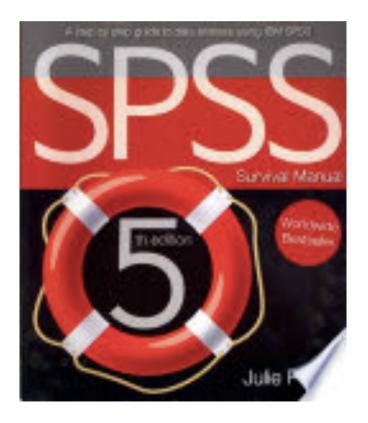


EDUS362 Quantitative Research Method


Demo 1.

Demo materials

■ EDUS362 demo slides and tasks are based on materials drawn up by a project researcher Jukka Utriainen, an university researcher Susanna Paloniemen and a PhD student Sanna Moilanen.

Reference

Pallant, J. (2013). *SPSS survival manual.* McGraw-Hill Education (UK).

Objectives of demo

- After completing the course, students are able to:
 - make a research plan in accordance with the principals of the quantitative research.
 - collect numerical research data, perform statistical analysis and report the statistical results.
 - understand the ethical principals of research work.
- In the demo, students will practice:
 - how to conduct statistical analysis using SPSS software.
 - how to report the results in words, tables and figures.
- Gain the <u>basic</u> skills necessary for writing an assignment / Master's thesis.

Course completion and evaluation

- Doing exercises in each demo.
 - Demo materials are in Koppa demo folder.
- Instruction of assignment will be found in Koppa.
- Return the assignment no later than 4.4. 24:00 to Koppa.
- The assignment will be graded 0-5.

Absence and replacement

- Attendance is basically mandatory, but following reasons are acceptable: 1) disease and 2) other personal reasons related to life situation (e.g., child's illness)
- Please tell your absence beforehand.
- Replacement of absence:
 - Only one-time absence can be replaced by an independent task.
 - Do the demo tasks independently and return by e-mail within a week of the demo session.

Demo delivary

- Demo 1 Preparing the data file and descriptive statistic
- Demo 2 Crosstabs and Chi-square (χ^2) test
- **Demo 3** Correlations
- Demo 4 Comparing two groups (t-test) and calculating effect size (Cohen *d*)
- Demo 5 Comparing three (or more) groups (one-way analysis of variance, ANOVA)

The use of data in demo

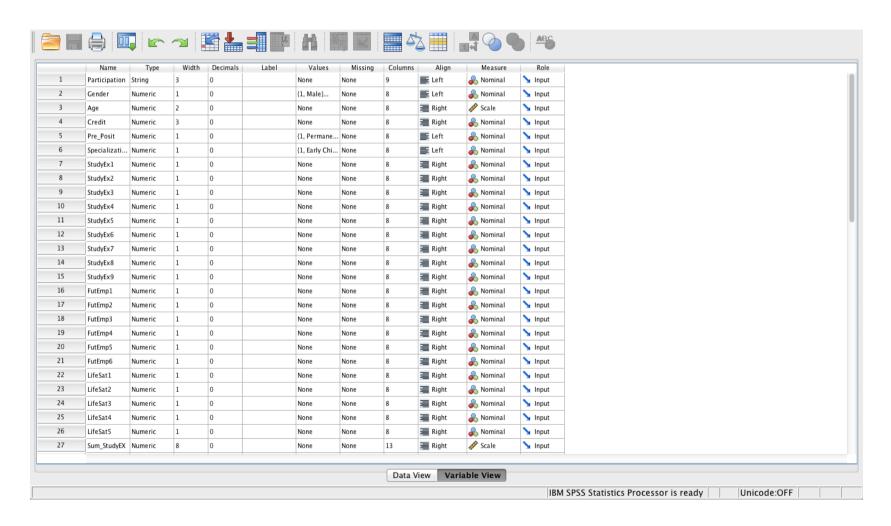
Research ethical commitments:

- The data set has been used ONLY in the demo.
- The data set can not be transferred to others.
- At the end of the course, please remove the data from your own directory (U-drive).
- DO NOT save the data other than your home directory.
 - USB stick, hard disk or your home computer have possibilities to be reached by unauthorized persons.

Demo 1

Demo 1 Contents

- 1. Retrieve a data file from Koppa and save it to your home directory (U-drive).
- 2. Open the data file in SPSS.
- 3. Conduct descriptive analysis using SPSS.
- 4. Interpret the graphic presentation of the data.


Let's go through the exercise together.

Learning by doing is the best way to learn statistics!

Open a data file in SPSS

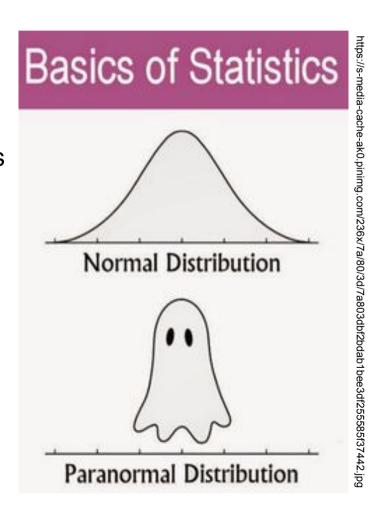
(in Handout p.1)

Categorization of variables in SPSS

Nominal:

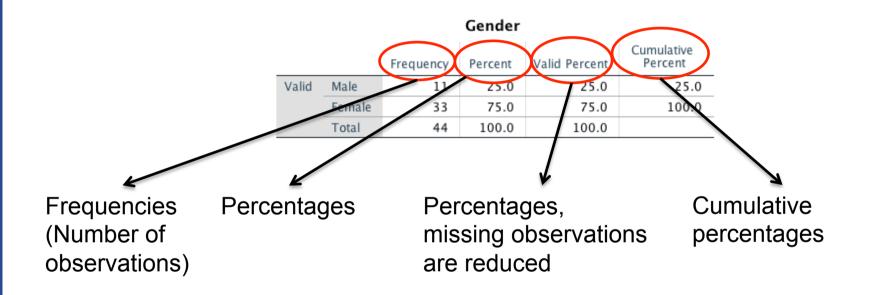
- 2 or more categories. No order.
- E.g. What is your gender? → Male, Female or Transgender.

Ordinal:


- 2 or more categories. It can be ordered.
- E.g. How satisfied are you with your life?
- → Completely satisfied, Very satisfied, Somewhat satisfied, Somewhat dissatisfied, Very dissatisfied, Completely dissatisfied

Scale:

- It can be measured along a continuum and they have numerical value.
- E.g. Height, temperature
- E.g. Level of life satisfaction (calculated as a mean of multiple indicators in a Life Satisfaction Questionnaire)


Describing frequencies and percentages graphically

- Bar charts and pie charts are suitable to present nominal or ordinal variables.
 - E.g. Students' major: special needs education, adult education, early childhood education etc.
- Histograms are often used in analysis for continuous variables.
 - E.g. age, number of credits
 - Histogram can be used to examine whether the variable values are normally distributed data or not

Exercise 1a: Frequency

Calculate the frequency distributions of "Gender" and create bar charts. (in Handout p.2)

[Example of report]

"In this study, there are 33 females (75.0 %) and 11 males (25.0 %) in the sample, giving a total of 44 respondents."

Exercise 1b: Bar charts

Put the numbers of observations and the percentages

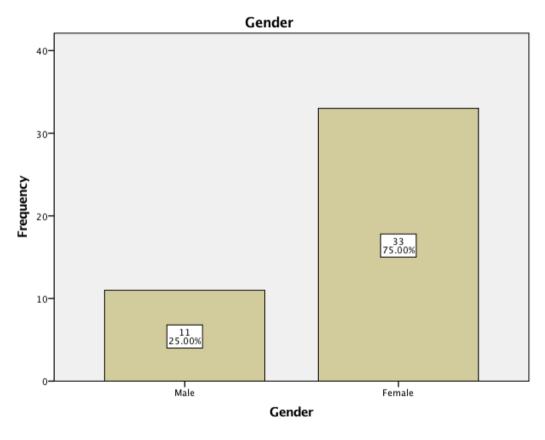


Figure 1. Distribution of respondents according to their gender (n = 44)

Exercise 1b: Bar charts

How to report (Example)

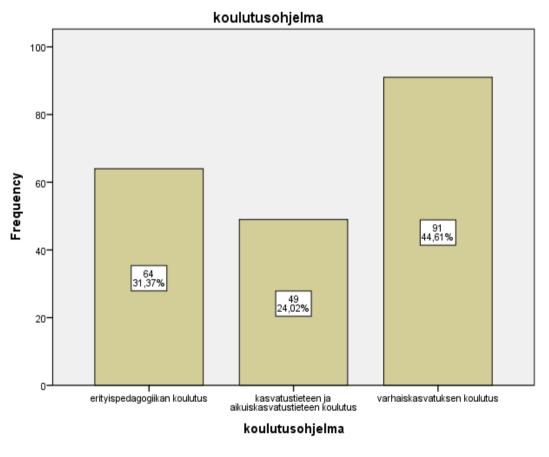


Figure 2. Distribution of respondents according to their major (n = 204)

[Example of report] "According to Figure 2, the most common major was early childhood education (91participants, 44.6%). In addition, 64 participants (31.4%) were studying in special needs education and 49 participants (24.0 %) were in educational science and Adult education."

SPSS output of pie chart

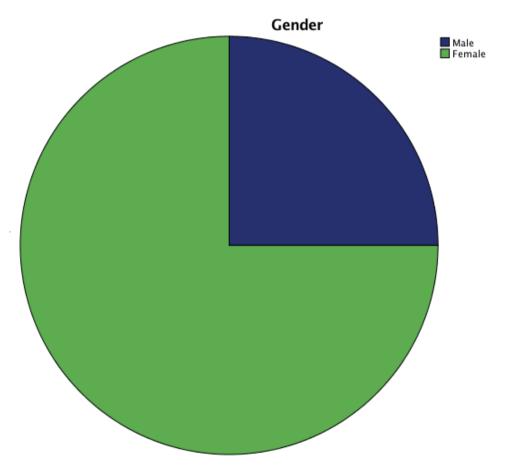
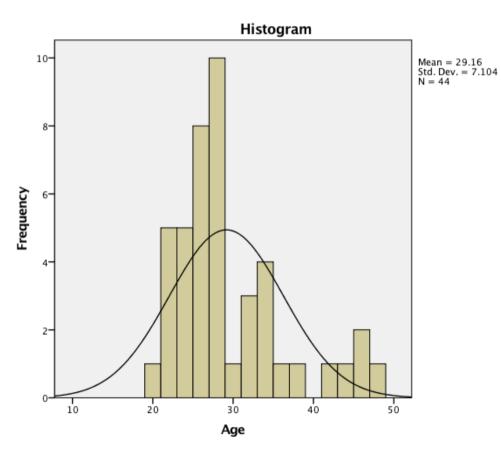



Figure 3. Distribution of respondents according to their gender (n = 44)

Exercise 2a: Histogram

Calculate the frequency distributions of "Age" and create a histogram. (in Handout p.3)

histogram shows that the age of students is normally distributed.

The shape of the

Figure 4. Histogram of age variable (N = 44)

Exercise 2b: Skewness and kurtosis

View age-variable's skewness and kurtosis. (in Handout p.3)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Skewness		Kurtosis	
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
Age	44	20	48	29.16	7.104	1.212	.357	.823	.702
Valid N (listwise)	44								

If it is fully symmetrical, **skewness** and **kurtosis** will be zero values. In this data set, the former is 1.21 and the latter is 0.82.

*The cutoff values for skewness and kurtosis is debated among the researchers.

E.g. 1) ± 2 for both

2) ±0.8 for skewness and ±3.0 for kurtosis

Exercise 2c: Measures of central tendency

- Calculate the mean, median, mode, standard deviation, and quartiles of "Age" variable. (in Handout p.3)

Statistics

Age

N	Valid	44
	Missing	0
Mean	29.16	
Median	27.00	
Mode	25 ^a	
Std. Deviatio	7.104	
Percentiles	25	24.25
	50	27.00
	75	32.75

Multiple modes exist.
The smallest value is shown

Mean

• is the "average", which you add up all the numbers and then divide by the number of observations.

Median

 is the "middle" value in the list of numbers or the average of the two middle values.

Mode

is the value that occurs most frequently.

Standard deviation (SD)

- measures the clustering of numbers (the square root of the variance)
- The higher SD indicates that the data points are spread out over a wider range of values.

Which one you use will depend on a type of data you have, whether your data has outliers and/or is skewed, and what you want to show from your data.

Exercise 2c: Measures of central tendency

- How to report (Example)

Statistics

Age

N	Valid	44
	Missing	0
Mean	29.16	
Median	27.00	
Mode	25 ^a	
Std. Deviatio	7.104	
Percentiles	25	24.25
	50	27.00
	75	32.75

a. Multiple modes exist.
The smallest value is shown

Reference:

https://statistics.laerd.com/ statistical-guides/measurescentral-tendency-mean-modemedian-faqs.php

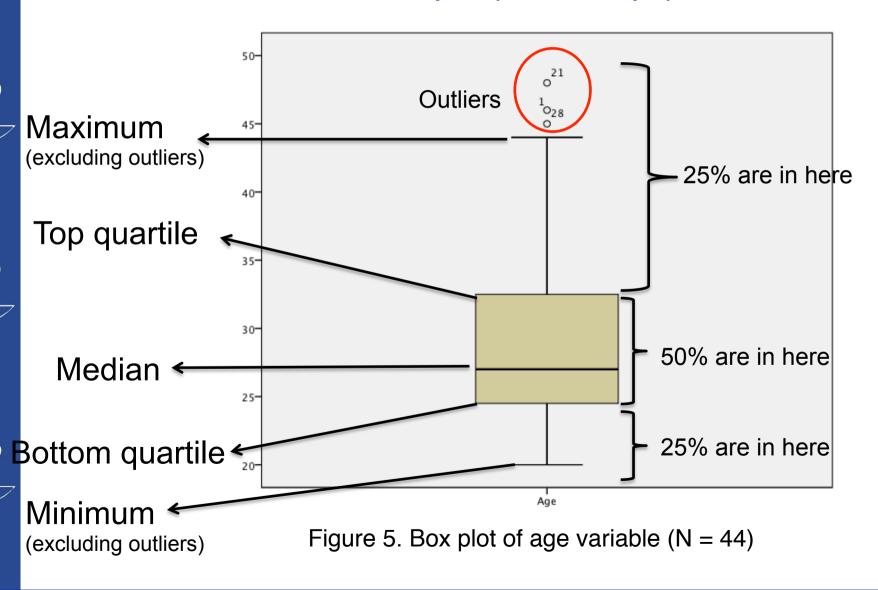
Mean

- "The mean age of the participants was 29.2 years old."
- The most frequently reported indicator, usually reported with standard deviation (SD).

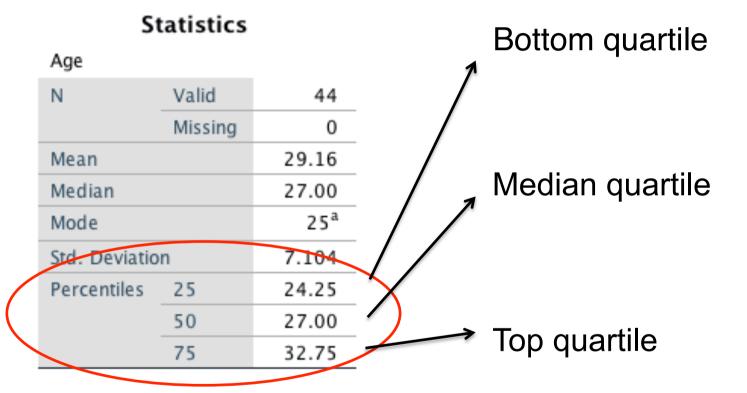
Median

 "The median age of the participants was 27 years old."

Mode


 "The mode age of the participants was 25 years old."

Standard deviation


• "The mean age of the participants was 29.2 years old (*SD*= 7.1)."

Exercise 2d: Box plot

Create box plot (in Handout p.3)

Exercise 2d: Quartiles

