Building Better Passwords using Probabilistic Techniques

Shiva Houshmand

Sudhir Aggarwal

Florida State University Department of Computer Science E-Crime Investigative Technologies Laboratory

© 2015 Shiva Houshmand. All rights reserved

Outline

Introduction

- Problems with passwords
- Probabilistic password cracking using grammars
 - Training
 - Cracking
- Our approach analysis and modification
 - The AMPs system
 - Estimating strength of password
 - Modifying the password
 - Updating AMPs over time
- Entropy measures in updating the system

Introduction

 Passwords are still the most common means of securing computer systems and websites.

 Most users do not have the information to ensure that they are using a "strong" password.

Why great care and consideration should be taken when selecting the proper password

Existing problems with passwords

- Rule-based password creation policies
 - Inconsistent
 - Confusing
 - Frustrating

- Password checkers
 - No scientific basis

			I VACKA /
Website	Length	Digit	Special char
Chase.com	7-32	1	Not allowed
Bank of America	8-20	1	Certain ones allowed
Ets.org	8-16	1	At least one
Banana Republic	5-20	-	Not allowed

Microsoft Safety & Security Centre Check your password—is it strong? Test the strength of your passwords: Type a password into the box. Password: aaaaaaaaaaaaaa Strength: Strength: Weak

alice123!

Services	Strength sc	ores
Apple	Moderate	2/3
Dropbox	Very Weak	1/5
Drupal	Strong	4/4
eBay		-/5
FedEx	Very Weak	1/5
Google	Good	4/5
Intel	Oh No!	1/2
Microsoft (v1)	Strong	3/4
Microsoft (v2)	Weak	1/4
Microsoft (v3)	Medium	2/4
PayPal	Strong	4/4
QQ	Strong	4/4
Skype	Medium	2/3
Twitter	Perfect	6/6
Yahoo!	Very Strong	4/4
12306.cn	Average	2/3

Analyze and Modify Passwords Abstract

Probabilistic password attack [Weir, Aggarwal and De Medeiros]

Infer a probabilistic context-free gram

- Infer a probabilistic context-free grammar from datasets
 - Some words are more likely than others
 - Password, monkey, football
 - Some mangling rules are more likely than others
 - Capitalize the first letter, add the digits at the end
 - Assign probability to dictionary words, digits, symbols, mangling rules

Probabilistic password attack

Training

- Construct the context-free grammar
 - Parse every password into base structures and count their frequency.
 - Base structures consist of L (alpha sequences), D (digits), S (symbols), M(capitalization)
 - Base structure also includes length information

Probabilistic password attack

Training

Training Set		$S \rightarrow S \rightarrow$	L_4D_2 $D_1L_4S_1$	0.5 0.25
tiny99		S→	$L_4D_1S_1$	0.25
1pass! this2!		$D_2 \rightarrow$	99	0.7
star99	Training	$D_2 \rightarrow$	11	0.3
•		$D_1 \rightarrow$	1	0.8
•		$D_1 \rightarrow$	2	0.2
tree99		$S_1 \rightarrow$!	1.0
burn1! 1star!		$L_4 \rightarrow$	alex	0.1
down11		$S \rightarrow * alex2$ 0.25×0.1	! With p × 0.2 × 1.0 =	orobability = 0.005

Note: Alpha sequence probabilities come from dictionaries and are equal to $1/n_L$, where n_L is the number of words in the dictionary of length L.

Probabilistic password attack						
Generating the guesses				alex 99 andy 99 beta 99 	0.035	
S→	L ₄ D ₂	0.5		1 alex ! 1 andy !		
S→	$D_1L_4S_1$	0.25		 alex 1 !	0.02	
S→	$L_4D_1S_1$	0.25		andy 1 ! 		
$D_2 \rightarrow$	99	0.7		alex 11		
$D_2 \rightarrow$	11	0.3	Guessing	andy 11	0.015	
$D_1 \rightarrow$	1	0.8				
$D_1 \rightarrow$	2	0.2		2 alex ! 2 andy !		
$S_1 \rightarrow$!	1.0		 alex 2 !	0.005	
$L_4 \rightarrow$	alex	0.1		andy 2 !	0.000	
L	1	1		••••		

AMP System Overview

Analyzer and Modifier for Passwords

AMP Analyzing Estimate the password strength

- Train the system on real user passwords and produce the context-free grammar.
- Using the context-free grammar, we calculate the probability of the user-chosen password.

AMP Setting the Threshold

• Threshold: is a probability value thp

Total_Gues	ses: 69491415	Probability	/: 3.1716e-10
Total_Gues	ses: 69744266	Probability	/: 3.14529e-10
Total_Gues	ses: 70000775	Probability	/: 3.12015e-10
Total_Gues	ses: 70602451	Probability	/: 3.09261e-10
Total_Gues	ses: 71121270	Probability	/: 3.06813e-10
Total_Gues	ses: 71519812	Probability	/: 3.04416e-10
Total_Gues	ses: 71799637	Probability	/: 3.02051e-10
Total_Gues	ses: 72097254	Probability	/: 2.9943e-10
Total_Gues	ses: 72304253	Probability	/: 2.97314e-10
Total_Gues	ses: 72508371	Probability	/: 2.95322e-10
Total_Gues	ses: 72969956	Probability	/: 2.92856e-10
Total_Gues	ses: 73582269	Probability	/: 2.90398e-10
Total_Gues	ses: 74074952	Probability	/: 2.87881e-10
Total_Gues	ses: 74277559	Probability	/: 2.85883e-10
Total_Gues	ses: 74826737	Probability	/: 2.83975e-10
Total_Gues	ses: 75329839	Probability	/: 2.81662e-10
Total_Gues	ses: 75667418	Probability	/: 2.79658e-10
Total_Gues	ses: 76191974	Probability	/: 2.77426e-10
Total_Gues	ses: 76346168	Probability	/: 2.75369e-10

• Converting to time:

 $\frac{Total_number_of_guesses}{Calculations_per_hour} = Expected_time(hour)$

Example table for threshold

Total number of guesses g(t)	Probability t	Time (on my laptop for MD5 hash)
1,800,000,000	1.31 x 10 ⁻¹¹	1 hour
14,400,000,000	1.59 x 10 ⁻¹²	8 h
21,600,000,000	1.20 x 10 ⁻¹²	12 h
28,800,000,000	6.37 x 10 ⁻¹³	16 h
43,200,000,000	2.96 x 10 ⁻¹³	24 h
86,400,000,000	9.94 x 10 ⁻¹⁴	48 h
129,600,000,000	6.7 x 10 ⁻¹⁴	72 h
172,800,000,000	5.29 x 10 ⁻¹⁴	96 h

AMP

Setting the Threshold approaches

1. Using password guesser

- Accurate
- Straightforward
- Takes a long time

2. Using the context-free grammar

- **Gives a lower bound for the number of guesses**
- Faster

AMP-Setting the Threshold

Running password guesser

Total_Guesses:	69491415	Probability:	3.1716e-10	<pre>base_struct:</pre>	000Ue12
Total_Guesses:	69744266	Probability:	3.14529e-10	<pre>base_struct:</pre>	00Le\$\$
Total_Guesses:	70000775	Probability:	3.12015e-10	<pre>base_struct:</pre>	!Le2Le-
Total_Guesses:	70602451	Probability:	3.09261e-10	<pre>base_struct:</pre>	2Le12#
Total_Guesses:	71121270	Probability:	3.06813e-10	<pre>base_struct:</pre>	9.3.
Total_Guesses:	71519812	Probability:	3.04416e-10	<pre>base_struct:</pre>	Le2Ue143
Total_Guesses:	71799637	Probability:	3.02051e-10	<pre>base_struct:</pre>	93.2
Total_Guesses:	72097254	Probability:	2.9943e-10	<pre>base_struct:</pre>	Le63Le07
Total_Guesses:	72304253	Probability:	2.97314e-10	<pre>base_struct:</pre>	0000
Total_Guesses:	72508371	Probability:	2.95322e-10	<pre>base_struct:</pre>	Ue5Ue4
Total_Guesses:	72969956	Probability:	2.92856e-10	<pre>base_struct:</pre>	1Le95Le3
Total_Guesses:	73582269	Probability:	2.90398e-10	<pre>base_struct:</pre>	93.3
Total_Guesses:	74074952	Probability:	2.87881e-10	<pre>base_struct:</pre>	12 13
Total_Guesses:	74277559	Probability:	2.85883e-10	<pre>base_struct:</pre>	27Le2001
Total_Guesses:	74826737	Probability:	2.83975e-10	<pre>base_struct:</pre>	Le3Ue1Ue7
Total_Guesses:	75329839	Probability:	2.81662e-10	<pre>base_struct:</pre>	Le58Le8Le
Total_Guesses:	75667418	Probability:	2.79658e-10	<pre>base_struct:</pre>	.Le2Le0
Total_Guesses:	76191974	Probability:	2.77426e-10	<pre>base_struct:</pre>	5_007
Total_Guesses:	76346168	Probability:	2.75369e-10	<pre>base_struct:</pre>	Le@Le!2
Total_Guesses:	76964953	Probability:	2.73163e-10	<pre>base_struct:</pre>	4Le9Le5
Total_Guesses:	77380282	Probability:	2.71075e-10	<pre>base_struct:</pre>	1@2-1
Total_Guesses:	77947787	Probability:	2.69186e-10	<pre>base_struct:</pre>	9Le🎕
Total_Guesses:	78858297	Probability:	2.67563e-10	<pre>base_struct:</pre>	1991+
Total Guesses:	78913486	Probability:	2.65541e-10	base struct:	1138I e10

AMP-Setting the Threshold

Using the Grammar

- Estimating the number of guesses before threshold (thp).
- Starting from the first base structure, for example $b_1=L_5D_3S_1$ with probability p_1 , we need to find the elements in each component so that the product of their probabilities is > thp.

AMP

Set the threshold - Using the context free grammar

MODIFYING A WEAK PASSWORD

Modifying a weak password

 There are certain numbers or words that are easy to remember for each individual.

• Edit distance: The minimum number of operations used to transform a string to another one.

• We only change within edit distance of 1.

Modifying a weak password

 Operations on the base structure Insertion Deletion Transposition 	$\begin{array}{c} L_{5}D_{3}S_{1}\\ L5S_{1}D3S1\\ L_{5}D_{3}S_{1}\\ D_{3}L_{5}S_{1} \end{array}$
 Operations on the component Insertion Deletion Substitution 	D ₃ : 123 1263 1 23 129
Case (only for alpha part)	L ₅ : alice aLice

Modifying a weak password Example

Input password to AMP	Output of modifier
trans2	%trans2
colton00	8colton00
789pine	789pin <mark>E</mark>
mitch8202	mitch=8202
cal1fero	cal8fero
KILLER456	KILlER456
violin22	violin^22
ATENAS0511	0511AETENAS
*zalena6	* <mark>3</mark> zalena6
KYTTY023	KYTTY023r

Testing

Some results Cracked by John the Ripper - 1 day threshold

	Originally Strong passwords	OriginallyOriginallyWeakWeakpasswordspasswords(Not able to(Able to main the stronger)stronger)stronger)		Strengthened passwords Modified from weak ones
Hotmail				
cracked	2	49	988	2
total	325	53	2059	2059
Percentage	(0.61%)	(92.45%)	(47.98%)	(0.097%)
MySpace	22	104	10	
cracked		104	5,343	71
total	1484	149	13,866	13,866
Percentage	(1.55%)	(69.80%)	(38.53%)	(0.51%)
RockYou				
cracked	281	22,248	235,302	1,186
<u>total</u>	32,794	24, 745	442, 461	442,461
Percentage	(0.86%)	(89.90%)	(53.18%	(0.27%)

Some results Cracked by Probabilistic Password Cracker - 1 day threshold

	Originally Strong passwords	Originally Weak passwords (Not able to make stronger)	WeakWeakbasswordspasswordsNot able to(Able tonakemake	
Hotmail				
cracked	1	53	1069	113
total	total 325 53		2059	2059
Percentage	(0.3%)	(100%)	(51.91%)	(5.48%)
MySpace	27	125	0.041	(00)
cracked		135	8,341	698
total	1484	149	13,866	13,866
Percentage	(1.81%)	(90.60%)	(60.15%)	(5.03%)
RockYou				
cracked	467	24,378	259,027	18,134
total	32,794	24, 745	442, 461	442,461
Percentage	(1.42%)	(98.51%)	(58.54%	(4.1%)

Some results

Weak and Strengthened passwords cracked by John the Ripper

Number of guesses

Some results

Beyond 1 day Threshold

31

Dynamically Updating

Update the training set

- As we keep using AMP, we suggest more passwords with lower probabilities as strong passwords.
- As people use our suggested passwords more, the probability distribution of passwords changes.
- An attacker might be able to crack passwords using the recent set of real user passwords.

AMP Update the training set

AMP Update the Context-free Grammar

Base structures		S_2		D ₂				
b ₁	$rac{n_{b1}}{N_b}$	$\frac{n_{b1}}{N_b + 1}$	\mathbf{S}_1	$\frac{n_{s1}}{N_s}$	$\frac{n_{s1}}{N_s + 1}$	d_1	$rac{n_{d1}}{N_d}$	$\frac{n_{d1}}{N_d + 1}$
b ₂	$\frac{n_{b2}}{N_b}$	$\frac{n_{b2}}{N_b + 1}$	S_2	$\frac{n_{s2}}{N_s}$	$\frac{n_{s2}}{N_s + 1}$	d_2	$\frac{n_{d2}}{N_d}$	$\frac{n_{d2}}{N_d+1}$
b ₃	$\frac{n_{b3}}{N_b}$	$\frac{n_{b3}}{N_b + 1}$	s_3	$\frac{n_{s3}}{N_s}$	$\frac{n_{s3}}{N_s + 1}$	d ₃	$\frac{n_{d3}}{N_d}$	$\frac{n_{d3}}{N_d + 1}$
$\begin{array}{c} b_i = S_2 D_2 L_4 \\ \cdot \\ \cdot \\ \cdot \end{array}$	$rac{n_{bi}}{N_b}$	$\frac{n_{bi}+1}{N_b+1}$	s _j =!!	$rac{n_{sj}}{N_s}$	$\frac{n_{sj} + 1}{N_s + 1}$	d _l =78	$rac{n_{_{dl}}}{N_{_d}}$	$\frac{n_{dl} + 1}{N_d + 1}$
b _m	$rac{n_{\scriptscriptstyle bm}}{N_{\scriptscriptstyle b}}$	$\frac{n_{bm}}{N_b + 1}$	$\cdot \mathbf{s}_k$	$rac{n_{_{sk}}}{N_{_s}}$	$\frac{n_{sk}}{N_s + 1}$	d _t	$rac{n_{_{dt}}}{N_{_d}}$	$\frac{n_{dt}}{N_d + 1}$

Preprocessing phase

Metrics for password strength

Metrics for password strength

- Guessing Entropy G(X): average number of tries for finding the password
- Shannon Entropy:

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

i=1

 $p_1 \ge p_2 \ge \dots \ge p_n$

 $G(X) = \sum_{i=1}^{n} i.p_i$

Where P(X=x) is the probability that the variable X has the value x.

 Massey proved the following relationship for discrete distributions:

$$G(X) \ge (\frac{1}{4})2^{H(X)} + 1$$

Metric for password strength

• Massey proved the following relationship for discrete distributions:

$$G(X) \ge (\frac{1}{4})2^{H(X)} + 1$$

Calculation of Entropy based on Context-free grammars for a password distribution

Calculation of Entropy

based on context-free grammar for a password distribution

H(B,R) = H(B) + H(R | B)= $H(B) + \sum_{b_i} p(b_i) H(R | B = b_i)$

 $H(B,R) = H(B) + H(R \mid B)$

$$= H(B) + \sum_{b_i} p(b_i) H(R | B = b_i)$$

= $-\sum_{b_i} p(b_i) \log p(b_i) + \sum_{b_i} p(b_i) H(R | B = b_i)$
= $-\sum_{b_i} p(b_i) \log p(b_i) + \left[p(b_1) H(L_2 D_3) + p(b_2) H(D_2 L_2) + p(b_3) H(S_1 D_2) \right]$

Calculation of Entropy

based on context-free grammar for a password distribution

Increasing Shannon Entropy

- User enters their chosen password
- If it is not strong enough, it will be rejected
- We suggest a new password with probability less than 1/n, n being the total number of passwords in the distribution.
- We update the probabilities by adding the new password to the training set.

Increasing Shannon entropy

Conclusion

- We developed a technique to measure password strength based on the distribution.
- We developed a model and built a system to help users have strong passwords which are resistant to real attacks.
- We developed dynamic modification techniques to maintain the security of our system and also showed that our updating algorithm drives the grammar to higher Shannon entropy.
- We developed a way to calculate realistic entropy values for password distributions.

Questions/Comments?

* E-Mail Address

- sh09r@my.fsu.edu
- sudhir@cs.fsu.edu
- Shiva Houshmand, Sudhir Aggarwal, "Building Better Passwords using probabilistic techniques," ACSAC'12.
- M. Weir, Sudhir Aggarwal, Breno de Medeiros, Bill Glodek, "Password Cracking Using Probabilistic Context Free Grammars," Proceedings of the 30th IEEE Symposium on Security and Privacy, May 2009, pp. 391-405.
- M. Weir, S. Aggarwal, M. Collins, and H. Stern, "Testing metrics for password creation policies by attacking large sets of revealed passwords," Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS '10), October 4-8, 2010, pp. 163-175.