EDUS362 QUANTITATIVE RESEARCH METHOD Demo 2.

Demo 2 Contents

- 1. State the hypotheses
- 2. Types of statistical technique
- 3. Transform variables
- 4. Crosstabs and Chi-square (χ^2) test
- 5. Create crosstabs in Excel

State the hypotheses

- Statistical hypotheses are assumption about population based on a collected sample. This assumption may or may not be true.
- Before you start analysis, you need to state a null hypothesis and an alternative hypothesis.

The hypotheses using above example are: H₀: There is <u>no difference</u> between males and females on whether they smoke

H₁: There is <u>a difference</u> between males and females on whether they smoke

Rule for decision

We use statistical analysis to test whether we accept or reject the hypothesis.

Use p-value for the decision. p-value: the probability of observing our statistics if the null hypothesis is true.

Statistically significant value for *p*-value needs to be .05 or smaller.

Usually it is presented as p < .05(*), p < .01(**) or p < .001(***).

Type 1 and 2 Error

There is always the possibility of reaching the wrong conclusion.

	H ₀ is actually:				
	True	False			
Reject H ₀	Type 1 error	Correct 😶			
Accept H ₀	Correct 😶	Type 2 error			

Two different types of statistical technique

1. Parametric statistics

- This includes assumptions about the shape of the population (mainly normal distribution).
- E.g. T-test, ANOVA (analysis of variance)

2. Non-parametric statistics

- This do not make assumptions about the underlying population distribution (sometimes it is called distribution-free tests).
- E.g. Chi-square (χ^2) test
- Since it is less powerful than parametric tests, there may be possibilities to fail detecting differences between groups that actually exist.
- \rightarrow It is better to use parametric statistics if you can.

Chi-square (χ^2) test for independence

This test is used when you have <u>two</u> <u>categorical variables</u> from a single population. Each of these variables can have two or more categories. You can analyse whether there is significant relationship between them.

E.g. "Gender" and "Whether they smoke or not"

	Male	Female
Smoke	nnnn	nnnn
No smoke	nnnn	nnnn

N.B.! The lowest expected frequency in each cell should be **<u>5 or more</u>**.

Exercise 1a: Transform variables

- Transform continuous variable (a number of credits) into categorical variable (two groups).

→ To conduct χ^2 -test, we transform continuous variable (a number of credits) into categorical variable (two groups).

Using "Visual Binning".

● ○ ○		Visual Binning		
Scanned Variable List:	Current Variable:	Name: Credit	Label:	
	Binned Variable:	Credit_2gp	Credit (Binn	ed)
	Minimum: 0	Nonm	issing Values	Maximum: 177
	.00 17	.70 35.40 53.10 70.80	88.50 106.20 123	.90141.60159.30177.00194.70
	(i)cutpo		nple, defines ar	ints for automatic intervals. A n interval starting above the
Cases Scanned: 44	1	Value	Label	Upper Endpoints
Missing Values: 0	2 3	HIGH	31+	Included (<=) Excluded (<)
Copy Bins From Another Variable				Make Cutpoints
To Other Variables				Make Labels
				Reverse scale
? Reset	Paste			Cancel OK

Exercise 1b: Transform variables

- Transform continuous variable (a number of credits) into categorical variable (two groups).

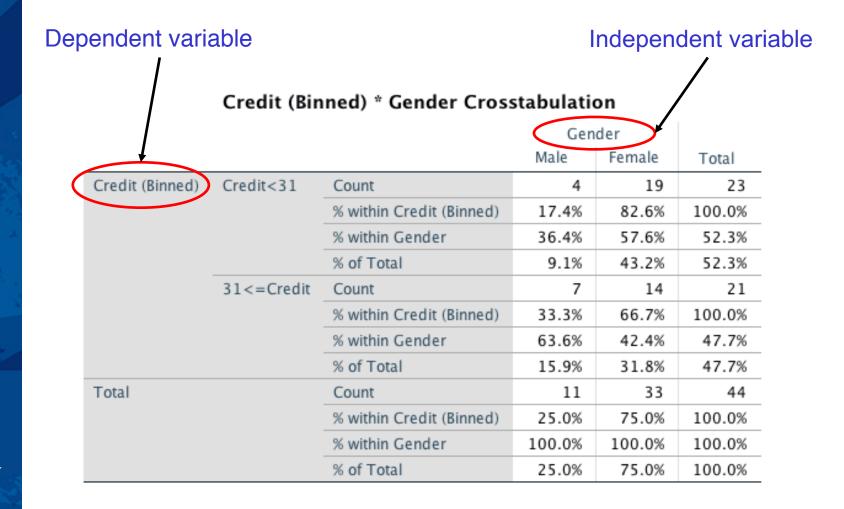
Recoding a categorical variable with your own criteria.

$\Theta \cap \Theta$			Recode into Different Variables	
* • • • •			Numeric Variable -> Output Variable:	Output Variable
Gender	_		Credit> Credit_gp2_2	Name:
Age				
Pre_Posit				Label:
Specialization		\bigcirc		
StudyEx1		٠		
StudyEx2				Change
🚽 StudyEx3				
StudyEx4				
StudyEx5				
StudyEx6			Old and New Values	
StudyEx7				
StudyEx9			If (optional case selection cond	ition)
?	Reset		Paste	Cancel OK

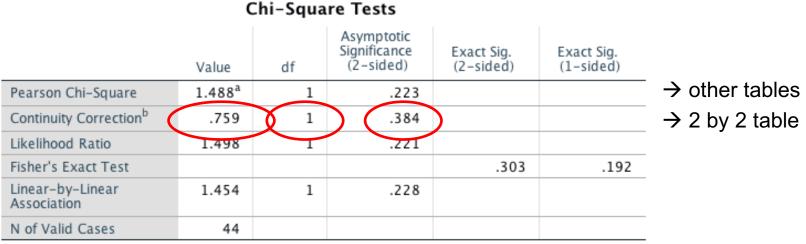
Independent and dependent variables

1. Dependent (or outcome) variables

- This will vary according to the independent variable. The dependent variable is often the phenomenon which we are interested in and which is being studied.
- E.g. political attitude, motivation, life satisfaction etc.

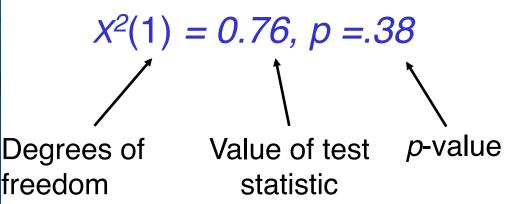

2. Independent variables

- This will be investigated as possibly having a causal effect upon the dependent variables. It is often measured as a characteristic of the participant.
- E.g. gender, occupation etc.



- Variables are "Gender" and "Credit_gp2_1"
- Which is Independent and dependent variable?
- What is H_0 and H_1 in this case?

Exercise 2: Crosstabs and Chi-square (χ^2) test



Exercise 2: Crosstabs and Chi-square (χ^2) test

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 5.25.

b. Computed only for a 2x2 table

The null hypothesis is accepted because the *p*-value is not significantly small. (p > .05).

Degree of freedom (*df***):** the number of values that are free to vary in the calculation.

E.g. Three persons' height average is 175 cm. (It means the total is 525 cm.) **Two** persons' height can be whatever within human's height limit (e.g. "160 and 170", or "165 and 175"), but third man's height is predetermined by two persons' height values.

$$df = 3-1 = 2$$

e.g. 1	160	170	195	175 (total 525)
e.g. 2	165	185	175	175 (total 525)

*Degrees of Freedom (*df*) of crosstab

df = (number of cells in the row - 1) × (number of cells in the column - 1). e.g. 2 × 2 table's df = (2 - 1) × (2 - 1) = **1**

Degrees of Freedom (*df*)

df	Probabilities									
	.95	.90	.70	.50	.30	.20	.10	.05	.01	.001
1	.004	.016	.15	.46	1.07	1.64	2.71	3.84	6.64	10.83
2	.10	.21	.71	1.39	2.41	3.22	4.61	5.99	9.21	13.82
3	.35	.58	1.42	2.37	3.67	4.64	6.25	7.82	11.35	16.27
4	.71	1.06	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.15	1.61	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.64	2.20	3.83	5.35	7.23	8.56	10.65	12.59	16.81	22.40
7	2.17	2.83	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.33
8	2.73	3.49	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.13
9	3.33	4.17	6.49	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.50
11	4.58	5.58	8.15	10.34	12.90	14.63	17.28	19.68	24.73	31.20
12	5.23	6.30	9.03	11.34	14.01	15.81	18.55	21.03	26.22	32.91
13	5.89	7.04	9.93	12.34	15.12	16.99	19.81	22.36	27.69	34.53
14	6.57	7.79	10.82	13.34	16.22	18.15	21.06	23.69	29.14	36.12
15	7.26	8.55	11.72	14.34	17.32	19.31	22.31	25.00	30.58	37.70
20	10.85	12.44	16.27	19.34	22.78	25.04	28.41	31.41	37.57	45.32
25	14.61	16.47	20.87	24.34	28.17	30.68	34.38	37.65	44.31	52.63
30	18.49	20.60	25.51	29.34	35.53	36.25	40.26	43.77	50.89	59.70
50	34.76	37.69	44.31	49.34	54.72	58.16	63.17	67.51	76.15	86.66

Table 10.7. The chi-square values for different probability levels (.001-0.95), for degrees of freedom ranging from 1 to 50.

http://www.eplantscience.com/index/genetics/linkage_and_crossing_over_in_diploid_organisms_higher_eukaryotes/chisquare_test.php

Effect size

 Higher value indicating stronger association between the two variables.

Symmetric Measures

Cohen's (1988) criteria for Phi coefficient: $\Phi > .10$ or $\Phi < -.10$: small effect $\Phi > .30$ or $\Phi < -.30$: medium effect $\Phi > .50$ or $\Phi < -.50$: large effect

N.B.! Cramer's V has different criteria.

Exercise 3: Report the result

Example

A Chi-square test for independence indicated no significant (or significant) association between gender and smoking status, χ^2 (1, n = 436) = .34, p = .56.

Exercise 4: Create crosstabs in Excel

Table 1. Amount of credits between male and female

	Male	Female	Total
≤ 29 credit	3	6	9
	(8.6%)	(17.1%)	(25.7%)
\geq 30 credit	6	20	26
	(17.1%)	(57.1%)	(74.3%)
Total	9	26	35
	(25.7%)	(74.3%)	(100.0%)