentially, when we read in the dictionary, we create a double 
word dictionary with the same probabilities as the single word 
dictionary

• Substituting for an R – structure thus is done using a container 
that has all double words of the specific length and probability 
class.

• Note that the probability of a base structure with the R structure 
is learned as before and that both double word and double 
pattern are treated the same way

Modifications to cracking 
system: R Structures



• Handling the new X structure 

• Multiwords

• Similar to Keyboards, Digits and Symbols

• Find multiwords by length: Xn

• Assign probabilities to the various multiwords found

• For multiwords, we do not do smoothing at this time

Modifications to cracking 
system: X Structures



Results with Combined-set
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• There are many different ways that the term “dictionary” 
has been used in password cracking so it is important to 
be sure how it is used in any specific context.

• It could be the set of guesses themselves

• It could be as source of passwords as well as a base for 
applying mangling rules

• It could be as a language based collection of words

• It could be a as some other collection of items

• Our use is as a source of replacements for our alpha strings 
and the entries are generally words in a language

Attack Dictionaries



• Probabilities can be assigned to dictionaries. These are actually indicated as 
relative weights for the dictionaries in the command line.

• Suppose a dictionary has |Li| = ni words of length i. Then the probability of 
each Li word is 1/ni. Note that if the fewer the number of words, the greater is 
the probability of each word.

• When using multiple dictionaries the weights of words of structures Li that 
occur in multiple dictionaries increases by a complex formula based on the 
dictionary weights and the word weights.

• Essentially, we divide the set of words of length i into a number of classes 
(the same as the number of dictionaries) with each class having elements of 
the same probability. The total probability of all words of length i is 1.

• This can be viewed generating a set of containers for each for each L 
structure. 

Multiple Dictionaries in PPC



• Attack dictionaries have been traditionally created 
in a very ad-hoc manner

• Important wordlists of previously broken passwords 
(golden dictionary) may be added

• Different sized dictionary of words in different 
languages can be used, etc.

• Is there any way to measure the effectiveness of a 
particular dictionary?

Comparing Attack Dictionaries



• How can we measure the effectiveness of a dictionary of words 
W? Let the words be {w1 … wn}.

• We developed the notion of coverage and precision with respect 
to a reference set of passwords R

• A word is found in R, with I(w, R) = 1, if w is found in some L-
structure of a password in R else I(w, R) = 0.

• The count C(w, p) of a password that has k A-structures and c 
instances of w is c/k

• Let RL be the subset of R that have a least 1 A-structure

How to measure 
effectiveness?



𝐶𝐶(𝑊𝑊,𝑅𝑅) = 1
|𝑅𝑅𝐿𝐿|

∑𝑖𝑖=1𝑛𝑛 𝐶𝐶(𝑤𝑤𝑖𝑖 ,𝑅𝑅)

𝑃𝑃(𝑊𝑊,𝑅𝑅) = 1
|𝑊𝑊|

∑𝑖𝑖=1𝑛𝑛 𝐼𝐼(𝑤𝑤𝑖𝑖 ,𝑅𝑅)

Coverage and Precision Definitions



• Coverage measures how useful the words in the 
dictionary are for cracking the passwords in the 
reference set.

• For an ideal coverage of 1, every word in an A-
structure of the reference set R would be a word in 
the target dictionary. 

• We define a perfect dictionary (DR) as a dictionary 
that has exactly those words found in R. Note that 
the perfect dictionary has both coverage and 
precision equal to 1.

Coverage, Precision and 
Perfect Dictionary



• Combined-training: ½ million Rockyou, 31 K 
MySpace, 5 K Hotmail

• Combined-test: same numbers as combined-
training but excludes any passwords chosen for 
combined-training.

• Yahoo-test: 143 K from Yahoo set.

• Rockyou-test: 143 K from Rockyou set (different 
passwords from before)

Passwords sets in the 
Experiments



• Dic0294: Often used in password cracking. Note 
that digits and special symbols have been removed 
from the original Dic0294. Size 728K. 

• JtR_eng Dict: Created a similar sized dictionary 
from JtR wordlist collection. Size 728K. 

• Rockyou Dict: Created a similar sized dictionary 
from 2.5 million Rockyou set by eliminating 
duplicates when stripping out the words in the A-
structures. Size 728K.

Base Dictionaries in the 
Experiments



DICTIONARY SIZE COVERAGE PRECISION

Rockyou dict 728,376 0.74 0.11

dic0294 728,216 0.55 0.06

Jtr_En dict 728,749 0.49 0.05

Dictionaries with reference set
Combined-test. Calculating Coverage 
and Precision



Cracking Yahoo-test



• Goal: systematically improve a given dictionary

• Start with baseline dic0294 – improve Coverage 
and or Precision

• First explored improving coverage while keeping 
Precision fixed

• Then explored improving precision while keeping 
coverage fixed

Improving Dictionaries



• Let D be baseline dic0294 with (C, P) = (0.55, 
0.06). Let ct be the reference set combined-test. 
Let Dct be the perfect dictionary for the reference 
set.

• Add nr words from Dct (in highest coverage 
order) to D. In order to maintain precision P also 
add nn words not in Dct to D.

• Created dic0294_c70 and dic0294_c90 (P= 0.06)

• Can you figure out precisely how and how many 
words to add?

Improving Coverage wrt
Reference Combined-test 



• Let D be baseline dic0294 with (C, P) = (0.55, 0.06). 
Let ct be the reference set combined-test. Let Dct be 
the perfect dictionary for the reference set.

• We removed words not in ct from the dictionary D 
to increase precision. Sizes of the dictionaries 
decreased to 450K and 225K.

• Created dic0294_p10 and dic0294_p20 (C= 0.55)

• Can you increase both precision and coverage?

Improving Precision wrt
Reference Combined-test 



coverage and precision of 
improved dictionaries with 
respect to target sets

YAHOO-TEST ROCKYOU-TEST

COVERAGE PRECISION COVERAGE PRECISION

dic0294 0.57 0.037 0.54 0.03

dic0294_c70 0.71 0.028 0.69 0.02

dic0294_c90 0.9 0.025 0.89 0.02

dic0294_p10 0.53 0.051 0.52 0.04

dic0294_p20 0.50 0.087 0.5 0.075



Actual cracking with 
improved coverage

Fig A.
Target is 
Yahoo-test

Fig B.
Target is 
Rockyou-test



Actual cracking with 
improved precision

Fig A.
Target is 
Yahoo-test

Fig B.
Target is 
Rockyou-test



• Improving coverage and precision can be done

• Reference set idea seems good and may 
accurately reflect estimates of the utility of various 
dictionaries on target sets.

• Coverage seems more important than precision

• We were able to improve the cracking substantially 
by improving the dictionary.

Dictionaries Summary
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Transformation of 
Words - LeetSpeak

Dictionary Word Transformed Word

password p@ssword

password passw0rd

fool F0ol

will w1ll

facebook faceb00k



How common are such 
replacements

Length #non-leet #leet probability of LeetSpeak
4 1520 1 0.0006574621959237344

5 30657 40 0.0013030589308401473

6 129172 482 0.003717586807965817

7 89089 399 0.004458698372966208

8 79261 261 0.003282110610900128

9 44927 88 0.0019549039209152503

10 28317 35 0.0012344808126410836

11 14775 1 6.76773145641581e-05

12 8869 1 0.00011273957158962796

14 3301 1 0.0003028467595396729

16 1288 1 0.0007757951900698216



Defining replacement 
structure

Dictionary Word Potential Replacement 
Structure

password asso
leet ee
sail ail
bail ail
fail ail
randy a
mars as



Specific Replacements

Potential 
Replacement 
Structure

Specific 
Replacement 
Structure

Probability

asso SaNsNsSo 0.2156

asso NaNsNsSo 0.7647

asso NaSsSsSo 0.0196



• Multiple replacements for the same character

• I and L can both be replaced by a “1”

• Is the password “111” a DDD or a EEE?

• ILL may also be in the dictionary

• Whole word replacements or partial

• Smoothing

Some Issues



Results using all the techniques



• We have added many enhancements to make 
our approach much more effective and useful

• In particular, we have developed systematic 
approaches for keyboard combinations and 
identification of alpha strings

• We have defined a new approaches to modeling 
differences and targeted attacks

• We have explored the use of training dictionaries 
and attack dictionaries 

Summary



M. Dell’Amico, P. Michiardi and Y. Roudier. 2010. Password strength: an empirical 
analysis. Proceedings of IEEE INFOCOM 2010.
P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin, 
L. F. Cranor, and J. Lopez. 2012. Guess again (and again and again): measuring 
password strength by simulating password-cracking algorithms. Proceedings of the 
2012 IEEE Symposium on Security and Privacy, pp 523-537.
Y. Zhang, F. Monrose, and M. K. Reiter. 2010. The security of modern password 
expiration: an algorithmic framework and empirical analysis. Proceedings of ACM 
CCS’10.
Ur, Blase, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass, 
Michelle L. Mazurek, Timothy Passaro et al. "How does your password measure up? 
The effect of strength meters on password creation." In Proc. USENIX Security. 2012.
Rao, Ashwini, Birendra Jha, and Gananand Kini. "Effect of grammar on security of 
long passwords." Proceedings of the third ACM conference on Data and application 
security and privacy. ACM, 2013.
Ari Juels and Ronald L. Rivest, “Honeywords: Making Password-Cracking Detectable,” 
preprint MIT CSAIL, May 2, 2013. http://people.csail.mit.edu/rivest/pubs/JR13.pdf

Some references to our work

http://people.csail.mit.edu/rivest/pubs/JR13.pdf


Our work
M. Weir, Sudhir Aggarwal, Breno de Medeiros, Bill Glodek, 
“Password cracking using probabilistic context free grammars,” 
Proceedings of the 30th IEEE Symposium on Security and 
Privacy, May 2009, pp. 391-405. 

M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics 
for password creation policies by attacking large sets of revealed 
passwords,” Proceedings of the 17th ACM Conference on 
Computer and Communications Security (CCS '10), October 4-8, 
2010, pp. 163-175.

Shiva Houshmand, Sudhir Aggarwal, “Building better passwords 
using probabilistic techniques,” Proceedings of the 28th Annual 
Computer Security Applications Conference (ACSAC ’12), 
December 2012, pp. 109-118. 

Houshmand, S.; Aggarwal, S.; Flood, R., "Next Gen PCFG 
Password Cracking," Information Forensics and Security, IEEE 
Transactions on , vol.10, no.8, pp.1776,1791, Aug. 2015



Thanks!
Questions/Comments?
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