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Abstract Genetic algorithms are commonly used metaheuristics for global optimi-
zation, but there has been very little research done on the generation of their initial
population. In this paper, we look for an answer to the question whether the initial
population plays a role in the performance of genetic algorithms and if so, how it
should be generated. We show with a simple example that initial populations may
have an effect on the best objective function value found for several generations.
Traditionally, initial populations are generated using pseudo random numbers, but
there are many alternative ways. We study the properties of different point genera-
tors using four main criteria: the uniform coverage and the genetic diversity of the
points as well as the speed and the usability of the generator. We use the point gen-
erators to generate initial populations for a genetic algorithm and study what effects
the uniform coverage and the genetic diversity have on the convergence and on the
final objective function values. For our tests, we have selected one pseudo and one
quasi random sequence generator and two spatial point processes: simple sequential
inhibition process and nonaligned systematic sampling. In numerical experiments, we
solve a set of 52 continuous test functions from 16 different function families, and
analyze and discuss the results.
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1 Introduction

When solving real optimization problems numerically, the solution process typically
involves the phases of modeling, simulation and optimization. A simulated model of
a real life problem is often complex, and the objective function to be minimized may
be nonconvex and have several local minima. Then, global optimization methods are
needed to prevent the stagnation to a local minimum. Therefore, in the recent years,
there has been a great deal of interest in developing methods for solving global opti-
mization problems (see, e.g., [12, 18, 32] and references therein). Here, we consider
global continuous optimization problems.

Genetic algorithms [15, 16, 25] are metaheuristics used for solving problems with
both discrete and continuous variables. The population is the main element of genetic
algorithms, and the genetic operations like crossover and mutation are just instru-
ments for manipulating the population so that it evolves towards the final population
including a “close to optimal” solution. The requirements set on the population also
change during the execution of the algorithm.

In the recent years, genetic operators have been developed intensively (see, for
example, [25, 26] and references therein). In addition, most of the theoretical studies
involve the tuning or controlling of the parameters of genetic operators and their role
is often considered significant performance-wise (see, for example, [11]). However, the
role of the initial population, which is the topic of this paper, is widely ignored. Often,
the whole area of research is set aside by a statement “generate an initial population,”
without implying how it should be done. We show with a simple example that initial
populations may have effects, on the best objective function value found, and these
effects may last for several generations. Then, we continue to study whether the tra-
ditional way of generating initial populations is recommendable or whether there are
other point sets that give faster convergence. Our motivation is to encourage discus-
sion on whether one should pay more attention to the generation of initial populations.

We concentrate on the case where there is no a priori information about the location
of the global minima. Then, initial populations of genetic algorithms are traditionally
generated “randomly.” In practice, genuine random (truly independent) points cannot
be generated numerically, and instead, pseudo random points (see, for example, [14])
are used, which imitate genuine random points. However, beside [23, 24], there is,
up to our knowledge, practically no research done on whether the initial population
should be random.

In [23, 24], quasi random sequences are used to generate initial populations for ge-
netic algorithms. Quasi random points do not imitate random points but are designed
to maximally avoid each other [33]. Quasi random sequences are used in numerical
integration [5, 35, 38], computer simulations [1, 22] and quasi random searches [21,
29, 37] with good success. For example, in [2, 3], modified controlled random searches
and topographical multilevel single linkage are proposed, respectively, which use
quasi random sequences when generating an initial set of solutions. The comparison
shows that the proposed methods perform significantly better than the other algo-
rithms in the comparison [2, 3]. However, in [2, 3], the influence of the use of quasi
random sequences alone cannot be estimated since also other modifications are made
simultaneously to the algorithms.

In this paper, we single out the effect of the different initial population for genetic
algorithms by keeping the rest of algorithm identical. We study the influence of the ini-
tial population more generally than in [23, 24] and discuss the properties of different
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types of point generators and the effects that different initial populations have on the
convergence and the final objective function values. We also collect information and
references about different ways of generating initial populations for those who are
interested in alternative ways. For the convenience of the reader, we briefly summarize
ways of generating points not widely used in the field of optimization. In the numerical
tests, we use a well-established pseudo random number generator, a so-called Nie-
derreiter quasi random sequence generator, which has performed well in our earlier
tests [23], simple sequential inhibition (SSI) process [9] and nonaligned systematic
sampling, which originates from sampling design [34]. Collectively, we call different
ways to generate initial populations point generators. The SSI process and the non-
aligned systematic sampling are commonly used in statistics where point generators
are called spatial point processes [9]. Spatial point processes are used, for example,
in the statistical analysis of biological phenomena when simulating a distribution of a
population of plants or animals (see, e.g., [9, 19] and references therein).

In numerical tests, we fix the genetic algorithm and its parameter values and change
only initial populations. We use a test suite of 52 test functions from 16 different func-
tion families and test whether the differences in best final objective function values
found are statistically significant between the different variants of genetic algorithms.
We also study the convergence during the first generations by stopping the algorithm
prematurely after 10 and 20 generations.

The rest of the paper is organized as follows. In Section 2, we show that the initial
population may have an effect on the convergence of a genetic algorithm and give
some further motivation for this work. We also shortly present the genetic algorithm
used. In Section 3, we give an overview to different point generators that can be used
when generating initial populations, and in Section 4, we discuss and evaluate their
speed and usability as well as the coverage and the genetic diversity of the points gen-
erated. The numerical results of applying the different variants of genetic algorithms
to our test suite are presented and analyzed in Section 5. In Section 6, we discuss the
results, and finally, in Section 7, we conclude the paper and present some directions
for future research.

2 Preliminaries

Population-based genetic algorithms (see, e.g., [15] and references therein) are de-
signed for solving problems that may have several local minima. They are very gen-
eral problem solvers, which means that they can be used for solving a wide range
of problems. On the other hand, they do not exploit problem-specific information,
which makes them less efficient. Hence, genetic algorithms ought to be used when
problem-specific methods are not available or if a wide range of problems need to
be solved with a single algorithm. We consider global optimization problems of the
following form

minimize f (x)

subject to xl
i ≤ xi ≤ xu

i , i = 1, . . . , n,

where f : Rn → R is the objective function, xi are the decision variables and xl, xu ∈ Rn

are the vectors containing the lower and upper bounds for the decision variables,
respectively.
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A simple genetic algorithm includes three basic genetic operations: selection,
crossover and mutation. In selection, some solutions from the population are selected
as parents, in crossover the parents are crossbred to produce offspring and in muta-
tion the offspring may be altered according to mutation rules. In genetic algorithms,
solutions x are called individuals and iterations of an algorithm are called generations.
Many genetic algorithms also employ elitism, which means that a number of the best
individuals are copied to the next population. We use a real-coded genetic algorithm
that employs tournament selection, heuristic crossover, Michalewicz’s nonuniform
mutation and elitism. For further details of the genetic operations, see [25].

The algorithm used has the following parameters. Population size is the number
of individuals in a population and elitism size is the number of fittest individuals that
are copied directly to the next generation. The fitness is evaluated using the objective
function (fitness function) value f (x). Tournament size is the number of individuals
randomly picked from the whole population for the tournament selection. Crossover
rate and mutation rate are probabilities on which the parents are crossbred and off-
spring mutated, respectively. Max generations, steps, and tolerance are parameters for
the stopping criteria. The algorithm is stopped if a maximum number of generations
(max generations) is reached or if there is no change (within the tolerance) in the best
objective function value during the last steps generations.

Genetic algorithms are Markov chains (see, e.g., [31, 46] and references therein).
Such chains are expected to converge to an equilibrium distribution independent of
the initial state. However, in many applications the state space of the chain (possible
point configurations in the feasible region) is extremely large and convergence can
be very slow. This poses the question whether the number of the generations used is
sufficient in order to achieve the equilibrium. The initial configuration is one factor in
the speed of convergence. This is our motivation for studying empirically the role of
initial populations.

The difference in the early generations becomes important in solving many real-life
problems, where the evaluation of the objective function may require time-consuming
simulations and the optimization algorithm may have to be stopped prematurely. We
also expect that the influence of the initial population may carry further, in terms
of generations, when solving of the problem requires a large number of function
evaluations.

Figures 1 and 2 illustrate the convergence of a genetic algorithm for the 10-dimen-
sional Griewangk function and 10-dimensional Katsuura function:

Griewangk function: f (x) =
10∑

i=1

(x2
i /4000) −

10∏

i=1

(cos(xi)/
√

i) − 10 ≤ xi ≤ 100,

Katsuura function: f (x) =
10∏

i=1

(

1 + i
30∑

k=1

| 2kxi −
⌊

2kxi
⌋

|
2k

)

, −0.1 < xi < 1.

Each curve illustrates the average convergence for 100 separate runs of a genetic
algorithm. The three different curves in Figs. 1 and 2 correspond to runs with differ-
ent initial populations generated by using a pseudo random number generator. Here
pseudo stands for the case, where the initial pseudo random population is spread
out over the whole feasible region. Furthermore, clustered 1 and clustered 2 stand for
cases where the initial population is restricted to a subspace of the feasible region. The
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Fig. 1 The convergence of a genetic algorithm for 10D Griewangk function with different initial
populations
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Fig. 2 The convergence of a genetic algorithm for 10D Katsuura function with different initial
populations

subspace is defined by restricting each variable xi to the upper and lower 80% of their
total range for clustered 1 and clustered 2, respectively. For the Griewangk function the
curves merge after 30 generations. The Katsuura function requires more generations
and, therefore, also the curves merge later than for the Griewangk function. (Note
the different scales in Figs. 1 and 2.) For both Griewangk and Katsuura functions, the
differences in the best objective function values found is quite significant when the
number of generations is small. This indicates that the initial population has an effect
on the convergence of a genetic algorithm.

The clustered populations used in the simple example above were only theoretical.
In practice, such initial populations would hardly be used, unless there were some
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a priori knowledge about the location of the global minima. The rest of the paper
concentrates on more realistic alternative ways for generating initial populations.

When there is no a priori information available on the location and the number
of local optima, then the initial population of a genetic algorithm should be able to
reach as large part of the feasible region as possible by means of crossover. We call
this property genetic diversity, and it is related to the independence of points. Another
desirable property for an initial population is a good uniform coverage. By a good
uniform coverage we mean that the points are well spread out to cover the whole fea-
sible region. Points have a good uniform coverage if they do not form clusters or leave
relatively large areas of the feasible region unexplored. A good uniform coverage is
desired, because then information is obtained throughout the whole feasible region.
This helps to prevent premature convergence.

Genetic diversity and a good uniform coverage are in practice conflicting objectives,
because an optimal uniform coverage is often achieved using systematic structures,
which limit the set of possible offspring. For example, it is known that for a closely
related problem of sphere packing a triangular grid provides the optimal packing in
a 2-dimensional case (see, e.g., [44]). Hence, if the pattern was repeated, the distance
between points would reach its maximum, when using triangular grid. However, the
set of possible offspring is limited as illustrated in Fig. 3. This happens also if the
sample points form clusters. Therefore, seemingly random (independent) point sets
with no clustering are preferred, since they provide information over the whole fea-
sible region and a large part of the feasible region can be reached by the means of
crossover. Figure 3 illustrates a rectangular grid, triangular grid, clustered points, and
seemingly random points with no clustering. In the figure, the points marked with

Fig. 3 Coverage of the connecting lines with different patterns
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small black dots are parent solutions and the lines running through them illustrate all
the possible locations of offsprings.

3 Generating initial population

Many sub-areas of genetic algorithms have been studied elaborately, but the selection
of an initial population has been widely ignored. As mentioned earlier, the traditional
way to generate the initial population is to use pseudo random numbers, and more
recently also quasi random sequences have been applied in [23, 24]. Pseudo random
numbers imitate genuine random numbers and quasi random sequences are designed
to produce points that maximally avoid each other.

Pseudo random initial populations can be generated in numerous ways. The main
classes are congruential and recursive generators. Common congruential generators
include linear, quadratic, inversive, additive and parallel linear congruential genera-
tors [14, 45]. Recursive generators include multiplicative recursive, lagged Fibonacci,
multiply-with-carry-generator, add-with-carry and substract-with-borrow generators
[14]. There are also pseudo random vector generators, which produce sequences of
vectors instead of scalars. Examples of those are feedback shift register generator [14]
and SQRT generator [43].

Common quasi random sequence generators include Van der Corput, Hammers-
ley, Halton, Faure, Sobol’ and Niederreiter generators [4, 14, 30]. For the convenience
of the reader some examples of both pseudo random number generators and quasi
random sequence generators are included in the Appendix along with further refer-
ences.

Pseudo random numbers and quasi random sequences are quite well-known for
researchers in optimization, but there are also other types of point generators. Spatial
point processes are commonly used in statistics but they are less well-known in opti-
mization. Therefore, we now shortly describe the spatial point processes used in this
paper.

3.1 Spatial point processes

Spatial point processes [9] can be considered to be transformations of pseudo random
point initialization which lead to a good uniform coverage and simultaneously avoid
periodicity in the configuration generated.

Some spatial point processes include a parameter, by which the proportion of the
two conflicting properties, genetic diversity and a good uniform coverage, can be con-
trolled. Hence, the same process can be used to generate genetically diverse points or
points with a good uniform coverage or something in between.

There are several types of spatial point processes. For our purposes, it is ade-
quate to differentiate between clustering and inhibition processes. Clustering pro-
cesses generate points that simulate populations, where the individuals tend to form
clusters. However, we are more interested in the situation where each individual
is as far apart as possible from the adjacent individuals resulting in an evenly dis-
tributed population without clusters. Therefore, we concentrate on inhibition pro-
cesses, where an individual (a point) is either explicitly prohibited to be located
closer than some predefined minimum distance ! > 0 to the other individuals, or
individuals are kept apart by some implicit means. We describe here two inhibition
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processes: a simple sequential inhibition process and a nonaligned systematic
sampling.

Simple sequential inhibition process: In the simple sequential inhibition (SSI)
process [9], a new individual is accepted to enter the population only if its distance to
all the existing individuals in the population is at least !.

In the following pseudo code for the SSI process the parameter population size is
the number of points to be generated, futile is the number of rejected trial points dur-
ing the current iteration, Max_futile is the maximum number of rejected trial points
in one iteration before terminating the process, and n is the dimension of the space
where the points are generated.

0. Initialize parameters population size, Max_futile and dimension n and set futile = 0
and k = 0.

1. Do until k == population size or futile==Max_futile
1.1 Generate a trial point.

(Use a pseudo or a quasi random number generator to generate a trial point
to the n-dimensional unit hyper cube.)

1.2 Check whether the trial point is accepted.
If the distance to the existing individuals is larger than !, accept the point
into the population, and set k = k + 1 and futile= 0.
Else, set futile = futile+1.

End do

The distance between points can be computed using different metrics. If the minimum
distance ! is defined to be too large, then the maximum number of rejected trial points
in one iteration is reached and the process is terminated prematurely. In that case, we
supplement the sample with pseudo random points to match the population size.
Nonaligned systematic sampling: In the nonaligned systematic sampling, which orig-
inates from sampling design [34], the unit hyper cube is divided into bn elementary
intervals (see Appendix) with equal side lengths (i.e., an equally spaced grid). Then
one sample point is selected from each elementary interval according to prescribed
rules. Nonaligned systematic sampling uses b · n pseudo random numbers to define
the location of the sample points. In two dimensions, the sample points are generated
using the formula

x = ([(j − 1) + ri,1]!, [(i − 1) + rj,2]!),

where i, j = 1, . . . , b, ! = 1/b, and r is a b × n array of pseudo random numbers, see
Fig. 4. In the following pseudo code for an n-dimensional case of the nonaligned sys-
tematic sampling, v is a vector of auxiliary integer variables. It is used to determine the
correct elementary interval and the correct pseudo random number when calculating
the nonaligned systematic sample points x.

0. Initialize vj = 0 for j = 0, . . . , n − 1, and the b × n pseudo random number array r.
1. Do i = 0, . . . , bn − 1.

1.1 Compute sample point xi

Do j = 0, . . . , n − 1 // Compute the jth component of xi

S =
(∑n

k=1 vk
)
− vj

l = (S)mod b
xi

j = (rl, j + vj)!

End do
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Fig. 4 Nonaligned systematic
sampling points in two
dimensions

1.2 Update v
Do j = 0, . . . , n − 1

If ((i)mod bj == bj − 1) then vj = (vj + 1)mod b
End do

End do

Note that the number of nonaligned systematic sampling points cannot be chosen
freely, but is determined by the grid size and the dimension. In practice, when a cer-
tain number of sample points is required, we supplement the nonaligned systematic
sample with pseudo random points to match the required number of points.

4 Properties of point generators

In this section, we consider the distribution and the genetic diversity of the points
generated by pseudo random number generators, quasi random sequence generators
and spatial point processes. We also consider the speed and the usability of some
specific generators. We are interested in point sets with a relatively small number of
points since the number of points generated equals the population size and ranges
typically from tens to a few hundreds.

In the illustrations and numerical examples of point generation, we have selected
good representatives for the different types of point generators. The pseudo random
number generator is a multiplicative linear congruential generator from the well-
established numerical library of the Numerical Algorithms Group Ltd (NAG) and
the quasi random sequence generator is the Niederreiter generator [30] that has
proved successful in our earlier tests [23, 24]. The representatives of spatial point
processes are the SSI process and the nonaligned systematic sampling. In the SSI pro-
cess, the trial points are generated using the Niederreiter generator and the distances
are measured using L2-metric. The nonaligned systematic sampling is as defined in
Section 3.

The properties of the point generators are described in the following four sub-
sections and the results are summarized and some conclusions are drawn in the fifth
subsection.
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4.1 Distribution

Intuitively thinking, it is beneficial if no large areas are left unexplored when sampling
individuals for an initial population of a genetic algorithm. The point generators pre-
sented in Section 3 produce point clouds with a degree of uniform coverage. However,
there are differences in how well the points of these sequences are spread out. In opti-
mization and in numerical integration, the goodness of the uniform coverage of a
point set is commonly measured by discrepancy or dispersion [30]. Here, we give the
definition for the discrepancy.

Discrepancy Let In ⊂ Rn be an n-dimensional unit hyper cube, let P be a set consist-
ing of points x1, ..., xN ∈ In, and let B be a nonempty family of Lebesgue-measurable
subintervals of In and B ∈ B. Furthermore, let A(B; P) be a counting function defined
as the number of points xk, 1 ≤ k ≤ N, for which xk ∈ B. Then, discrepancy DN

with respect to P in In is defined as DN(B; P) = supB∈B

∣∣∣A(B;P)
N − λ(B)

∣∣∣ , where λ is a
Lebesgue-measure.

Discrepancy is large, when there exists clusters or large unexplored areas. Hence,
we are interested in point sets that have low values for discrepancy. A mathematical
relationship between discrepancy and dispersion is given in [30], and it shows that
every low-discrepancy sequence is also a low-dispersion sequence, but not vice versa.

Quasi random sequences are also called low-discrepancy sequences. Their discrep-
ancy value for a large sample size N is of order of magnitude C(logN)nN−1, where
C is a generator-specific coefficient depending only on the dimension n [27]. This is
also a minimum possible discrepancy size for large N (see, e.g., [27]). The bounds
for discrepancy, however, are relevant only for a very large number of sample points
as used in numerical integration. When generating only initial populations, we are
more interested in the distribution of a small number of points. Some quasi random
sequences have the property that the first bm successive points divide evenly on the
corresponding elementary intervals (see Appendix). This indicates that quasi random
sequences may have good discrepancy values also for small sample sizes. Figure 5 illus-
trates four two-dimensional initial populations with 1,024 individuals generated using
the multiplicative linear congruential (pseudo) generator, the Niederreiter generator,
the SSI process and the nonaligned systematic sampling, respectively.

In Fig. 5, we see that pseudo random points form clusters and leave some areas
relatively unexplored, whereas the other samples cover the feasible region quite well.
However, quasi random sequences may sometimes form point patterns, whose dis-
tribution properties depend on the number of points generated. Then, at a certain
number of sample points the pattern may be unfavorable for optimization purposes.
An example of this behavior is illustrated in Fig. 6, where again 1,024 points were gen-
erated with a slightly different configuration. For more information on the distribution
of different quasi random sequences, we refer to [27].

Next, we consider the distribution of small sample sizes. In optimization with
genetic algorithms we used a population of 201 individuals. Therefore, we next empir-
ically examine the distribution properties of sets with 201 points generated in four
different ways. Henceforth, in tables and figures, we will use abbreviations Pseudo,
Nieder, SSI and Nonalig for the representatives selected from different types of point
generators (see the beginning of this section).
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Fig. 5 Point sets of 1,024 points with different generators

We consider 2 and 10-dimensional cases to show how the distribution properties
may change with the dimension. First, we use an empirical empty space statistic to
examine how well the sample points cover the feasible region [34]. Empty space
statistic function ess is defined as

ess(r) = 1 − Pr(B(x, r) is empty),

where x is a randomly chosen point, B(x, r) is an x-centered ball with radius r and
Pr denotes the probability. Hence, assume there is a point set S and further assume
there is a ball B with radius r and whose center point is randomly chosen from the
feasible region (in our case, the unit hyper cube). Then, for each radius r, the empty
space statistic function tells what the probability is that the ball B is empty, that is, the
intersection of the ball B and the point set S is empty.
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Fig. 6 Another example of
1,024 points generated with the
Niederreiter generator
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To experimentally define the empty space statistic functions for each point set con-
taining 201 points, we generated 10,000 auxiliary pseudo random points1 on a unit
hyper cube and for each of the 10,000 auxiliary points calculated the maximal radius
r so that B(x, r) is empty, that is, does not contain any of the 201 points under consid-
eration. We did this in both 2- and 10-dimensional cases for the four different point
sets.

The empirical empty space statistic functions are illustrated in Fig. 7. For us, the
important property of the empty space statistic function is the steepness of the curve
(the steeper the better). If the curve is steep, it indicates that if a random ball with
radius r is selected from the unit hyper cube, then whether the ball is empty depends
mainly on the radius—not the location of the ball. If, on the other hand, the curve is
gentle, the emptiness of the ball depends strongly on the location, hence the point set
is not evenly distributed.

The empirical empty space statistic functions show that in two dimensions, the non-
aligned systematic sampling and the simple sequential inhibition (SSI) process provide
the best coverages closely followed by the Niederreiter quasi random sequence gen-
erator. The pseudo random initial population has clearly the worst coverage, which
confirms the findings earlier shown in Fig. 5. However, in ten dimensions the differ-
ences diminish, because the populations become sparse. The only notable difference
is that for the population generated with the SSI process the curve of the empirical
empty space statistic function is now below the other curves with the small values of
r but rises more steeply in the end. This indicates better coverage for the SSI process.

4.2 Genetic diversity

The population of a genetic algorithm evolves largely by crossovers and mutations. In
our implementation, the most dominant genetic operator is crossover, since it usually
changes the solutions most. We define genetic diversity as a property by which the

1 Here, we naturally used a different pseudo random number generator than when generating the
initial population. To make sure that the use of pseudo random numbers did not bias the results we
also computed the empty space statistic functions using a grid of 10,000 points, which led to similar
results.
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Fig. 7 Empirical empty space statistic functions

genetic algorithm is able to reach as large a part of the feasible region as possible by
means of crossover. Genetically more diverse initial populations are preferable.

Next, we concentrate on the independence of points, which is one main criterion for
genetic diversity. As mentioned earlier, truly independent points cannot be generated
algorithmically. The pseudo random numbers try to imitate independent numbers, yet
they are deterministically generated by an algorithm. For example, it has been shown
that the pseudo random points generated by a linear congruential generator lie on a
simple lattice (see, e.g., [14] and references therein). It is also known that bad choices
for the coefficients of a linear congruential generator may result in a very bad lattice
structure (see, e.g., [14]). The choices for the coefficients play a crucial role for all the
pseudo random number generators.

Also quasi random sequences are generated algorithmically. However, the idea of
quasi random points is not to imitate random points but to try to cover the whole
search space yet maintaining a certain degree of randomness. These initial settings
speak for a better genetic diversity for pseudo random initial populations. In empiri-
cal tests, when comparing pseudo and quasi initial populations, we can study plots of
2-dimensional populations or plots of n-dimensional populations that are projected
to two dimensions. In Figs. 5 and 6 we can notice that the Niederreiter generator
produces points that have a more distinguishable pattern whereas pseudo random
points have a pattern that seems more random.

We studied the independence of point sets of 201 2-dimensional points using Rip-
ley’s K-function and L-function [34]. The K-function is defined as follows: λK(r) is
the expected number of further points within a ball with radius r and with a center at
a randomly chosen point (λ is the expected number of points in a unit hyper cube).
L-function is obtained from the K-function through transformation

L(r) = (K(r)/#n)
1
n ,

where #n is the volume of the unit ball in Rn. Figure 8 illustrates the L-functions
for the pseudo random points, the Niederreiter quasi random points, points from the
SSI process and the nonaligned systematic sampling points. For independent points
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Fig. 8 L-functions for
different initial populations
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the L-function is a straight line L(r)=r. We can see that pseudo random points imi-
tate well independent points, whereas Niederreiter quasi random points and the two
spatial point processes lack the points falling close to each other. Based on these
observations, we conclude that the pseudo random generator produces genetically
more diverse points than the other point generators.

The points generated by the SSI process are essentially pseudo random points.
However, the trial points falling too close to each other are not accepted to the popu-
lation and this affects the genetic diversity. The genetic diversity versus a good uniform
coverage can be controlled using the minimum distance parameter !. In what follows,
we use the term probabilistic maximal minimum distance (PMMD) and we should
find the value of PMMD so that a desired number of points can fit in the feasible
region with a given probability. In the 2-dimensional example in Fig. 8, we can see
that, except for small distances, the points of the SSI process fall on a straight line.

The nonaligned systematic sampling uses only n · b pseudo random points, where
n is the dimension and 1/b is the side length of the elementary interval (the distance
between two adjacent grid points). Therefore, there is not much genetic diversity in
nonaligned systematic sample points. In Fig. 8, we see this as an oscillating behavior
of the L-function. Furthermore, the number of nonaligned systematic sample points
increases quickly with the dimension if the grid size is kept constant. For example, in
10 or 20-dimensional cases, even if we use only two grid points along each dimension,
we get 210 = 1, 024 and 220 = 1, 048, 576 sample points, respectively. When using a
population size of 201 individuals, we get in practice only one genuine systematic sam-
ple point in 8 or more dimensions (the rest are supplemented pseudo random points).
This means that, in large dimensions, the nonaligned systematic sampling reduces to
pseudo random sampling.

4.3 Speed

For some applications the speed of the generator may be of importance. The CPU
times for the tested generators and the different numbers of points generated in
dimensions 2, 5, 10, 20, 50 are shown in Table 1. The test runs were performed on
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Table 1 CPU times in seconds Dim Points Pseudo Nieder SSI Nonalig

2 201 0.00 0.00 0.06 0.00
2 104 0.01 0.00 17.60 0.02
2 105 0.06 0.02 1774.0 0.23
5 201 0.00 0.00 0.2 0.00
5 104 0.02 0.00 17.84 0.06
5 105 0.14 0.03 1760.0 0.67

10 201 0.00 0.00 0.23 0.00
10 104 0.03 0.01 17.71 0.04
10 105 0.28 0.05 1773.0 0.98
20 201 0.00 0.01 0.73 0.00
20 104 0.06 0.01 10.78 0.05
20 105 0.55 0.09 21.33 0.46
50 201 0.01 0.00 1.54 0.01
50 104 0.14 0.02 44.50 0.12
50 105 1.38 0.2 45.68 1.2

an HP9000/J5600 computer, and the CPU times were obtained using NAG routine
X05BAF, which returns the CPU time with the accuracy of 0.01 s. For this reason,
differences between some generators become evident only when using a large number
of points. The column Dim in Table 1 indicates the dimensions of the points generated
and the column Points lists the number of points generated. The abbreviations for the
generators are the same as earlier, and the CPU times are given in seconds.

In Table 1, we see that the SSI process is by far the slowest resulting from the
implementation which emphasizes the good coverage at the expense of speed. Our
implementation allows a maximum of 2,000 futile trial points at each iteration before
terminating the process. The speed (and the distribution of points) for the SSI process
depends strongly on the probabilistic maximal minimum distance PMMD. If PMMD
is selected maximally large (i.e., PMMD is as large as possible yet so that the algorithm
does not have to supplement the population with pseudo random points, see Section
3.1), then a good coverage of the points is emphasized and the number of futile tries
increases slowing down the process. Our implementation of the SSI process auto-
matically estimates the maximally large PMMD. The values in Table 1 indicate that
the estimate for PMMD is probably not good (distribution-wise) for dimensions 20
and 50.

Table 1 shows that the implementation of the Niederreiter quasi random number
generator is the fastest followed closely by the pseudo random number generator and
the nonaligned systematic sampling process. In optimization, where only a relatively
small number of points is generated, there is no practical difference between the
speed of these three generators. For pseudo and quasi random number generators
the speed seems to be directly proportional to the number of points generated. We
can see that, compared to other generators, the speed of the nonaligned systematic
sampling grows for larger dimensions. This can be explained by different ratios of gen-
uine nonaligned sampling points. As mentioned earlier, the population of nonaligned
systematic sampling points is supplemented by pseudo random points to match the
required population size. Hence, for example, in 5 dimensions there are 78% and
100% of genuine nonaligned systematic sampling points in sets of 10,000 and 100,000
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sample points, respectively, whereas in 10 dimensions the respective values are only
10% and 59%. In 20 dimensions, all except one sample point are already random even
if the sample size was as large as one million (220 > 106).

4.4 Usability

In this section, we discuss the usability of different number generators. Some fea-
tures affecting usability have already been mentioned earlier and are summarized
here.

Pseudo random number generators are by far the most commonly used ones in
optimization. The greatest advantage of pseudo random number generators concern-
ing usability is that there exist implementations that are well-established, well-tested
and easily available. However, a good random-like behavior is not a matter-of-course,
but requires a careful choice of parameters, that is, coefficients and seeds (or initial
sequences). As earlier noted for linear congruential generators, wrong choices for
parameter values may cause the points in a sequence to be badly distributed. This
is true for other generators as well. Many of the pseudo random number generators
are easy to implement, but the analysis of the distribution is difficult, especially for
an arbitrary seed (or arbitrary initial sequences). According to [14], only well-tested
pseudo random generators should be used. These generators often use fixed coeffi-
cients and sometimes limit the choice of seeds (or initial sequences). This is one way to
secure good distribution properties, assuming those values are tested and approved.

Contrary to pseudo random number generators, quasi random number generators
are neither so well-established, well-tested nor easily available. On the other hand,
quasi random number generators having solid theoretical properties do not need so
much numerical testing. The use of available quasi generators is easy and the quasi
random points are guaranteed to have some advantageous properties as described in
the Appendix. Quasi generators provide the same sequences on different runs of the
generator and, hence, they do not require a seed or an initial sequence from the user.
Since quasi generators take into consideration the location of the previous points,
they also expect that the sequence is started from the beginning. These two properties
make quasi generators easier to use, because the user only has to give the number
of points to be generated and the dimension as parameters. At the same time, these
properties may become a disadvantage if the user for some reason wants to obtain
different sequences in the same dimension. On this occasion, the easiest way out
might be to generate points in higher dimensions and then project them to the desired
dimension, but this may have an effect on the distribution properties.

The SSI process is not commonly available for an n-dimensional case, but the
implementation is straightforward given that the user provides the PMMD value.
However, it gets more complicated if the user provides only the number of points to
be generated and the optimal PMMD (with respect to the coverage) must be estimated
automatically. This issue is discussed in more detail in Section 6. An interesting prop-
erty of the SSI process is that the proportion of the two conflicting objectives, that is,
the genetic diversity and the good uniform coverage, can both be controlled using the
probabilistic maximal minimum distance parameter PMMD. Note that, if desired, the
SSI process provides different points on every run just like pseudo random number
generators.

The nonaligned systematic sampling processes are not commonly available in
n-dimensions, but they are easy to implement and to use. However, when
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generating a relatively small number of points, it is practical to use the systematic
sampling process only in small dimensions. Otherwise, the proportion of genuine
nonaligned systematic sample points is small. This is a strong limitation in the area of
optimization.

4.5 Summary of features

An ideal generator for our purposes should generate well-distributed, genetically
diverse points in n-dimensions, and it should be relatively fast and easy to use. In
Table 2, we summarize the evaluation made in this section. The evaluation of differ-
ent point generators has been marked using plus signs (+): the more plus signs the
better the score. In case of a notable difference in how well a generator works for
problems with small and large dimensions (here small denotes less than, say, five), the
occasions are scored separately (small/large). For example, the nonaligned systematic
sampling scores +++/+ in coverage, which means that it works well in small dimensions
and poorly in large dimensions.

Note that only coverage and genetic diversity may have a direct influence on objec-
tive function values in optimization since they are the properties of the points whereas
speed and usability are properties of the generators. Considering just the properties
of the points we notice in Table 2 that pseudo random points have good genetic diver-
sity, but the worst coverage, and the SSI process produces points with good coverage,
but only average genetic diversity. The properties of the Niederreiter quasi random
points settle somewhere between pseudo and the SSI process. In the further analysis,
we pay less attention to the nonaligned systematic sampling since it is not applica-
ble for problems with several variables. To find out the effects of the coverage and
genetic diversity, we concentrate on the pseudo random number generator and the
SSI process.

5 Experimentations

We test the influence of initial populations computationally by using different point
generators and a large number of difficult test problems from the literature. The influ-
ence of the different initial populations is analyzed after 10 and 20 generations and
after the execution of the whole algorithm. The genetic algorithm used is presented
in Section 2.

5.1 Test settings

The test runs were performed on an HP9000/J5600 computer. We solved a test suite of
52 problems using genetic algorithms described in Section 2 with the parameter values

Table 2 Summary of
generator properties

Properties (small/large) Pseudo Nieder SSI Nonalig

Coverage + ++ +++ +++/+
Genetic diversity +++ ++ ++ +
Speed +++ +++ + ++/+++
Usability +++ +++ ++ +++/+



422 J Glob Optim (2007) 37:405–436

Table 3 Parameter values for
genetic algorithms

Parameter Value

Population size 201
Elitism size 21
Tournament size 3
Crossover rate 0.8
Mutation rate 0.1
Max generations 10, 20 and 2000
Steps 100
Tolerance 10−7

given in Table 3. The only difference between the variants of a genetic algorithm used
was the way the initial population was generated. Each problem was solved 10 times
with each algorithm, when the algorithms were let run until the stopping criteria were
satisfied, and 100 times when the algorithms were stopped prematurely after 10 and 20
iterations. In each run, we recorded the best objective function value in the last pop-
ulation and study them in what follows. The names of the function families, number
of variables, box constraints used and references are collected in Table 4. If only one
interval is given for the box constraints in Table 4, then each variable was restricted
to the same interval. The test problems are the same as used in [24]. They are divided
into two problem sets according to the number of variables so that problems with 10
or less variables are here called small and others large.

Originally, initial populations were generated in altogether 21 different ways includ-
ing 13 variants of the SSI process, 5 quasi random number generators, a nonaligned
systematic sampling and a pseudo random number generator. The variants of the
SSI process differed in the random number generator used when generating the trial
points and in the metric used when computing the probabilistic maximal minimum
distance PMMD. The quasi random number generators tested were the Niederreiter,

Table 4 Summary of the test problems

# Name Dimensions Box constraints Ref.

1–3 Michalewicz 2, 5, 10 [0, π ] [13]
4–7 Rastrigin 6, 10, 20, 30 [−600, 400] [13]
8–11 Schwefel 6, 10, 20, 50 [−500, 500] [13]
12 Branin rcos 2 [−5, 10]×[0, 15] [13]
13–17 Griewangk 2, 6, 10, 20, 50 [−700, 500] [13]
18–22 Ackley’s Path 2, 6, 10, 20, 30 [−30.768, 38.768] [13]
23 Easom 2 [−100, 100] [13]
24 Levy 4 [−10, 10] [40]
25–27 Levy 5, 6, 7 [−5, 5] [40]
28 P8 3 [−10, 10] [7]
29 P16 5 [−5, 5] [7]
30 Hansen 2 [−10, 10] [40]
31–34 Corona 4, 6, 10, 20 [−900, 1100] [10]
35–38 Katsuura 4, 6, 10, 20 [−1, 1] [10]
39–42 Langerman 5, 5, 10, 10 [0, 10] [41, 13]
43–46 Funtion 10 3, 4, 10, 20 [−20, 20] [42]
47–49 Shekel 4, 4, 4 [0, 10] [40]
50–52 Epistatic Michalewicz 2, 5, 10 [0, π ] [41]
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Faure and Halton generator and two variants of the Sobol’ generator. The numerical
results of the genetic algorithm with quasi random initial populations are reported
in [23], where the Niederreiter generator performed the best. Here, we report the
results of the genetic algorithm using initial populations generated by the good rep-
resentatives from different types of point generators (see the beginning of Section
4).

5.2 Numerical results

In this subsection, we present the results of the experiments described above. In what
follows, we consider only the best objective function values that the algorithm has
found (in the last population) and pay attention to the average and variance of these
values in the repeated runs.

Let us first consider those tests where the genetic algorithm was run until a stopping
criterion was satisfied. Table 5 shows the average final objective function values f (x)

and the average standard deviations σ (f ) for small and large problems. As we can see,
for small problems, in the average objective function values, there are no differences in
three significant digits. However, for large problems the differences in average objec-
tive function values are quite large. Based solely on the average objective function
values in Table 5 one could draw the conclusion that nonaligned systematic samples
and Niederreiter quasi random points are clearly the most suitable for initial popula-
tions. This, however, is not completely true as our further analysis reveals, when we
consider also the variances.

Before any statistical tests, we make an observation on the results in Table 5. As
mentioned in Section 4.2, nonaligned systematic sampling reduces to pseudo random
sampling for large problems. However, the average objective function value and the
average standard deviation of those algorithms differ quite remarkably for large prob-
lems. This indicates that the average values are not good measures in the comparison.

We applied analysis of variance (ANOVA) to the final objective function values to
find out whether the differences were statistically significant. The analysis of variance
indicated that only in 4 out of 52 test problems there were statistically significant
differences (with 95% confidence). We call these four problems critical problems, and
they are the problems 40, 49, 51 and 52 in Table 4. Surprisingly, all the critical prob-
lems were small (problems with 10 or less variables). This can be explained by the
small variance for these problems. The fact that there was no statistically significant
difference in the objective function values for any of the large problems is explained
by their very large variances. The variances were the largest for the 20-dimensional
Katsuura problem for which the variances were 8,473, 2,060, 509 and 17,100 for the
pseudo, Niederreiter, SSI and nonaligned, respectively. The 20-dimensional Katsuura

Table 5 Average objective
function values and standard
deviations for small and large
problems

Pseudo Nieder SSI Nonalig

f (x) Small −186.7 −186.7 −186.8 −186.6
f (x) Large −1896.0 −2205.4 −1680.2 −2295.9
σ (f ) Small 0.34 0.28 0.37 0.58
σ (f ) Large 885.9 355.3 162.5 1697.9
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problem biased the average values in Table 5 and was the main cause of differences
for large problems.

Next, we study the critical problems more closely. Figure 9 shows the average
objective function values for the four critical problems. Ps, Ni, SSI and No stand for
the pseudo, Niederreiter, SSI process and nonaligned systematic sampling, respec-
tively, and the whiskers illustrate the standard deviations. In addition, the P values
related to the F test of ANOVA [28] are given in the parenthesis subsequent to the
problem number. The four plots reveal that there is no overall dominance between
the genetic algorithm variants, however the variant applying quasi random points per-
formed best in 3 out of 4 cases and also points generated by the SSI process performed
better than pseudo random points in 3 out of 4 instances. Nonaligned systematic sam-
pling performed very similarly to pseudo random points in three cases and was better
in one.

So far we have studied the differences in objective function values after running
the whole algorithm and there has been only minor differences. Next, we consider
also the situations, where the algorithm is stopped prematurely after 10 and 20 gener-
ations. Earlier, we noticed difficulties in interpreting values that were not scaled: one
large value could strongly bias the results. Therefore, we now define a more reliable
measure of performance by scaling the objective function values to the range from 0
to 1. Scaled average objective function value sf is defined as follows

sf = f − f min

f max − f min

,
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Fig. 9 Average objective function values and standard deviations
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where fmin is the best objective function value known (or found after running all the
four whole algorithms), and fmax is the worst of the best objective function value
found during the repeated runs (either for a fixed number of generations or till a
stopping criterion). It is worth noting that fmax changes each time the stopping criteria
are changed, but fmin typically remains the same (at least if it is known). Finally, a
bar above a function symbol denotes the average value over all the considered test
problems (small or large), where the difference between (unscaled values of) fmin and
fmax was more than 0.1. Table 6 shows the scaled average objective function values for
small and large problems.

We remind again that for large dimensional problems the nonaligned systematic
sampling points and pseudo random points are essentially the same, and their results
are here reported only for the sake of completeness. We now notice in Table 6 that
pseudo and nonaligned systematic sampling receive similar values, which gives indi-
cation that the values are more reliable after scaling.

The scaled average objective function value sf becomes unstable near the optimum
since the divisor f max − f min approaches zero and, therefore, the values for 10 and
20 generations are more reliable than the values after running the whole algorithm.
Nevertheless, Table 6 shows an interesting trend: the genetic algorithm variants that
converge relatively fast in the first generations are not necessarily the ones obtain-
ing the best final results. This is particularly true for the SSI process, which had the
best empty space statistic values in Section 4 and in the numerical results in Table 6
receives worst values during the first generations, but good values at the end. Pseudo
random points, on the other hand, had the best genetic diversity, and, in Table 6,
they receive good values during the first iterations. The Niederreiter quasi random
points had above average genetic diversity and above average coverage and their
performance in numerical tests in Table 6 is above average except for one instance.
Despite the observations made above, the differences in the results shown in Table 6
are debatable.

We applied ANOVA also for the intermediate results after 10 and 20 generations.
Again, we call those problems critical, where there were statistical differences in the
objective function values. However, we now exclude the problems, where the differ-
ences in objective function values were less than 0.1. There were all together 38 critical
problems after 10 generations and 9 after 20 generations. In Table 7, we report the
number of critical problems for which each algorithm had the best average interme-
diate objective function value. The differences are not large, but pseudo random (and
nonaligned systematic sampling) initial population seem to provide best intermediate
results.

Table 6 Scaled average
objective function values after
10 and 20 generations and after
running the whole algorithm

Generations Pseudo Nieder SSI Nonalig

sf (x) Small 10 0.90 0.91 0.95 0.89
sf (x) Small 20 0.85 0.88 0.9 0.87
sf (x) Small all 0.52 0.38 0.43 0.57
sf (x) Large 10 0.84 0.85 0.99 0.84
sf (x) Large 20 0.91 0.90 0.99 0.87
sf (x) Large all 0.45 0.61 0.38 0.42
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Table 7 The number of
problems with best average
objective function values for
critical problems

Generations Pseudo Nieder SSI Nonalig Total

10 9 9 8 12 38
20 5 1 0 3 9

Before summarizing the results, let us yet consider the magnitudes of the variances
in the best objective function values separately from the actual objective function
values. In Table 8 are reported the number of test problems for which each algorithm
had the smallest variance after 10 and 20 generations and after running the whole
algorithms. We have excluded the problems where the differences in variances were
less than 0.1. The total number of problems considered is reported in the last column
of Table 8. It is noteworthy that the variant of genetic algorithm using pseudo random
numbers has most often the smallest variance for the intermediate solutions, which
was not expected.

5.3 Summary of numerical results

Here, we summarize the analysis made above. When considering final and intermedi-
ate average objective function values, the analysis of variance indicated four critical
problems for the final results and many more for the intermediate results where there
were significant differences in the best objective function values found. None of the
methods clearly dominated the others, but in the scaled objective function values there
was a noticeable trend, namely that pseudo random initial populations provided on
the average good intermediate results, but not so good final results. The converse was
true for the SSI process and quasi random points with better uniform coverage. Ear-
lier we noticed that some clusterizations were harmful and some beneficial. Hence,
genetic algorithms using pseudo random numbers and the variants where the initial
populations have better uniform coverage performed in a slightly different way. Nev-
ertheless, the differences, in general, were debatable and no strong conclusions could
be made.

As far as the magnitudes of variances in the intermediate results are concerned,
in most of the cases, the variance was the smallest for the genetic algorithm using
pseudo random numbers. There may be both harmful and beneficial clusterizations
as seen in Figs. 1 and 2. Harmful clusterizations lead to inferior and beneficial lead to
superior objective function values compared to initial populations without clustering.
One could have expected this to imply more significant differences in the magnitudes
of variances in the early generations but this did not happen. However, again, none
of the algorithms clearly dominated the others and the differences were not large.

Finally, there were no significant differences in the magnitudes of variances related
to final objective function values when applying clustered or unclustered initial popu-

Table 8 Number of test
problems when the variance
was smallest

Generations Pseudo Nieder SSI Nonalig Total

10 18 11 8 9 46
20 12 11 6 15 44
Final 5 9 3 2 19
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lations. This could be assumed keeping in mind the observation that genetic algorithms
are Markov chains and, hence, converge independently of the initial population. How-
ever, the conclusion is not trivial, since actually the Markov chain property only guar-
antees convergence when the number of generations approaches infinity. The last row
in Table 8 shows that the genetic algorithm applying pseudo random initial population
has more often smallest variance than the one applying the SSI process, but less often
than the one applying quasi random sequences. Hence, the clusterization of the initial
population did not seem to have strong effect on the variance of the final objective
function values.

Despite some differences, the results indicate that pseudo random points perform
rather well when used in initial populations of genetic algorithms. Moreover, if the
minor differences found in this research can be generalized, then they speak for
pseudo random points in cases when the algorithm is stopped after relatively small
number of generations, which may be the case with some computationally expensive
real life problems.

6 Discussion

In this section, we consider four problematic issues that we have touched earlier. First,
we point out that dimensionality plays a large role in this research. The initial popula-
tions become sparse when the optimization problem has more than few variables. A
simple example of this can be seen with unit hyper cubes in three and two dimensions.
In three dimensions, eight point can be located in the corners of the cube so that
their maximal minimum distance is always one. But locating eight points in the line
segment of length one means that the maximal minimum distance between the points
is 1/7. The sparsity in higher dimensions means that solutions in the initial population
are likely to be relatively far from the global optimum no matter what uniform distri-
bution pattern is used. Moreover, in sparse populations, when the minimum distance
between two adjacent points in the population is maximized, that is, when the points
in the population try to maximally avoid each other, then the population is likely to be
concentrated to the borders of the feasible region, which may not always be desirable.
This phenomenon is typical of the SSI process and could also be seen in the example
mentioned above.

The second issue is of more technical nature and concerns the SSI process. The SSI
process can produce points that are either genetically diverse or have good uniform
coverage, depending on the distance parameter PMMD. We optimized the coverage,
but did not test values for PMMD that would compromise between the two conflicting
objectives. Smaller values for ! would also make the process considerably faster. For
example, in Fig. 10a we have seven point in an interval of length one with ! = 1/7.
We know that one more point can be included but how many random points should
be generated before the right location is found?

When optimizing the coverage for the SSI process the automatic determination of
a maximal minimum distance PMMD is problematic. We did not find good theoret-
ical estimates for PMMD and the theoretical estimates we tested did not work well

Fig. 10 Difficulties with speed
and approximation of ! b)a)
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in practice. Hence, we used experimental estimates. In our current implementation,
we have numerically solved maximal values of PMMD for some number of points
in some dimensions, and we approximate maximal PMMD elsewhere using interpo-
lation. Examples of values used for ! in our experiments for different numbers of
variables (with population size 200) include 0.032 (for n = 2), 0.23 (for n = 5), 0.49
(for n = 10), 0.64 (for n = 20), 0.79 (for n = 50) and 0.84 (for n = 100). Some further
research is needed before the SSI process with maximal values for PMMD can be
used in practical applications. An example of the difficulty of approximating the value
of ! is given in Fig. 10b. Let us assume that we have fixed ! = 1/7 and the distance
between the end points of the interval and outermost points is 1/8 and the distance
between intermediate points is 2/8. Here we have only four points (denoted by black
dots in the figure) and cannot fit any more points even though eight points could be
fit in the interval in the optimal case (denoted by circles in the figure). In other words,
it is very hard to determine the maximal minimum distance a priori when points are
generated randomly.

The third issue concerns the speed of point generators. We point out that the com-
putational complexity of an algorithm may depend strongly on the implementation,
see, e.g., [4], where bit-operations are considered. Thus, the results on the speed of
the generators can be considered only suggestive.

The last issue concerns the testing of point generators. There exists a large variety
of dynamic statistical tests for the independence of points generated by point gener-
ators [14]. These tests are called goodness-of-fit tests. One well-established battery
of goodness-to-fit tests is called DIEHARD and the source code is available at [8].
However, the goodness-to-fit tests are designed to test the independence of large
numbers of points. For example, DIEHARD requires a binary file of a size 10–11
megabytes to evaluate a generator. Since we are only interested in a few hundred
numbers at the beginning of the sequence, we used the Ripley’s K-function instead of
the goodness-to-fit tests.

7 Conclusions and future research

In this paper, we have tested different initial populations for a real coded genetic
algorithm. Traditionally, pseudo random numbers are used for generating initial pop-
ulation, and our motivation has been to study and initiate discussion on whether their
use is justified.

We have shown with a simple, academic, example that initial populations may have
a significant effect on the best objective function value over several generations. Then
we have concentrated on studying different realistic ways to generate initial popu-
lations for a case with no a priori information on the location of the global minima.
We have briefly summarized the basic properties of a pseudo and a quasi random
sequence generator, the SSI process and the nonaligned systematic sampling and
applied them. We have discussed their properties including genetic diversity and a
good uniform coverage for the points as well as speed and usability for the generators.
In the numerical tests with genetic algorithms, we have used a test suite of 52 functions
from the literature. We have studied the effects of the different initial populations on
the best objective function values after 10 and 20 generations and after running the
whole algorithm.
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There were differences in the coverage and genetic diversity of the tested point
sets. The SSI process has a good uniform coverage, but only average genetic diversity,
and for pseudo random points it is vice versa. The Niederreiter quasi random points
have both above average coverage and above average genetic diversity.

In the numerical experiments with the genetic algorithms, there was a trend—
although weak—showing that the versions of genetic algorithm with good genetic
diversity converged fast during the first generations, but did not obtain the best final
objective function values on the average. The converse was true for the versions with
good uniform coverage. However, the differences were not so large that any strong
conclusion could be drawn.

With respect to the speed and usability of the point generators the results show that
pseudo and quasi random sequence generators are fast and easy to use. Both the SSI
process and the nonaligned systematic sampling require more developing and testing.

We conclude that, based on our research, the traditional way to generate initial
populations of genetic algorithms using pseudo random number generator was not
worse than the others. It is particularly well suited to cases where the algorithm must
be stopped prematurely; which may happen with computationally expensive real
life problems. However, there are also good alternative ways such as quasi random
sequences and the SSI process, which have advantages in certain cases, especially
if the goodness of the final solution is valued higher that the speed of convergence
during the first generations.

Our findings show that paying attention to the initial population may have an
effect on the success of the genetic algorithm and further research and discussion
is encouraged. The topics for future research include, firstly, to study different ini-
tial populations for specific types of problems and with different genetic algorithm
parameters like population size and maximum number of generations. Secondly, to
study more closely the problem of dimensionality discussed in Section 6, and thirdly,
to further develop the SSI implementation and to discover good theoretical estimates
for the maximal minimum distance PMMD.
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Appendix A

This appendix is designed to give a short overview to different pseudo random number
and quasi random sequence generators. In the following definitions we use (y)modM
to denote y modulo M.

A.1 Some pseudo random number generators

Traditionally, pseudo random number generators produce sequences of scalars. If
vectors are needed, then they are usually formed by taking the first n scalars for
the first n-dimensional vector, the next n scalars for the second vector and so forth.
According to [30], it would be preferable to generate pseudo random vectors directly.
Here, we present traditional pseudo random number generators and one vector
generator.
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We classify pseudo random number generators to two main categories: congruen-
tial and recursive generators. We call a method congruential, if it uses modulo and only
the previous iteration value, and we call it recursive, if it uses values from several previ-
ous iterations. In addition, we present a feedback shift register generator and a vector
generator called SQRT-generator, which do not fall into the two main categories. For
another classification, see, e.g., [39]. The classifications are always somewhat vague.
Feedback shift register generator also uses values from several previous iterations,
but its construction differs significantly from recursive generators, and therefore, we
put it in its own class. For more detailed information about pseudo random number
generation we refer to [14] and to references therein.

A.1.1 Congruential generators

Next, we present five congruential generators. They are called linear, quadratic, inver-
sive, additive and parallel linear congruential generators. The name congruential
comes from the use of modulo. For example, in modulo 5, the numbers 4 and 9 are
called congruent. In what follows, M is the modulo and aj’s are prescribed integers. On
the ith iteration, the generators first produce an integer yi ∈ [0, M) and then a random
number xi ∈ [0, 1) is obtained by a division xi = yi/M unless another formula is given.
The seed y0 is a large prescribed integer. An additive congruential generator (of kth
order) [45], to be described below, requires k + 1 seeds 0 ≤ y0

j < M, j = 0, . . . , k, and
the parallel linear generator includes three separate linear generators denoted by yi,
ŷi and ˆ̂yi.

Linear yi = (a1yi−1 + a2)mod M

Quadratic yi = (a1(yi−1)2 + a2yi−1 + a3)mod M

Inversive yi = (a1

(
1

yi−1

)
+ a2)mod M

Additive yi
0 = yi−1

0
yi

m = (yi
m−1 + yi−1

m )mod M, m = 1, ..., k

xi = yi
k

M

Parallel linear yi = (a1yi−1)mod M1
ŷi = (a2ŷi−1)mod M2
ˆ̂yi = (a3 ˆ̂yi−1)mod M3

xi = (
yi

M1
+ ŷi

M2
+ ˆ̂yi

M3
)mod 1.

In all of the above generators i = 1, 2, . . . Often, a distinction is made between linear
congruential generators with a2=0 and a2 ̸=0. Then a generator with a2=0 is called a
multiplicative linear congruential generator and a generator with a2 ̸=0 a mixed linear
congruential generator.

A.1.2 Recursive generators

Generators using two or more previous random numbers when generating a new
number in the sequence are here called recursive generators. In what follows, aj, ci, s,
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and r are prescribed integers s < r, j = 1, . . . , k, and ci is called the carry operator on
the ith iteration. The determination of ci is omitted for the multiply-with-carry-gener-
ator and also for the add-with-carry and substract-with-borrow generators using more
that two previous values. Again, the pseudo random number xi ∈ [0, 1) is obtained by
a division xi = yi/M. For more details about the carry operator, see, e.g., [6]. Next, we
present five recursive generators.

Multiplicative recursive yi = (a1yi−1 + · · · + akyi−k)mod M

Lagged Fibonacci yi = (yi−r − yi−s)modM

Add − with − carry yi = (yi−s + yi−r + ci)mod M, where

ci =
{

1, yi−s + yi−r + ci−1 ≤ M
0, otherwise

Substract − with − borrow yi = (yi−s − yi−r − ci)mod M, where

ci =
{

1, if yi−s − yi−r − ci < 0
0, otherwise

Multiply − with − carry yi = (a1yi−s + a2yi−r + ci)modM, where ci is
computed using ci−1 and previous values of yi.

Again i = 1, 2, . . . and y0 is the seed. The number of previous values of y used in the
methods described above may alter. In addition, the lagged Fibonacci generator may
generate new values also as a sum or a product of the previous values.

A.1.3 Feedback shift register generator

Feedback shift register generator uses modulo in a different manner compared to
the congruential and recursive generators. Modulo M is not a large integer, but very
often M = 2 in which case the generator produces a sequence

{
αj} of zeros and ones.

The sequence is then cut into subsequences with an appropriate length. These subse-
quences correspond to yi’s. To generate the sequence

{
αj}, first a primitive polynomial

q(z) of order p is selected

q(z) = zp − (a1zp−1 + · · · + ap−1z + ap), (1)

where ai ∈ {0, 1, . . . , M − 1}, i = 1, . . . , p. Then using the coefficients ai, the nth num-
ber in the sequence is generated using the formula

αn = (apαn−p + ap−1α
n−p+1 + · · · + a1α

n−1)mod M. (2)

The initial numbers α1, . . . , αp ∈ [0, M) can be selected arbitrarily.
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A.1.4 SQRT sequence

The following definition of the SQRT sequence is taken from [43]. Let pi now be the
ith prime number and zi = √

pi, i = 1, . . . , n. Then the n-dimensional SQRT sequence
{xi} is defined by

xi = (iz) = (iz1, . . . , izn)mod 1,

where the modulo is taken component-wise. Despite its simplicity, the SQRT sequence
performs well in [43], where it is applied to a numerical integration problem and com-
pared with five quasi random sequences.

A.2 Some quasi random sequence generators

To describe the structure and the distribution properties of some quasi random se-
quences let us define an elementary interval in base b

E =
n∏

i=1

[
ai

bdi
,

ai + 1
bdi

)
,

where ai, di and b are integers di ≥ 0, 0 ≤ ai < bdi for i = 1, . . . , n. Thus, E is a
subinterval of an n-dimensional unit cube In ⊂ Rn and its ith side has a length of
1/bdi . Figure 11 illustrates 2-dimensional elementary intervals with base b = 2 and
d1 = d2 = 2, and the colored area corresponds to values a1 = 1 and a2 = 2.

Quasi random sequences are called (t, s)-sequences if they satisfy the following
distribution property (s is the dimension that we denote by n). For all integers k ≥ 0,
the point set {xj} of (t, s)-sequence with kbm ≤ j < (k + 1)bm has exactly bt points
on every elementary interval in base b with volume bt−m (in L2-metric) [36]. The
distribution properties for a (t, s)-sequence are the most preferable, when the dis-
tribution parameter t = 0, because then the first bm successive points divide evenly
on the corresponding elementary intervals and the same is true for the following bm

successive points and so on.
The class of (t, s)-sequences was introduced by Sobol’ in 1966 (see, [36]). He called

them LPτ -sequences (τ ≡ t) and studied them in base 2. Faure generalized the

Fig. 11 Two-dimensional
elementary intervals 1

1
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(t, s)-sequences to arbitrary prime base b ≥ 2 (see, e.g., [36]). Finally, Niederreiter
generalized (t, s)-sequence to arbitrary base b ≥ 2.

Often a (t, s)-sequence is called the Sobol’ sequence if b = 2 and t = 0, and Faure
sequence if b is a prime and t = 0 [30]. Sequences that are constructed according to the
guidelines given in [30] are called Niederreiter sequences. For a general construction
of any (t, s)-sequence, see, e.g., [20, 30].

Next, we present some examples how to construct (t, s)-sequences. We omit all
implementational details.

A.2.1 Van der Corput sequence

Let b ≥ 2 be the base and k be an integer. If we write k in base b

k = (dj...d1)b,

where di ∈ {0, . . . , b − 1}, i = 1, . . . , j, and define a radical inverse function φb by

φb(k) = d1

b
+ · · · + dj

bj = (0.d1 . . . dj)b, (3)

then Van der Corput sequence in base b is the sequence {φb(k)}∞k=0. Informally, we
may say that in the radical inverse the numbers dj, . . . , d1 are reflected using the deci-
mal point as a reflector, for example, if k = 12 = (1100)2, then φ2(12) = 0.00112. Van
der Corput sequence is a 1-dimensional (t, s)-sequence with t = 0 (see, e.g., [30]).

A.2.2 Hammersley sequence

All but the first component of the n-dimensional Hammersley sequence are van der
Corput sequences in an appropriate base. The n-dimensional Hammersley sequence
is defined as

xi = (i/N, φb1(i), . . . , φbn−1(i)), i = 0, 1, . . . , N − 1 (4)

where N is the number of points to be generated and the bases b1, . . . , bn are integers
greater than one and pairwise prime.

A.2.3 Halton sequence

A Hammersley sequence without the first element is called Halton sequence [17]

xi = (φb1(i), . . . , φbn(i)), i = 0, 1, . . . . (5)

The advantage over the Hammersley sequence is that a Halton sequence does not
require the knowledge of N, the total length of the sequence.

A.2.4 Sobol’ sequence

We construct the Sobol’ sequence following [4] and [14]. Let us first consider
1-dimensional Sobol’ sequence, for which we need to create a set of direction num-
bers vi in base 2. To create the direction numbers vi, we use coefficients of a primitive
polynomial q in the field of binary numbers (compare to Eq. 1 in Sect. 7)

q(z) = zp + a1zp−1 + · · · + ap−1z + ap. (6)
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Then, employing the bitwise binary exclusive-or operator ⊕ we derive the direction
numbers from the formula

vi = a1vi−1 ⊕ a2vi−2 ⊕ · · · ⊕ apvi−p ⊕ vi−p

2p , i > p.

The ith recurrence in 1-dimensional Sobol’ sequence is now formed as

xi = b1v1 ⊕ b2v2 ⊕ b3v3 ⊕ · · · ,

where · · · b3b2b1 is the binary representation of i (for example, if i = 1011, then
b4 = 1, b3 = 0, b2 = 1 and b1 = 1). To generate an n-dimensional sequence, it is
sufficient to choose n different primitive polynomials and calculate n different sets of
direction numbers. For more details, see [4].

A.2.5 Faure sequence

The following example of Faure sequence is mainly from [43]. Let us define a function g

g(φb(k)) = c0

b
+ · · · + cj−1

bj ,

where b is the base, φb(k) = (0.d1 . . . dj)b is an element of the Van der Corput
sequence and

cm =

⎛

⎝
j∑

n=m

h!
m(h − m)!dh

⎞

⎠ mod b.

Now, an n-dimensional (t, s)-sequence is defined as

xi = (φb(i), g(φb(i)), . . . , gn−1(φb(i))),

and a Faure sequence is obtained when b is the smallest prime larger or equal to the
dimension n [36].
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