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Abstract. In this paper an extension of Generalized Differential Evo-
lution for constrained multi-objective (Pareto-)optimization is proposed.
The proposed extension adds a mechanism for maintaining extent and
distribution of the obtained non-dominated solutions approximating a
Pareto front. The proposed extension is tested with a set of five bench-
mark multi-objective test problems and results are numerically compared
to known global Pareto fronts and to results obtained with the elitist
Non-Dominated Sorting Genetic Algorithm and Generalized Differential
Evolution. Results show that the extension improves extent and distri-
bution of solutions of Generalized Differential Evolution.
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1 Introduction

Many situations in engineering and economics deal with optimization. One may
want to optimize, e.g., manufacturing processes, shape of products, and number
of different products to be manufactured. Typical goals are minimizing costs,
maximizing profits, and improving performance. Several natural aspects limit
feasible solutions, e.g., resources may cause limitations and/or the number of
products cannot be a negative number.

Optimization is an intensively studied problem field in mathematics. How-
ever, functions to be optimized in traditional mathematics are relatively simple
(continuous, convex, unimodal, differentiable, etc.), yet functions to be opti-
mized in practice are often far more complicated (discontinuous, non-convex,
multi-modal, non-differentiable, etc.). In such cases various stochastic optimiza-
tion methods have shown their effectiveness.

Most optimization research deals with single-objective optimization prob-
lems. The basic nature of many optimization problems is, however, multi-object-
ive and these problems are usually first converted to single-objective problems.
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Single-objective problems are commonly considered easier to solve but conver-
sion from a multi-objective problem to a single-objective problem requires some
a priori knowledge which is not necessarily available or which is hard to de-
termine, e.g., the relative importance of each individual sub-objective. For this
reason interest exists in solving multi-objective problems in multi-objective form.

Several extensions of Differential Evolution (DE) for multi-objective opti-
mization have already been proposed [1–5]. Most of these methods use a non-
dominated sorting for reproduction in each generation and some distance metric
to prevent crowding.

This paper continues with the following parts: In Section 2 the concept of
multi-objective optimization with constraints is handled briefly. Section 3 de-
scribes Differential Evolution algorithm and Section 4 describes proposed ex-
tension for constrained multi-objective optimization. Section 5 describes exper-
iments and finally conclusions are given in Section 6.

2 Multi-objective Optimization with Constraints

Many practical problems have multiple objectives. For example, designing a wing
of an aircraft may have objectives such as maximizing strength, minimizing
weight, minimizing manufacturing costs, maximizing lifting force, minimizing
drag, etc. Multiple objectives are almost always more or less conflicting.

Several aspects cause constraints to problems. In the previous example of the
wing, the thickness of the metal parts used must be a positive number, shape
limitations exist, some parts are available only in some predefined standard sizes,
etc. Constraints can be divided into box or boundary constraints and constraint
functions. Boundary constraints are used when the value of some optimized
variable is limited to some range and constraint functions are representing more
complicated constraints which are expressed as functions.

Multi-objective problems are often converted to single-objective problems
by predefining weighting factors for different objectives, expressing the relative
importance of each objective. However, this is impossible in many cases because
a decision-maker does not necessarily know beforehand how different objectives
should be weighted. Thus, a more convenient way is to keep multiple objectives
of multi-objective problems and try to solve them in this form even though this
may be harder to do in practice. Optimizing several objectives simultaneously
without articulating the relative importance of each objective a priori, is often
called Pareto-optimization [6]. An obtained solution is Pareto-optimal if none of
the objectives can be improved without impairing at least one other objective [7,
p. 11–12]. If the obtained solution can be improved in such way that at least one
objective improves and other objectives do not decline, then the new solution
dominates the original solution. A set of Pareto-optimal solutions form a Pareto
front. An approximation of the Pareto front is called a set of non-dominated
solutions because the solutions in this set are not dominating each other in
the space of objective functions. From the set of non-dominated solutions the
decision-maker may select one which has suitable values for different objectives.
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This can be viewed as a posteriori articulation of the decision-makers preferences
concerning the relative importance of each objective.

A mathematically constrained multi-objective optimization problem can be
presented in the form [7, p. 37]

minimize {f1(x), f2(x), . . . , fK(x)}
subject to x ∈ S = {x ∈ RD|g(x) = (g1(x), g2(x), . . . , gM (x))T ≤ 0} (1)

Thus, there are K functions to be optimized and M constraint functions.
The major part of earlier mathematical research has concentrated on opti-

mization problems where the functions are linear, differentiable, convex, or oth-
erwise mathematically well behaving. However, in practical problems objective
functions are often nonlinear, non-differentiable, discontinuous, multi-modal, etc.
and no presumptions can be made about their behavior. Variables may also be
integers or discrete instead of being continuous. Most traditional optimization
methods cannot handle such complexity or do not perform well in these cases
in which the assumptions they are based on do not hold. For such problems
stochastic optimization methods such as Simulated Annealing (SA) and Evolu-
tion Algorithms (EAs) have been demonstrated to be effective because they do
not rely on any assumptions concerning the objective and constraint functions.

3 Differential Evolution

The Differential Evolution (DE) algorithm [8, 9] [10, pp. 79–108] belongs to
the family of Evolution Algorithms and was introduced by Storn and Price in
1995 [11]. Design principles in DE were simplicity, efficiency, and use of floating-
point encoding instead of binary numbers.

Like in a typical EA, the idea in DE is to have some random initial popula-
tion which is then improved using selection, mutation, and crossover operations.
Several ways exist to determine a stopping criterion for EAs but usually a prede-
fined upper limit Gmax for the number of generations to be computed provides
an appropriate stopping condition.

A trial vector ui,G created by mutation and crossover operations is compared
to an old objective vector xi,G. Here i is an index of the vector in the population
and G is a generation index. If the trial vector has equal or lower objective
value, then it replaces the old vector. This selection operation can be presented
as follows [10, p. 82]:

xi,G+1 =
{

ui,G if f(ui,G) ≤ f(xi,G)
xi,G otherwise (2)

The average objective value of the population will never increase, because the
trial vector replaces the old vector only if it has equal or lower objective value.

4 An Extension of Generalized Differential Evolution

Generalized Differential Evolution (GDE) [12–17] extends the selection operation
of the basic DE algorithm for constrained multi-objective optimization. GDE
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has been demonstrated to have good convergence properties but distribution of
solutions and extent of the obtained non-dominated front need to be improved.
GDE does not contain any mechanism for maintaining these. As an attempt to
improve GDE from this point of view, a modified selection operation for GDE is
proposed in this paper. The proposed selection operation for M constraint and
K objective functions is presented formally in (3).

xi,G+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui,G if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

∃j ∈ {1, . . . , M} : gj(ui,G) > 0
∧
∀j ∈ {1, . . . , M} : g′j(ui,G) ≤ g′j(xi,G)

∨⎧
⎨

⎩

∀j ∈ {1, . . . , M} : gj(ui,G) ≤ 0
∧
∃j ∈ {1, . . . , M} : gj(xi,G) > 0

∨⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀j ∈ {1, . . . , M} : gj(ui,G) ≤ 0 ∧ gj(xi,G) ≤ 0 ,
∧⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∀k ∈ {1, . . . , K} : fk(ui,G) ≤ fk(xi,G)
∨⎧
⎪⎪⎨

⎪⎪⎩

¬ [∀k ∈ {1, . . . , K} : fk(ui,G) ≥ fk(xi,G) ∧
∃k ∈ {1, . . . , K} : fk(ui,G) > fk(xi,G)]

∧
dui,G ≥ dxi,G

xi,G otherwise

(3)

where g′j(xi,G) = max (gj(xi,G), 0) and g′j(ui,G) = max (gj(ui,G), 0) are repre-
senting the constraint violations, and di is a distance measure for measuring the
distance from a particular solution i to its neighbor solutions.

The selection rule given in (3) selects the trial vector ui,G to replace the old
vector xi,G in the following cases:

1. Both the trial vector and the old vector violate at least one constraint but
the trial vector does not violate any of the constraints more than the old
vector does.

2. The old vector violates at least one constraint whereas the trial vector is
feasible.

3. Both vectors are feasible and
– the trial vector dominates the old vector or has equal value for all ob-

jectives, or
– the old vector does not dominate the trial vector and the old vector

resides in a more crowded region of the objective space.

Otherwise the old vector xi,G is preserved.
The basic idea in the selection rule is that the trial vector is required to

dominate the compared old population member in constraint violation space or
in objective function space, or at least provide an equally good solution as the
old population member. If both vectors are feasible and they do not dominate



756 Saku Kukkonen and Jouni Lampinen

each other, then the one residing in a less crowded region of the objective space
is chosen to the population of the next generation. The principle of constraint
handling is effectively rather similar to the method described in [18] even though
the formulation is different. The main difference is in the case of two infeasible
solutions. In this case the selection rule given in (3) compares solutions based on
dominance of the constraint violations whereas the selection method described
in [18] compares solutions based on a sum of the constraint violations which
needs evaluation of all constraint functions and normalization of their values.

The whole selection rule given in (3) is effectively almost same as a con-
strained tournament method in [19, pp. 301–308]. In the selection rule given
in (3) the trial vector is preferred over the old vector also in the cases when the
trial vector is equally good as the old vector, i.e., constraint violations are equal
or objective function values are equal.

The selection rule given in (3) can be implemented in such a way that the
number of function evaluations is reduced because not always all the constraints
and objectives need to be evaluated, e.g., inspecting constraint violations (even
one constraint) is often enough to determine which vector to select for the next
generation [13, 14]. However, in the case of feasible solutions all the objectives
need to be evaluated which was not always necessary in earlier GDE. This will
increase the total number of function evaluations as well as execution time. Also
calculation of the distance measure, di, will increase execution time. In principle,
any measure of distance from a solution to its neighbor solutions can be applied.
A crowding distance [19, pp. 248–249] was applied here as the distance measure,
di, because it does not need any extra parameters.

After the selected number of generations the final population presents a so-
lution for the optimization problem. The non-dominated solutions can be sepa-
rated from the final population if desired. There is no sorting of non-dominated
solutions during the optimization process.

Later on in this paper the proposed method with the selection rule given in (3)
is called Generalized Differential Evolution 2 (GDE2). The selection rule given
in (3) handles any number M of constraints and any number K of objectives.
When M = 0 and K = 1, the selection rule is identical to the selection rule of
the basic DE algorithm.

Usually large values (such as 0.9) are suggested as initial settings for the
crossover rate CR and mutation factor F in the case of single-objective prob-
lems. In the case of multiple objectives, it was observed that using a large
crossover rate often leads to faster convergence along one objective compared
to another [15–17]. This causes the solution to converge to a single point of
the Pareto front, which is not desired. Based on this observation, our initial
recommendations for the control parameter values used for multi-objective op-
timization problems are CR ∈ [0.05, 0.5] and F ∈ [0.05, 1+) for initial settings.
In line with these observations, use of small values for CR was also reported
by other researchers in [2, 3]. However, the current recommendations are based
on limited experimentation, and the problem of selecting the control parameter
values is remaining mostly open.
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5 Experiments

GDE and GDE2 were implemented in C and tested with a set of five bi-objective
benchmark problems described in [20] and [21, pp. 57–59]. These problems are
known as ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 [19, pp. 356–360]. They are
designed to test the ability of a multi-objective optimization method to handle
convexity (ZDT1), non-convexity (ZDT2), discontinuity (ZDT3), multi-modality
(ZDT4), and non-uniformity (ZDT6) of the Pareto front.

5.1 Experimental Results and Discussions

In all the test problems the size of the population was 100, the number of gen-
erations was 250, and the control parameter values for GDE and GDE2 were
CR = 0.05 and F = 0.1. In preliminary tests control parameter values 0.05, 0.1,
0.2, 0.3, and 0.4 were tested and suitable crossover rate and mutation factor
were thereby approximately determined. It was noticed that suitable values for
the crossover rate and mutation factor should be drawn from a rather narrow
range for some problems, e.g., problem ZDT4, while the underlying reason for
this remains open.

The results of a single run of GDE and GDE2 for solving the multi-objective
benchmark problems are shown in Fig. 1, where known global Pareto fronts and
the results obtained with the Strength Pareto Evolutionary Algorithm (SPEA)
[22] and the elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) [23]
are also shown for comparison and visual assessment.

Tests for NSGA-II, GDE, and GDE2 were repeated 100 times with different
random number generator seeds and the results were compared with different
metrics. NSGA-II was selected for comparison because of its good performance
in previous comparison tests [23] and since it is well known within the multi-
objective optimization community.

Closeness to the Pareto front was measured with an error ratio (ER) and a
generational distance (GD) [19, pp. 324–327]. Diversity of the obtained solution
was measured using spacing (S), spread (∆), and maximum spread (D) met-
rics [19, pp. 328–331]. Smaller values for the error ratio, generational distance,
spacing, and spread are preferable. The optimal value for the maximum spread
is 1.

Average numbers of needed function evaluations for GDE and average exe-
cution times for the methods are reported in Table 1. For NSGA-II and GDE2
2 × 25100 function evaluations were needed on each run. All the tests were run
on a Sun Sparc Ultra2. Table 2 contains the performance measurements solving
the benchmark problems. Solutions contained the non-dominated members of
the final population.

The results show that GDE2 improved extent and diversity of solutions over
GDE without impairing the convergence property of GDE and increasing ex-
ecution time only by little. NSGA-II was slightly better than GDE2 in most
of the problems according to the metrics but NSGA-II needed more execution
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Fig. 1. Global Pareto front and solutions obtained with SPEA, NSGA-II, GDE, and
GDE2 for a) ZDT1 b) ZDT2 c) ZDT3 d) ZDT4 e) ZDT6.
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Table 1. Average execution times of NSGA-II, GDE, and GDE2 solving multi-
objective benchmark test problems. Average number of needed function evaluations
(f1 and f2) of GDE are also shown. Standard deviations are in parenthesis.

NSGA-II GDE GDE2
Execution time Execution time f1 f2 Execution time

ZDT1 4.0040(0.3661) s 1.0166(0.0071) s 25100(0.0) 24079.2(29.3) 1.0875(0.0091) s
ZDT2 4.0315(0.2389) s 1.0230(0.0163) s 25100(0.0) 24080.2(27.9) 1.0820(0.0067) s
ZDT3 3.9735(0.3963) s 1.0477(0.0085) s 25100(0.0) 24078.3(32.8) 1.1169(0.0081) s
ZDT4 3.9341(0.4769) s 0.5537(0.0085) s 25100(0.0) 23280.5(37.1) 0.6329(0.0151) s
ZDT6 4.0762(2.6311) s 0.5782(0.0097) s 25100(0.0) 22885.3(68.0) 0.6554(0.0106) s

Table 2. Means of the solution cardinality (ℵ), error ratio (ER), generational distance
(GD), spacing (S), spread (∆), and maximum spread (D) of NSGA-II, GDE, and
GDE2 for the multi-objective benchmark test problems. Standard deviations are in
parenthesis.

ZDT1 ℵ ER GD S ∆ D
NSGA-II 91.7(2.7) 0.000(0.000) 0.000(0.000) 0.008(0.001) 0.418(0.036) 1.000(0.000)
GDE 98.9(1.3) 0.000(0.000) 0.000(0.000) 0.012(0.003) 0.764(0.045) 0.949(0.028)
GDE2 83.6(4.7) 0.000(0.000) 0.000(0.000) 0.011(0.001) 0.518(0.048) 1.000(0.000)

ZDT2 ℵ ER GD S ∆ D
NSGA-II 74.7(37.1) 0.000(0.000) 0.000(0.000) 0.008(0.001) 0.535(0.236) 0.800(0.402)
GDE 78.1(9.8) 0.000(0.001) 0.000(0.000) 0.018(0.005) 0.864(0.067) 0.978(0.024)
GDE2 87.9(4.4) 0.020(0.141) 0.000(0.000) 0.010(0.001) 0.470(0.052) 1.000(0.001)

ZDT3 ℵ ER GD S ∆ D
NSGA-II 92.9(2.3) 0.000(0.000) 0.000(0.000) 0.006(0.001) 0.573(0.036) 0.971(0.083)
GDE 69.1(4.8) 0.003(0.007) 0.000(0.000) 0.018(0.008) 1.044(0.068) 0.968(0.020)
GDE2 40.3(3.8) 0.007(0.014) 0.000(0.000) 0.020(0.005) 0.712(0.063) 1.000(0.001)

ZDT4 ℵ ER GD S ∆ D
NSGA-II 95.5(16.8) 0.031(0.113) 0.001(0.001) 0.007(0.001) 0.389(0.113) 0.971(0.172)
GDE 66.7(25.4) 0.235(0.357) 0.003(0.007) 0.026(0.015) 0.775(0.123) 0.968(0.052)
GDE2 55.2(21.1) 0.318(0.384) 0.004(0.006) 0.019(0.010) 0.532(0.067) 1.006(0.025)

ZDT6 ℵ ER GD S ∆ D
NSGA-II 89.5(2.9) 1.000(0.000) 0.008(0.001) 0.008(0.001) 0.513(0.031) 0.965(0.006)
GDE 99.8(2.1) 0.010(0.100) 0.002(0.021) 0.017(0.005) 1.018(0.079) 0.988(0.050)
GDE2 97.2(2.3) 0.000(0.000) 0.000(0.000) 0.008(0.001) 0.388(0.046) 1.000(0.001)

time than GDE and GDE2, probably because of additional operations, e.g., the
non-dominated sorting. GDE2 outperforms NSGA-II in the problem ZDT6.

6 Conclusions and Future Research

In this paper an extension of Generalized Differential Evolution algorithm is
proposed. The extension, GDE2, adds to GDE a mechanism for improving ex-
tent and diversity of the obtained Pareto front approximation without impairing
convergence speed of GDE and increasing execution time only little. GDE2 is
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demonstrated to be effective, and does not introduce any extra control parame-
ters to be preset by the user.

GDE and GDE2 were tested with a set of five benchmark multi-objective test
problems. The numerical results show that GDE2 is able to provide a solution for
all the test problems and performs comparably to NSGA-II and GDE providing
a relatively good approximation of the Pareto front. However, the proposed
method was found rather sensitive to control parameter values.

The effect of parameters on the optimization process, extensive comparison
of GDE2 with latest multi-objective evolutionary algorithms and test problems,
and applying GDE2 for practical multi-objective problems remains among the
topics to be studied.
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