Building Better Passwords using Probabilistic Techniques

Shiva Houshmand Sudhir Aggarwal
Florida State University
Department of Computer Science
E-Crime Investigative Technologies Laboratory

Outline

- Introduction
- Problems with passwords
- Probabilistic password cracking using grammars
- Training
- Cracking
- Our approach - analysis and modification
- The AMPs system
- Estimating strength of password
- Modifying the password
- Updating AMPs over time
- Entropy measures in updating the system

Introduction

- Passwords are still the most common means of securing computer systems and websites.
- Most users do not have the information to ensure that they are using a "strong" password.

Why great care and consideration should be taken when selecting the proper password

Existing problems with passwords

- Rule-based password creation policies
- Inconsistent
- Confusing
- Frustrating

Website	Length	Digit
Chase.com	$7-32$	1
Special char		
Bank of America	$8-20$	1
Ets.org allowed		
Banana Republic	$5-16$	1

Microsoft
 Safety \& Security Centre

Check your password-is it strong?
Test the strength of your passwords: Type a password into the box.

- Password checkers

- No scientific basis

alice123!

Services	Strength scores	
Apple	Moderate	$2 / 3$
Dropbox	Very Weak	1/5
Drupal	Strong	4/4
eBay	*	-/5
FedEx	Very Weak	1/5
Google	Good	4/5
Intel	Oh No!	1/2
Microsoft (v1)	Strong	$3 / 4$
Microsoft (v2)	Weak	1/4
Microsoft (v3)	Medium	$2 / 4$
PayPal	Strong	4/4
QQ	Strong	4/4
Skype	Medium	$2 / 3$
Twitter	Perfect	6/6
Yahoo!	Very Strong	4/4
12306.cn	Average	$2 / 3$

Analyze and Modify Passwords

Abstract

Probabilistic password attack

[Weir, Aggarwal and De Medeiros]

- Infer a probabilistic context-free grammar from datasets
- Some words are more likely than others
- Password, monkey, football
- Some mangling rules are more likely than others
- Capitalize the first letter, add the digits at the end
- Assign probability to dictionary words, digits, symbols, mangling rules

Probabilistic password attack

- Training
- Construct the context-free grammar
- Parse every password into base structures and count their frequency.
- Base structures consist of L (alpha sequences), D (digits), S (symbols), M(capitalization)
- Base structure also includes length information

Probabilistic password attack Training

tiny99
1pass! this2! star99
.
-
tree99
burn1!
1star!
down11

$\mathrm{S} \rightarrow$	$\mathrm{L}_{4} \mathrm{D}_{2}$	0.5
$\mathrm{S} \rightarrow$	$\mathrm{D}_{1} \mathrm{~L}_{4} \mathrm{~S}_{1}$	0.25
$\mathrm{S} \rightarrow$	$\mathrm{L}_{4} \mathrm{D}_{1} \mathrm{~S}_{1}$	0.25
$\mathrm{D}_{2} \rightarrow$	99	0.7
$\mathrm{D}_{2} \rightarrow$	11	0.3
$\mathrm{D}_{1} \rightarrow$	1	0.8
$\mathrm{D}_{1} \rightarrow$	2	0.2
$\mathrm{S}_{1} \rightarrow$!	1.0
$\mathrm{L}_{4} \rightarrow$	alex	0.1
$\mathrm{S} \rightarrow$ * alex2! With probability$0.25 \times 0.1 \times 0.2 \times 1.0=0.005$		

Note: Alpha sequence probabilities come from dictionaries and are equal to $1 / n_{L}$, where n_{L} is the number of words in the dictionary of length L .

Probabilistic password attack

 Generating the guesses| $\mathrm{S} \rightarrow$ | $\mathrm{L}_{4} \mathrm{D}_{2}$ | 0.5 |
| :--- | :--- | :--- |
| $\mathrm{~S} \rightarrow$ | $\mathrm{D}_{1} \mathrm{~L}_{4} \mathrm{~S}_{1}$ | 0.25 |
| $\mathrm{~S} \rightarrow$ | $\mathrm{~L}_{4} \mathrm{D}_{1} \mathrm{~S}_{1}$ | 0.25 |
| $\mathrm{D}_{2} \rightarrow$ | 99 | 0.7 |
| $\mathrm{D}_{2} \rightarrow$ | 11 | 0.3 |
| $\mathrm{D}_{1} \rightarrow$ | 1 | 0.8 |
| $\mathrm{D}_{1} \rightarrow$ | 2 | 0.2 |
| $\mathrm{~S}_{1} \rightarrow$ | $!$ | 1.0 |
| $\mathrm{~L}_{4} \rightarrow$ | alex | 0.1 |

alex 99 andy 99 beta 99 \ldots	0.035
1 alex ! 1 andy ! \ldots alex 1! andy 1! \ldots	0.02
alex 11 andy 11 \ldots	0.015
2 alex ! 2 andy ! \ldots	
alex 2 andy 2 ! \ldots	0.005

AMP System Overview

 Analyzer and Modifier for Passwords

AMP Analyzing

Estimate the password strength

- Train the system on real user passwords and produce the context-free grammar.
- Using the context-free grammar, we calculate the probability of the user-chosen password.

AMP

Setting the Threshold

- Threshold: is a probability value thp

Total_Guesses:	69491415	Probability:	$3.1716 \mathrm{e}-10$
Total_Guesses:	69744266	Probability:	$3.14529 \mathrm{e}-10$
Total_Guesses:	70000775	Probability:	$3.12015 \mathrm{e}-10$
Total_Guesses:	70602451	Probability:	$3.09261 \mathrm{e}-10$
Total_Guesses:	71121270	Probability:	$3.06813 \mathrm{e}-10$
Total_Guesses:	71519812	Probability:	$3.04416 \mathrm{e}-10$
Total_Guesses:	71799637	Probability:	$3.02051 \mathrm{e}-10$
Total_Guesses:	72097254	Probability:	$2.9943 \mathrm{e}-10$
Total_Guesses:	72304253	Probability:	$2.97314 \mathrm{e}-10$
Total_Guesses:	72508371	Probability:	$2.95322 \mathrm{e}-10$
Total_Guesses:	72969956	Probability:	$2.92856 \mathrm{e}-10$
Total_Guesses:	73582269	Probability:	$2.90398 \mathrm{e}-10$
Total_Guesses:	74074952	Probability:	$2.87881 \mathrm{e}-10$
Total_Guesses:	74277559	Probability:	$2.85883 \mathrm{e}-10$
Total_Guesses:	74826737	Probability:	$2.83975 \mathrm{e}-10$
Total_Guesses:	75329839	Probability:	$2.81662 \mathrm{e}-10$
Total_Guesses:	75667418	Probability:	$2.79658 \mathrm{e}-10$
Total_Guesses:	76191974	Probability:	$2.77426 \mathrm{e}-10$
Total_Guesses:	76346168	Probability:	$2.75369 \mathrm{e}-10$

- Converting to time: $\frac{\text { Total_number_of_guesses }}{\text { Calculations_per_hour }}=$ Expected_time(hour)

Calculations_per_hour

Example table for threshold

Total number of guesses g(t)	Probability t	Time (on my laptop for MD5 hash)
$1,800,000,000$	1.31×10^{-11}	1 hour
$14,400,000,000$	1.59×10^{-12}	8 h
$21,600,000,000$	1.20×10^{-12}	12 h
$28,800,000,000$	6.37×10^{-13}	16 h
$43,200,000,000$	2.96×10^{-13}	24 h
$86,400,000,000$	9.94×10^{-14}	48 h
$129,600,000,000$	6.7×10^{-14}	72 h
$172,800,000,000$	5.29×10^{-14}	96 h

AMP

Setting the Threshold approaches

1. Using password guesser

- Accurate
- Straightforward
- Takes a long time

2. Using the context-free grammar

- Gives a lower bound for the number of guesses
- Faster

AMP-Setting the Threshold

 Running password guesser| Total_Guesses: | 69491415 | Probability: | 3.1716e-10 | base_struct: | 000Ue12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total_Guesses: | 69744266 | Probability: | 3.14529e-10 | base_struct: | 00Le\$\$ |
| Total_Guesses: | 70000775 | Probability: | 3.12015e-10 | base_struct: | ! Le2Le- |
| Total_Guesses: | 70602451 | Probability: | 3.09261e-10 | base_struct: | 2Le12\# |
| Total_Guesses: | 71121270 | Probability: | 3.06813e-10 | base_struct: | 9.3. |
| Total_Guesses: | 71519812 | Probability: | 3.04416e-10 | base_struct: | Le2Ue143 |
| Total_Guesses: | 71799637 | Probability: | 3.02051e-10 | base_struct: | 93.2 |
| Total_Guesses: | 72097254 | Probability: | $2.9943 \mathrm{e}-10$ | base_struct: | Le63Le07 |
| Total_Guesses: | 72304253 | Probability: | $2.97314 \mathrm{e}-10$ | base_struct: | 0000.. |
| Total_Guesses: | 72508371 | Probability: | 2.95322e-10 | base_struct: | Ue5Ue4 |
| Total_Guesses: | 72969956 | Probability: | 2.92856e-10 | base_struct: | 1Le95Le3 |
| Total_Guesses: | 73582269 | Probability: | 2.90398e-10 | base_struct: | 93.3 |
| Total_Guesses: | 74074952 | Probability: | 2.87881e-10 | base_struct: | 1213 |
| Total_Guesses: | 74277559 | Probability: | 2.85883e-10 | base_struct: | 27Le2001 |
| Total_Guesses: | 74826737 | Probability: | 2.83975e-10 | base_struct: | Le3Ue1Ue7 |
| Total_Guesses: | 75329839 | Probability: | 2.81662e-10 | base_struct: | Le58Le8Le |
| Total_Guesses: | 75667418 | Probability: | 2.79658e-10 | base_struct: | . Le2Le0 |
| Total_Guesses: | 76191974 | Probability: | 2.77426e-10 | base_struct: | 5_007 |
| Total_Guesses: | 76346168 | Probability: | 2.75369e-10 | base_struct: | Le@Le! 2 |
| Total_Guesses: | 76964953 | Probability: | 2.73163e-10 | base_struct: | 4Le9Le5 |
| Total_Guesses: | 77380282 | Probability: | 2.71075e-10 | base_struct: | 1@2-1 |
| Total_Guesses: | 77947787 | Probability: | 2.69186e-10 | base_struct: | 9Le |
| Total_Guesses: | 78858297 | Probability: | 2.67563e-10 | base_struct: | 1991+ |
| Total Guesses: | 78913486 | Probabilitv: | $2.65541 \mathrm{e}-10$ | | 1138 |

AMP-Setting the Threshold Using the Grammar

- Estimating the number of guesses before threshold (thp).
- Starting from the first base structure, for example $\mathrm{b}_{1}=\mathrm{L}_{5} \mathrm{D}_{3} \mathrm{~S}_{1}$ with probability p_{1}, we need to find the elements in each component so that the product of their probabilities is $>$ thp.

AMP

Set the threshold - Using the context free grammar

MODIFYING A WEAK PASSWORD

Modifying a weak password

- There are certain numbers or words that are easy to remember for each individual.
- Edit distance: The minimum number of operations used to transform a string to another one.
- We only change within edit distance of 1.

Modifying a weak password

 distance function- Operations on the base structure
- Insertion
- Deletion
- Transposition
$\mathrm{L}_{5} \mathrm{D}_{3} \mathrm{~S}_{1}$
L5S 1 D3S1
$\mathrm{L}_{5} \mathrm{D}_{3} \mathrm{~S}_{4}$
$\mathrm{D}_{3} \mathrm{~L}_{5} \mathrm{~S}_{1}$
$\mathrm{D}_{3}: 123$
1263
423
- Substitution

129
L_{5} : alice
aLice

- Case (only for alpha part)

Modifying a weak password Example

Input password to AMP	Output of modifier
trans2	\%trans2
colton00	8colton00
789pine	789pinE
mitch8202	mitch=8202
callfero	cal8fero
KILLER456	KILlER456
violin22	violin^22
ATENAS0511	0511AETENAS
*zalena6	*3zalena6
KYTTY023	KYTTY023r

Testing

Testing the AMP System

Experiment Setup

Testing the AMP System

Some results
Cracked by John the Ripper - 1 day threshold

	Originally Strong passwords	Originally Weak passwords (Not able to make stronger)	Originally Weak passwords (Able to make stronger)	Strengthened passwords Modified from weak ones
Hotmail	$\begin{gathered} \frac{2}{325} \\ (\mathbf{0 . 6 1 \%}) \end{gathered}$	$\begin{gathered} \frac{49}{53} \\ \text { (92.45\%) } \end{gathered}$	$\begin{gathered} \frac{988}{2059} \\ (\mathbf{4 7 . 9 8 \%}) \end{gathered}$	$\begin{gathered} \frac{2}{2059} \\ (\mathbf{0 . 0 9 7 \%}) \end{gathered}$
cracked				
total				
Percentage				
MySpace	$\begin{aligned} & \frac{23}{1484} \\ & (1.55 \%) \end{aligned}$	$\begin{gathered} \frac{104}{149} \\ \text { (69.80\%) } \end{gathered}$	$\begin{aligned} & \frac{5,343}{13,866} \\ & \mathbf{(3 8 . 5 3 \%)} \end{aligned}$	$\begin{array}{r} \frac{71}{13,866} \\ (\mathbf{0 . 5 1 \%)} \end{array}$
cracked				
total				
Percentage				
RockYou	281	22,248	235,302	1,186
cracked				
total	$\begin{gathered} 32,794 \\ (\mathbf{0 . 8 6 \%}) \end{gathered}$	$\begin{gathered} 24,745 \\ \mathbf{(8 9 . 9 0 \%)} \end{gathered}$	$\begin{gathered} 442,461 \\ \mathbf{(5 3 . 1 8 \%} \end{gathered}$	$\begin{gathered} 442,461 \\ (\mathbf{0 . 2 7 \%)} \end{gathered}$
Percentage				

Some results

Cracked by Probabilistic Password Cracker - 1 day threshold

	Originally Strong passwords	Originally Weak passwords (Not able to make stronger)	Originally Weak passwords (Able to make stronger)	Strengthened passwords Modified from weak ones
Hotmail	$\begin{gathered} \frac{1}{325} \\ (\mathbf{0 . 3 \%}) \end{gathered}$	$\begin{gathered} \frac{53}{53} \\ (\mathbf{1 0 0 \%}) \\ \hline \end{gathered}$	$\begin{gathered} \frac{1069}{2059} \\ \text { (51.91\%) } \\ \hline \end{gathered}$	$\frac{113}{2059}$ (5.48\%)
cracked				
total				
Percentage				
MySpace	$\begin{aligned} & \frac{27}{1484} \\ & \text { (1.81\%) } \end{aligned}$	$\begin{gathered} \frac{135}{149} \\ \text { (90.60\%) } \end{gathered}$	$\begin{gathered} \frac{8,341}{13,866} \\ (\mathbf{6 0 . 1 5 \%)} \\ \hline \end{gathered}$	$\begin{gathered} \frac{698}{13,866} \\ (5.03 \%) \end{gathered}$
cracked				
total				
Percentage				
RockYou	467	24,378	259,027	18,134
cracked				
total	$\begin{array}{r} 32,794 \\ \text { (1.42\%) } \end{array}$	$\begin{gathered} \overline{24,745} \\ \mathbf{(9 8 . 5 1 \%)} \end{gathered}$	$\begin{aligned} & 442,461 \\ & \mathbf{(5 8 . 5 4 \%} \end{aligned}$	$\begin{aligned} & \hline 442,461 \\ & (\mathbf{4 . 1 \%}) \end{aligned}$
Percentage				

Some results

Weak and Strengthened passwords cracked by J ohn the Ripper

Number of guesses

Some results

Beyond 1 day Threshold

Update the training set

- As we keep using AMP, we suggest more passwords with lower probabilities as strong passwords.
- As people use our suggested passwords more, the probability distribution of passwords changes.
- An attacker might be able to crack passwords using the recent set of real user passwords.

AMP

Update the training set

AMP

Update the Context-free Grammar

Base structures		
b_{1}	$\frac{n_{1}}{N}$	$\frac{n_{1}}{N+1}$
$\mathrm{~b}_{2}$	$\frac{n_{2}}{N}$	$\frac{n_{2}}{N+1}$
$\mathrm{~b}_{3}$	$\frac{n_{3}}{N}$	$\frac{n_{3}}{N+1}$
\cdot		
\cdot	$\frac{n_{i}}{N}$	$\frac{n_{i}+1}{N+1}$
$\mathrm{~b}_{\mathrm{i}}=\mathrm{S}_{2} \mathrm{D}_{2} \mathrm{~L}_{4}$		
\cdot	$\frac{n_{m}}{N}$	$\frac{n_{m}}{N+1}$
$\mathrm{~b}_{\mathrm{m}}$		

S_{2}		
S_{1}	$\underline{n_{1}}$	n_{1}
	N	$\overline{N+1}$
S_{2}	\underline{n}	n_{2}
	N	$\frac{n_{2}}{N+1}$
S_{3}	$\frac{n_{3}}{N}$	n_{3}
		$\stackrel{3}{N+1}$
.		
$\mathrm{s}_{\mathrm{j}}=$! !	$\frac{n_{j}}{N}$	$n_{j}+1$
		$N+1$
-		
S_{m}	$\frac{n_{m}}{N}$	$\frac{n_{m}}{N+1}$

Base structures			S_{2}			D_{2}		
b_{1}	$\frac{n_{b 1}}{N}$	$\frac{n_{b 1}}{N_{b}+1}$	S_{1}	$\frac{n_{s t}}{N}$	$\frac{n_{s i}}{N_{s+1}}$	d_{1}	$\frac{n_{d 1}}{N}$	$\frac{n_{d 1}}{N_{d 1}+1}$
b_{2}	N_{b} $\underline{n_{b 2}}$ N	$\begin{gathered} N_{b}+1 \\ n_{b 2} \\ \hline \end{gathered}$		N_{s} $n_{s 2}$	$N_{s}+1$ $n_{s 2}$ N		N_{d} $n_{d 2}$ N	$N_{d}+1$ $n_{d 2}$ N
	N_{b}	$\overline{N_{b}+1}$	S_{2}	$\overline{N_{s}}$	$\overline{N_{s}+1}$	d_{2}	N_{d}	$N_{d}+1$
b_{3}	$\frac{n_{b 3}}{N}$	$\frac{n_{b 3}}{N}$		$n_{s 3}$	$n_{s 3}$		$n_{d 3}$	$n_{d 3}$
.		$N_{b}+1$	S_{3}	$\frac{N_{s}}{N_{s}}$	$\frac{n_{s}}{N_{s}+1}$	d_{3}	$\stackrel{N_{d}}{ }$	$\stackrel{\text { d }}{ }$
$\mathrm{b}_{\mathrm{i}}=\mathrm{S}_{2} \mathrm{D}_{2} \mathrm{~L}_{4}$		$\frac{n_{b i}+1}{N}$						$n_{\text {dl }}+1$
	N_{b}	$N_{b}+1$	$\mathrm{S}_{\mathrm{j}}=$!!	$\frac{n_{s j}}{N_{s}}$	$\frac{n_{s j}}{N_{s}+1}$	$\mathrm{d}_{1}=78$		$\frac{d_{d}}{N_{d}+1}$
b_{m}	$n_{b m}$	$n_{b m}$						$n_{d t}$
		$\overline{N_{b}+1}$	S_{k}	$\frac{N_{s}}{N_{s}}$	$\frac{n_{s}}{N_{s}+1}$	$\mathrm{d}_{\text {t }}$	$\overline{N_{d}}$	$\overline{N_{d}+1}$

Preprocessing phase

Metrics for password strength

Metrics for password strength

- Guessing Entropy G(X):

$$
\begin{gathered}
p_{1} \geq p_{2} \geq \ldots \geq p_{n} \\
G(X)=\sum_{i=1}^{n} i \cdot p_{i}
\end{gathered}
$$

average number of tries for finding the password

- Shannon Entropy:

$$
H(X)=-\sum_{x \in X} p(x) \log p(x)
$$

Where $\mathrm{P}(\mathrm{X}=\mathrm{x})$ is the probability that the variable X has the value x .

- Massey proved the following relationship for discrete distributions:

$$
G(X) \geq\left(\frac{1}{4}\right) 2^{H(X)}+1
$$

Metric for password strength

- Massey proved the following relationship for discrete distributions:

$$
G(X) \geq\left(\frac{1}{4}\right) 2^{H(X)}+1
$$

Calculation of Entropy basedon Context-free grammars for a password distribution

$$
\mathbf{S} \quad \begin{aligned}
& \mathbf{L}_{2} \mathbf{D}_{3} \\
& \mathbf{D}_{\mathbf{2}} \mathbf{L}_{2} \\
& \mathbf{S}_{1} \mathbf{D}_{2}
\end{aligned}
$$

$$
\mathbf{L}_{2} D_{3} \underset{\text { it999 }}{\mathbf{u p 9 9 9}}
$$

10it

$p\left(S \rightarrow L_{2} D_{3}\right)=p\left(B=L_{2} D_{3}\right)$

$$
\begin{array}{ll}
\mathbf{S}_{1} \mathbf{D}_{\mathbf{2}} & \text { \$11 } \\
& \# 11 \\
& \$ 10 \\
&
\end{array}
$$

Calculation of Entropy

 based on context-free grammar for a password distribution$$
\begin{aligned}
H(B, R) & =H(B)+H(R \mid B) \\
& =H(B)+\sum_{b_{i}} p\left(b_{i}\right) H\left(R \mid B=b_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
H(B, R) & =H(B)+H(R \mid B) \\
& =H(B)+\sum_{b_{i}} p\left(b_{i}\right) H\left(R \mid B=b_{i}\right) \\
& =-\sum_{b_{i}} p\left(b_{i}\right) \log p\left(b_{i}\right)+\sum_{b_{i}} p\left(b_{i}\right) H\left(R \mid B=b_{i}\right) \\
& =-\sum_{b_{i}} p\left(b_{i}\right) \log p\left(b_{i}\right)+\left[p\left(b_{1}\right) H\left(L_{2} D_{3}\right)+p\left(b_{2}\right) H\left(D_{2} L_{2}\right)+p\left(b_{3}\right) H\left(S_{1} D_{2}\right)\right]
\end{aligned}
$$

Calculation of Entropy

 based on context-free grammar for a password distribution$$
\begin{aligned}
& H(B, R)=H(B)+\left[p\left(b_{1}\right) H\left(L_{2} D_{3}\right)+p\left(b_{2}\right) H\left(D_{2} L_{2}\right)+p\left(b_{3}\right) H\left(S_{1} D_{2}\right)\right] \\
& H\left(L_{2} D_{3}\right)=-\sum_{l_{2},} \sum_{m_{2}, d_{3}} p\left(l_{2}, m_{2}, d_{3}\right) \log p\left(l_{2}, m_{2}, d_{3}\right) \\
&=-\sum_{l_{2}, m_{2}} \sum_{d_{3}} p\left(l_{2}\right) p\left(m_{2}\right) p\left(d_{3}\right) \log \left(p\left(l_{2}\right) p\left(m_{2}\right) p\left(d_{3}\right)\right) \\
&=-\sum_{l_{2}} \sum_{m_{2}} \sum_{d_{3}} p\left(l_{2}\right) p\left(m_{2}\right) p\left(d_{3}\right)\left[\log p\left(l_{2}\right)+\log p\left(m_{2}\right)+\log p\left(d_{3}\right)\right] \\
&=-\sum_{l_{2}} p\left(l_{2}\right) \log p\left(l_{2}\right)+-\sum_{m_{2}} p\left(m_{2}\right) \log p\left(m_{2}\right)+-\sum_{d_{3}} p\left(d_{3}\right) \log p\left(d_{3}\right) \\
&=H\left(L_{2}\right)+H\left(M_{2}\right)+H\left(D_{3}\right)
\end{aligned}
$$

Increasing Shannon Entropy

- User enters their chosen password
- If it is not strong enough, it will be rejected
- We suggest a new password with probability less than $1 / n, n$ being the total number of passwords in the distribution.
- We update the probabilities by adding the new password to the training set.

Increasing Shannon entropy

Conclusion

- We developed a technique to measure password strength based on the distribution.
- We developed a model and built a system to help users have strong passwords which are resistant to real attacks.
- We developed dynamic modification techniques to maintain the security of our system and also showed that our updating algorithm drives the grammar to higher Shannon entropy.
- We developed a way to calculate realistic entropy values for password distributions.

Questions/ Comments?

米 E-Mail Address

- sh09r@my.fsu.edu
- sudhir@cs.fsu.edu
- Shiva Houshmand, Sudhir Aggarwal, "Building Better Passwords using probabilistic techniques," ACSAC'12.
- M. Weir, Sudhir Aggarwal, Breno de Medeiros, Bill Glodek, "Password Cracking Using Probabilistic Context Free Grammars," Proceedings of the 30th IEEE Symposium on Security and Privacy, May 2009, pp. 391-405.
- M. Weir, S. Aggarwal, M. Collins, and H. Stern, "Testing metrics for password creation policies by attacking large sets of revealed passwords," Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS '10), October 4-8, 2010, pp. 163-175.

