
Building Better Passwords using
Probabilistic Techniques

Shiva Houshmand
Sudhir Aggarwal
Florida State University
Department of Computer Science
E-Crime Investigative Technologies Laboratory

1

© 2015 Shiva Houshmand. All rights reserved

2

• Introduction
▫ Problems with passwords

• Probabilistic password cracking using grammars
▫ Training
▫ Cracking

• Our approach – analysis and modification
▫ The AMPs system
▫ Estimating strength of password
▫ Modifying the password
▫ Updating AMPs over time

• Entropy measures in updating the system

Outline

• Passwords are still the most
common means of securing
computer systems and
websites.

• Most users do not have the
information to ensure that
they are using a “strong”
password.

3

Introduction

Existing problems with passwords

• Rule-based password
creation policies
 Inconsistent
 Confusing
 Frustrating

• Password checkers
 No scientific basis

5

Website Length Digit Special char

Chase.com 7-32 1 Not allowed

Bank of America 8-20 1 Certain ones allowed

Ets.org 8-16 1 At least one

Banana Republic 5-20 - Not allowed

6

Analyze and Modify Passwords
Abstract

7

User-chosen
password

Estimate the
password
strength

Reject
Function

Suggest a
strong & usable

password✔

8

Probabilistic password attack
[Weir, Aggarwal and De Medeiros]

• Infer a probabilistic context-free grammar from
datasets
 Some words are more likely than others

▫ Password, monkey, football
 Some mangling rules are more likely than others

▫ Capitalize the first letter, add the digits at the end
 Assign probability to dictionary words, digits, symbols,

mangling rules

• Training
▫ Construct the context-free grammar
 Parse every password into base structures and count

their frequency.
 Base structures consist of L (alpha sequences), D

(digits), S (symbols), M(capitalization)
 Base structure also includes length information

9

Probabilistic password attack

Password12%
L8(M8)D2S1

M8 = ULLLLLLL

S L4D2 0.5

S D1L4S1 0.25

S L4D1S1 0.25

D2 99 0.7

D2 11 0.3

D1 1 0.8

D1 2 0.2

S1 ! 1.0

L4 alex 0.1

S* alex2! With probability
0.25 × 0.1 × 0.2 × 1.0 = 0.005

Training Set

tiny99
1pass!
this2!
star99
.
.
.
tree99
burn1!
1star!
down11

Training

10

Note: Alpha sequence probabilities come from dictionaries and are equal to 1/nL ,
where nL is the number of words in the dictionary of length L.

Probabilistic password attack
Training

S L4D2 0.5

S D1L4S1 0.25

S L4D1S1 0.25

D2 99 0.7

D2 11 0.3

D1 1 0.8

D1 2 0.2

S1 ! 1.0

L4 alex 0.1

Guessing

alex 99
andy 99
beta 99
…

0.035

1 alex !
1 andy !
…
alex 1 !
andy 1 !
…

0.02

alex 11
andy 11
…

0.015

2 alex !
2 andy !
…
alex 2 !
andy 2 !
….

0.005

11

Probabilistic password attack
Generating the guesses

AMP System Overview
Analyzer and Modifier for Passwords

User-chosen
password

Estimate the
password
strength

Reject
Function

Suggest a
strong & usable

password✔

12

AMP Analyzing
Estimate the password strength

• Train the system on real user passwords and
produce the context-free grammar.

• Using the context-free grammar, we calculate
the probability of the user-chosen password.

alice123!

L5D3S1

alice

123

!

P(alice123!) =
p(L5D3S1).p(alice).p(123).p(!)

13

AMP
Setting the Threshold

• Threshold: is a probability value thp

• Converting to time:

14

Example table for threshold

Total number of
guesses g(t)

Probability t Time (on my laptop for
MD5 hash)

1,800,000,000 1.31 x 10-11 1 hour

14,400,000,000 1.59 x 10-12 8 h

21,600,000,000 1.20 x 10-12 12 h

28,800,000,000 6.37 x 10-13 16 h

43,200,000,000 2.96 x 10-13 24 h

86,400,000,000 9.94 x 10-14 48 h

129,600,000,000 6.7 x 10-14 72 h

172,800,000,000 5.29 x 10-14 96 h

15

1. Using password guesser
▫ Accurate
▫ Straightforward
▫ Takes a long time

2. Using the context-free grammar
▫ Gives a lower bound for the number of guesses
▫ Faster

16

AMP
Setting the Threshold approaches

17

AMP-Setting the Threshold
Running password guesser

• Estimating the number of guesses before
threshold (thp).

• Starting from the first base structure, for
example b1=L5D3S1 with probability p1, we need
to find the elements in each component so that
the product of their probabilities is > thp.

18

AMP-Setting the Threshold
Using the Grammar

AMP
Set the threshold – Using the context free grammar

L5
l1 p1
l2 p2
…
…
ln/2 pn/2
…
li pi
...
ln pn

D3
d1 p1
d2 p2
…
…
…
dm/2 pm/2
…
…
dj pj
…
dm pm

S1
s1 p1
s2 p2
…
…
…
sz/2 pz/2
…
…
sk pk
…
sz pz

There are at least i.j.k guesses with
probability greater than thp for this base

structure.

19

MODIFYING A WEAK PASSWORD

20

Modifying a weak password

21

• There are certain numbers or
words that are easy to
remember for each individual.

• Edit distance: The minimum
number of operations used to
transform a string to another one.

• We only change within
edit distance of 1.

Modifying a weak password
distance function

22

• Operations on the base structure L5D3S1
▫ Insertion L5S1D3S1
▫ Deletion L5D3S1
▫ Transposition D3L5S1

• Operations on the component D3: 123
▫ Insertion 1263
▫ Deletion 123
▫ Substitution 129

L5 : alice
▫ Case (only for alpha part) aLice

L5D3S1
Alice123!

[]

S1L5D3S
1

-Alice123!

[!,@,#,$,…]

L5D3S1D1
Alice123!-

[0,1,2,3,...]

L5S1D3
Alice!123

[]

L5D3S1
Alice123!

[@, ,$,…]

L5D3S1
Alice123!

[]

L5D31S1
Alice-23!

[0,2,3,..]

L5D32S1
Alice1-3!

[0,1,3,…]

L5D33S1
Alice12-!

[0,1,2,4,...]

  

23

#

Alice123#

Input password to AMP Output of modifier

trans2 %trans2

colton00 8colton00

789pine 789pinE

mitch8202 mitch=8202

cal1fero cal8fero

KILLER456 KILlER456

violin22 violin^22

ATENAS0511 0511AETENAS

*zalena6 *3zalena6

KYTTY023 KYTTY023r

24

Modifying a weak password
Example

Testing

25

Training the
AMP

Password
checker

• 1 million RockYou
• 30,997 MySpace
• 4874 Hotmail

Testing the
AMP system

• ½ million
RockYou

• 15,499 MySpace
• 2437 Hotmail

Training the
Probabilistic

Password
Cracker

• ½ million RockYou
• 15,499 MySpace
• 2437 Hotmail

26

Testing the AMP System
Experiment Setup

2 million RockYou
61,995 MySpace
9,748 Hotmail

27

Testing the AMP System

AMP
SYSTEM

Test
set

Input
Strong

Weak / not
able to

strengthen

Weak /
able to

strengthen

Strengthened
from weak

ones

O
u

tp
u

t

Trained on training
set for password

checker

Originally
Strong
passwords

Originally
Weak
passwords
(Not able to
make
stronger)

Originally
Weak
passwords
(Able to make
stronger)

Strengthened
passwords
Modified
from weak
ones

Hotmail

Percentage

MySpace

Percentage

RockYou

Percentage

28

(0.61%) (92.45%) (47.98%) (0.097%)

(1.55%) (69.80%) (38.53%)

(53.18%
)

(89.90%)(0.86%)

(0.51%)

(0.27%)

Some results
Cracked by John the Ripper – 1 day threshold

Originally
Strong
passwords

Originally
Weak
passwords
(Not able to
make
stronger)

Originally
Weak
passwords
(Able to
make
stronger)

Strengthened
passwords
Modified
from weak
ones

Hotmail

Percentage

MySpace

Percentage

RockYou

Percentage

29

(0.3%) (100%) (51.91%) (5.48%)

(1.81%) (90.60%) (60.15%)

(58.54%
)

(98.51%)(1.42%)

(5.03%)

(4.1%)

Some results
Cracked by Probabilistic Password Cracker – 1 day threshold

30

Some results
Weak and Strengthened passwords cracked by John the Ripper

31

Some results
Beyond 1 day Threshold

Threshold & Cracking time (hours)

Dynamically Updating

32

Update the training set

33

• As we keep using AMP, we suggest more
passwords with lower probabilities as strong
passwords.

• As people use our suggested passwords more,
the probability distribution of passwords
changes.

• An attacker might be able to crack passwords
using the recent set of real user passwords.

AMP
Update the training set

Initial
training set

Context-
free

Grammar

• 45pass!
• 99lost#
• 17max!!
• !!pass1
• 87love0

New
passwords

34

AMP
Update the Context-free Grammar

Base structures S2

b1

b2

b3
.
.

bi=S2D2L4
.
.

bm

s1

s2

s3

.

.
sj=!!
.
.
sm

35

36

37

Training on
real user

passwords

Producing
Context-free

Grammar

Set the
Threshold

Preprocessing phase

Enter user’s
password

Estimate password
strength

Modifying the
original

password

Reject
Function

Reject AcceptN
ew

 p
as

sw
or

d

Post-processing phase

Updating
Grammar

Calculating
Entropy values

Metrics for password strength

38

Metrics for password strength

• Shannon Entropy:

Where P(X=x) is the probability that the variable X has the value x.

39

• Guessing Entropy G(X):
average number of tries for finding

the password

• Massey proved the following relationship for
discrete distributions:

• Massey proved the following relationship for
discrete distributions:

40

Metric for password strength

Calculation of Entropy based on
Context-free grammars for a password
distribution

S L2D3
D2L2
S1D2

L2D3 up999
it999

D2L2 11up
11it
10up
10it

S1D2 #11
$11
#10
$10

p(S L2D3)= p(B=L2D3)

p(L2D3  up999)
= p(up) × p(999)

41

Calculation of Entropy
based on context-free grammar for a password distribution

S L2D3
D2L2
S1D2

42

Calculation of Entropy
based on context-free grammar for a password distribution

S L2D3
D2L2
S1D2

43

Increasing Shannon Entropy

• User enters their chosen password

• If it is not strong enough, it will be rejected

• We suggest a new password with probability less
than 1/n, n being the total number of passwords
in the distribution.

• We update the probabilities by adding the new
password to the training set.

44

Increasing Shannon entropy

45

• We developed a technique to measure password
strength based on the distribution.

• We developed a model and built a system to help
users have strong passwords which are resistant
to real attacks.

• We developed dynamic modification techniques
to maintain the security of our system and also
showed that our updating algorithm drives the
grammar to higher Shannon entropy.

• We developed a way to calculate realistic entropy
values for password distributions.

46

Conclusion

Questions/Comments?

E-Mail Address
- sh09r@my.fsu.edu
- sudhir@cs.fsu.edu

- Shiva Houshmand, Sudhir Aggarwal, “Building Better
Passwords using probabilistic techniques,” ACSAC’12.

- M. Weir, Sudhir Aggarwal, Breno de Medeiros, Bill
Glodek, “Password Cracking Using Probabilistic
Context Free Grammars,” Proceedings of the 30th
IEEE Symposium on Security and Privacy, May 2009,
pp. 391-405.

- M. Weir, S. Aggarwal, M. Collins, and H. Stern,
“Testing metrics for password creation policies by
attacking large sets of revealed passwords,”
Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS '10),
October 4-8, 2010, pp. 163-175.

47

mailto:sh09r@my.fsu.edu
mailto:sudhir@cs.fsu.edu

	Building Better Passwords using Probabilistic Techniques
	Slide Number 2
	Introduction
	Existing problems with passwords
	Slide Number 6
	Analyze and Modify Passwords�Abstract
	Probabilistic password attack�[Weir, Aggarwal and De Medeiros]
	Probabilistic password attack
	Slide Number 10
	Slide Number 11
	AMP System Overview�Analyzer and Modifier for Passwords
	AMP Analyzing�Estimate the password strength
	AMP�Setting the Threshold
	�Example table for threshold
	Slide Number 16
	Slide Number 17
	Slide Number 18
	AMP�Set the threshold – Using the context free grammar
	MODIFYING A WEAK PASSWORD
	Modifying a weak password
	Modifying a weak password�distance function
	Slide Number 23
	Modifying a weak password�Example
	Testing
	Testing the AMP System�Experiment Setup
	Testing the AMP System
	Slide Number 28
	Slide Number 29
	Some results�Weak and Strengthened passwords cracked by John the Ripper
	Some results�Beyond 1 day Threshold
	Dynamically Updating
	Update the training set
	AMP�Update the training set
	AMP�Update the Context-free Grammar
	Slide Number 36
	Slide Number 37
	Metrics for password strength
	Metrics for password strength�
	Slide Number 40
	Calculation of Entropy based on Context-free grammars for a password distribution
	Calculation of Entropy �based on context-free grammar for a password distribution
	Calculation of Entropy �based on context-free grammar for a password distribution
	Increasing Shannon Entropy
	Increasing Shannon entropy
	Slide Number 46
	Questions/Comments?

